Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = miniaturized paper-based assay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8848 KiB  
Article
An Integrated Photonic Biosensing Platform for Pathogen Detection in Aquaculture
by Wout Knoben, Siegfried Graf, Florian Borutta, Zerihun Tegegne, Michael Ningler, Arthur Blom, Henk Dam, Kevin Evers, Rens Schonenberg, Anke Schütz-Trilling, Janneke Veerbeek, Roman Arnet, Mark Fretz, Vincent Revol, Thomas Valentin, Christopher R. Bridges, Stephan K. Schulz, Joost van Kerkhof, Anne Leenstra, Farid Orujov and Henk van Middendorpadd Show full author list remove Hide full author list
Sensors 2024, 24(16), 5241; https://doi.org/10.3390/s24165241 - 13 Aug 2024
Viewed by 1906
Abstract
Aquaculture is expected to play a vital role in solving the challenge of sustainably providing the growing world population with healthy and nutritious food. Pathogen outbreaks are a major risk for the sector, so early detection and a timely response are crucial. This [...] Read more.
Aquaculture is expected to play a vital role in solving the challenge of sustainably providing the growing world population with healthy and nutritious food. Pathogen outbreaks are a major risk for the sector, so early detection and a timely response are crucial. This can be enabled by monitoring the pathogen levels in aquaculture facilities. This paper describes a photonic biosensing platform based on silicon nitride waveguide technology with integrated active components, which could be used for such applications. Compared to the state of the art, the current system presents improvements in terms of miniaturization of the Photonic Integrated Circuit (PIC) and the development of wafer-level processes for hybrid integration of active components and for material-selective chemical and biological surface modification. Furthermore, scalable processes for integrating the PIC in a microfluidic cartridge were developed, as well as a prototype desktop readout instrument. Three bacterial aquaculture pathogens (Aeromonas salmonicida, Vagococcus salmoninarum, and Yersinia ruckeri) were selected for assay development. DNA biomarkers were identified, corresponding primer-probe sets designed, and qPCR assays developed. The biomarker for Aeromonas was also detected using the hybrid PIC platform. This is the first successful demonstration of biosensing on the hybrid PIC platform. Full article
(This article belongs to the Special Issue Recent Advances in Optoelectronic and Photonic Sensing Technologies)
Show Figures

Figure 1

22 pages, 4943 KiB  
Review
Fluorescence-Based Portable Assays for Detection of Biological and Chemical Analytes
by Peuli Nath, Kazi Ridita Mahtaba and Aniruddha Ray
Sensors 2023, 23(11), 5053; https://doi.org/10.3390/s23115053 - 25 May 2023
Cited by 30 | Viewed by 9076
Abstract
Fluorescence-based detection techniques are part of an ever-expanding field and are widely used in biomedical and environmental research as a biosensing tool. These techniques have high sensitivity, selectivity, and a short response time, making them a valuable tool for developing bio-chemical assays. The [...] Read more.
Fluorescence-based detection techniques are part of an ever-expanding field and are widely used in biomedical and environmental research as a biosensing tool. These techniques have high sensitivity, selectivity, and a short response time, making them a valuable tool for developing bio-chemical assays. The endpoint of these assays is defined by changes in fluorescence signal, in terms of its intensity, lifetime, and/or shift in spectrum, which is monitored using readout devices such as microscopes, fluorometers, and cytometers. However, these devices are often bulky, expensive, and require supervision to operate, which makes them inaccessible in resource-limited settings. To address these issues, significant effort has been directed towards integrating fluorescence-based assays into miniature platforms based on papers, hydrogels, and microfluidic devices, and to couple these assays with portable readout devices like smartphones and wearable optical sensors, thereby enabling point-of-care detection of bio-chemical analytes. This review highlights some of the recently developed portable fluorescence-based assays by discussing the design of fluorescent sensor molecules, their sensing strategy, and the fabrication of point-of-care devices. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Fluorescent Sensors)
Show Figures

Figure 1

28 pages, 4733 KiB  
Review
Microfluidics for COVID-19: From Current Work to Future Perspective
by Qi Li, Xingchen Zhou, Qian Wang, Wenfang Liu and Chuanpin Chen
Biosensors 2023, 13(2), 163; https://doi.org/10.3390/bios13020163 - 20 Jan 2023
Cited by 13 | Viewed by 4522
Abstract
Spread of coronavirus disease 2019 (COVID-19) has significantly impacted the public health and economic sectors. It is urgently necessary to develop rapid, convenient, and cost-effective point-of-care testing (POCT) technologies for the early diagnosis and control of the plague’s transmission. Developing POCT methods and [...] Read more.
Spread of coronavirus disease 2019 (COVID-19) has significantly impacted the public health and economic sectors. It is urgently necessary to develop rapid, convenient, and cost-effective point-of-care testing (POCT) technologies for the early diagnosis and control of the plague’s transmission. Developing POCT methods and related devices is critical for achieving point-of-care diagnosis. With the advantages of miniaturization, high throughput, small sample requirements, and low actual consumption, microfluidics is an essential technology for the development of POCT devices. In this review, according to the different driving forces of the fluid, we introduce the common POCT devices based on microfluidic technology on the market, including paper-based microfluidic, centrifugal microfluidic, optical fluid, and digital microfluidic platforms. Furthermore, various microfluidic-based assays for diagnosing COVID-19 are summarized, including immunoassays, such as ELISA, and molecular assays, such as PCR. Finally, the challenges of and future perspectives on microfluidic device design and development are presented. The ultimate goals of this paper are to provide new insights and directions for the development of microfluidic diagnostics while expecting to contribute to the control of COVID-19. Full article
(This article belongs to the Section Biosensors and Healthcare)
Show Figures

Figure 1

31 pages, 1952 KiB  
Review
Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials
by Renzhu Pang, Qunyan Zhu, Jia Wei, Xianying Meng and Zhenxin Wang
Molecules 2022, 27(2), 508; https://doi.org/10.3390/molecules27020508 - 14 Jan 2022
Cited by 23 | Viewed by 4527
Abstract
Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various [...] Read more.
Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks associated with PADs, which limit the entry of PADs into the real-life applications. The application of nanomaterials in PADs is showing great improvement in their detection performance in terms of sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties. In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting representative recent publications. We mainly focus on the detection principles, the sensing mechanisms of how they work and applications in disease diagnosis, environmental monitoring and food safety management. In addition, the limitations and challenges associated with the development of nanomaterial-based PADs are discussed, and further directions in this research field are proposed. Full article
(This article belongs to the Special Issue Review Papers in Materials Chemistry)
Show Figures

Figure 1

16 pages, 3672 KiB  
Article
Pushing the Limits of Spatial Assay Resolution for Paper-Based Microfluidics Using Low-Cost and High-Throughput Pen Plotter Approach
by Reza Amin, Fariba Ghaderinezhad, Caleb Bridge, Mikail Temirel, Scott Jones, Panteha Toloueinia and Savas Tasoglu
Micromachines 2020, 11(6), 611; https://doi.org/10.3390/mi11060611 - 24 Jun 2020
Cited by 20 | Viewed by 4226
Abstract
To transform from reactive to proactive healthcare, there is an increasing need for low-cost and portable assays to continuously perform health measurements. The paper-based analytical devices could be a potential fit for this need. To miniaturize the multiplex paper-based microfluidic analytical devices and [...] Read more.
To transform from reactive to proactive healthcare, there is an increasing need for low-cost and portable assays to continuously perform health measurements. The paper-based analytical devices could be a potential fit for this need. To miniaturize the multiplex paper-based microfluidic analytical devices and minimize reagent use, a fabrication method with high resolution along with low fabrication cost should be developed. Here, we present an approach that uses a desktop pen plotter and a high-resolution technical pen for plotting high-resolution patterns to fabricate miniaturized paper-based microfluidic devices with hundreds of detection zones to conduct different assays. In order to create a functional multiplex paper-based analytical device, the hydrophobic solution is patterned on the cellulose paper and the reagents are deposited in the patterned detection zones using the technical pens. We demonstrated the effect of paper substrate thickness on the resolution of patterns by investigating the resolution of patterns on a chromatography paper with altered effective thickness. As the characteristics of the cellulose paper substrate such as thickness, resolution, and homogeneity of pore structure affect the obtained patterning resolution, we used regenerated cellulose paper to fabricate detection zones with a diameter as small as 0.8 mm. Moreover, in order to fabricate a miniaturized multiplex paper-based device, we optimized packing of the detection zones. We also showed the capability of the presented method for fabrication of 3D paper-based microfluidic devices with hundreds of detection zones for conducting colorimetric assays. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

10 pages, 2679 KiB  
Article
Design and Fabrication of Optical Flow Cell for Multiplex Detection of β-lactamase in Microchannels
by Sammer-ul Hassan and Xunli Zhang
Micromachines 2020, 11(4), 385; https://doi.org/10.3390/mi11040385 - 5 Apr 2020
Cited by 6 | Viewed by 3223
Abstract
Miniaturized quantitative assays offer multiplexing capability in a microfluidic device for high-throughput applications such as antimicrobial resistance (AMR) studies. The detection of these multiple microchannels in a single microfluidic device becomes crucial for point-of-care (POC) testing and clinical diagnostics. This paper showcases an [...] Read more.
Miniaturized quantitative assays offer multiplexing capability in a microfluidic device for high-throughput applications such as antimicrobial resistance (AMR) studies. The detection of these multiple microchannels in a single microfluidic device becomes crucial for point-of-care (POC) testing and clinical diagnostics. This paper showcases an optical flow cell for detection of parallel microchannels in a microfluidic chip. The flow cell operates by measuring the light intensity from the microchannels based on Beer-Lambert law in a linearly moving chip. While this platform could be tailored for a wide variety of applications, here we show the design, fabrication and working principle of the device. β-lactamase, an indicator of bacterial resistance to β-lactam antibiotics, especially in milk, is shown as an example. The flow cell has a small footprint and uses low-powered, low-cost components, which makes it ideally suited for use in portable devices that require multiple sample detection in a single chip. Full article
Show Figures

Figure 1

20 pages, 3266 KiB  
Review
Electrochemical DNA Biosensors Based on Labeling with Nanoparticles
by Christos Kokkinos
Nanomaterials 2019, 9(10), 1361; https://doi.org/10.3390/nano9101361 - 23 Sep 2019
Cited by 68 | Viewed by 6273
Abstract
This work reviews the field of DNA biosensors based on electrochemical determination of nanoparticle labels. These labeling platforms contain the attachment of metal nanoparticles (NPs) or quantum dots (QDs) on the target DNA or on a biorecognition reporting probe. Following the development of [...] Read more.
This work reviews the field of DNA biosensors based on electrochemical determination of nanoparticle labels. These labeling platforms contain the attachment of metal nanoparticles (NPs) or quantum dots (QDs) on the target DNA or on a biorecognition reporting probe. Following the development of DNA bioassay, the nanotags are oxidized to ions, which are determined by voltammetric methods, such as pulse voltammetry (PV) and stripping voltammetry (SV). The synergistic effects of NPs amplification (as each nanoprobe releases a large number of detectable ions) and the inherent sensitivity of voltammetric techniques (e.g., thanks to the preconcentration step of SV) leads to the construction of ultrasensitive, low cost, miniaturized, and integrated biodevices. This review focuses on accomplishments in DNA sensing using voltammetric determination of nanotags (such as gold and silver NPs, and Cd- and Pb-based QDs), includes published works on integrated three electrode biodevices and paper-based biosystems, and discusses strategies for multiplex DNA assays and signal enhancement procedures. Besides, this review mentions the electroactive NP synthesis procedures and their conjugation protocols with biomolecules that enable their function as labels in DNA electrochemical biosensors. Full article
(This article belongs to the Special Issue Nanomaterials for Immunosensors and DNA Sensors)
Show Figures

Figure 1

13 pages, 1045 KiB  
Article
Nucleic Acid Sandwich Hybridization Assay with Quantum Dot-Induced Fluorescence Resonance Energy Transfer for Pathogen Detection
by Cheng-Chung Chou and Yi-Han Huang
Sensors 2012, 12(12), 16660-16672; https://doi.org/10.3390/s121216660 - 4 Dec 2012
Cited by 28 | Viewed by 9307
Abstract
This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this [...] Read more.
This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor) in a molar ratio of 10:1 (probe-to-QD), and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor) during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO) glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED), optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection. Full article
(This article belongs to the Section Biosensors)
Show Figures

Back to TopTop