Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials
Abstract
:1. Introduction
2. Nanomaterial-Enhanced Paper-Based Analytical Device
2.1. Electrochemical Paper-Based Analytical Devices
2.2. Colorimetric Paper-Based Analytical Devices
2.3. Fluorometric Paper-Based Analytical Devices
2.4. Paper-Based Surface-Enhanced Raman Spectroscopic Analytical Devices
2.5. Comparison of the Detection Methods of Paper-Based Analytical Devices
3. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cate, D.M.; Adkins, J.A.; Mettakoonpitak, J.; Henry, C.S. Recent Developments in Paper-Based Microfluidic Devices. Anal. Chem. 2015, 87, 19–41. [Google Scholar] [CrossRef]
- Xia, Y.; Si, J.; Li, Z. Fabrication Techniques for Microfluidic Paper-Based Analytical Devices and Their Applications for Biological Testing: A Review. Biosens. Bioelectron. 2016, 77, 774–789. [Google Scholar] [CrossRef]
- Ahmed, S.; Bui, M.N.; Abbas, A. Paper-Based Chemical and Biological Sensors: Engineering Aspects. Biosens. Bioelectron. 2016, 77, 249–263. [Google Scholar] [CrossRef]
- Liu, S.; Su, W.; Ding, X. A Review on Microfluidic Paper-Based Analytical Devices for Glucose Detection. Sensors 2016, 16, 2086. [Google Scholar] [CrossRef]
- Mahato, K.; Srivastava, A.; Chandra, P. Paper Based Diagnostics for Personalized Health Care: Emerging Technologies and Commercial Aspects. Biosens. Bioelectron. 2017, 96, 246–259. [Google Scholar] [CrossRef]
- Wang, P.; Kricka, L.J. Current and Emerging Trends in Point-of-Care Technology and Strategies for Clinical Validation and Implementation. Clin. Chem. 2018, 64, 1439–1452. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Feng, L. Progress in Paper-Based Colorimetric Sensor Array. Chin. J. Anal. Chem. 2020, 48, 1448–1457. [Google Scholar] [CrossRef]
- Lin, Y.; Gritsenko, D.; Feng, S.; Teh, Y.C.; Lu, X.; Xu, J. Detection of Heavy Metal by Paper-Based Microfluidics. Biosens. Bioelectron. 2016, 83, 256–266. [Google Scholar] [CrossRef]
- Meredith, N.A.; Quinn, C.; Cate, D.M.; Reilly, T.H.; Volckens, J.; Henry, C.S. Paper-Based Analytical Devices for Environmental Analysis. Analyst 2016, 141, 1874–1887. [Google Scholar] [CrossRef]
- Kaushik, A.; Tiwari, S.; Jayant, R.D.; Marty, A.; Nair, M. Towards Detection and Diagnosis of Ebola Virus Disease at Point-of-Care. Biosens. Bioelectron. 2016, 75, 254–272. [Google Scholar] [CrossRef] [PubMed]
- Sriram, G.; Bhat, M.P.; Patil, P.; Uthappa, U.T.; Jung, H.-Y.; Altalhi, T.; Kumeria, T.; Aminabhavi, T.M.; Pai, R.K.; Kurkuri, M.D. Paper-Based Microfluidic Analytical Devices for Colorimetric Detection of Toxic Ions: A Review. Trends Anal. Chem. 2017, 93, 212–227. [Google Scholar] [CrossRef]
- Altundemir, S.; Uguz, A.K.; Ulgen, K. A Review on Wax Printed Microfluidic Paper-Based Devices for International Health. Biomicrofluidics 2017, 11, 041501. [Google Scholar] [CrossRef]
- Campbell, J.M.; Balhoff, J.B.; Landwehr, G.M.; Rahman, S.M.; Vaithiyanathan, M.; Melvin, A.T. Microfluidic and Paper-Based Devices for Disease Detection and Diagnostic Research. Int. J. Mol. Sci. 2018, 19, 2731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, M.Z.; Li, S.; Wang, S.; Lu, X. Detecting Chemical Hazards in Foods Using Microfluidic Paper-Based Analytical Devices (µPADs): The Real-World Application. Micromachines 2018, 9, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Lai, Q.; Ju, Q.; Li, L.; Yu, H.-D.; Huang, W. Paper-Based Fluorogenic Devices for in Vitro Diagnostics. Biosens. Bioelectron. 2018, 102, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Restaino, S.M.; White, I.M. A Critical Review of Flexible and Porous SERS Sensors for Analytical Chemistry at the Point-of-Sample. Anal. Chim. Acta 2019, 1060, 17–29. [Google Scholar] [CrossRef]
- Ming, T.; Luo, J.P.; Liu, J.T.; Sun, S.; Xing, Y.; Wang, H.; Xiao, G.H.; Deng, Y.; Cheng, Y.; Yang, Z.G.; et al. Paper-Based Microfluidic Aptasensors. Biosens. Bioelectron. 2020, 170, 112649. [Google Scholar] [CrossRef]
- Ding, R.Y.; Cheong, Y.H.; Ahamed, A.; Lisak, G. Heavy Metals Detection with Paper-Based Electrochemical Sensors. Anal. Chem. 2021, 93, 1880–1888. [Google Scholar] [CrossRef]
- Alahmad, W.; Sahragard, A.; Varanusupakul, P. Online and Offline Preconcentration Techniques on Paper-Based Analytical Devices for Ultrasensitive Chemical and Biochemical Analysis: A Review. Biosens. Bioelectron. 2021, 194, 113574. [Google Scholar] [CrossRef]
- Ozer, T.; Henry, C.S. Paper-Based Analytical Devices for Virus Detection: Recent Strategies for Current and Future Pandemics. Trends Anal. Chem. 2021, 144, 116424. [Google Scholar] [CrossRef]
- Fu, L.-M.; Wang, Y.-N. Detection Methods and Applications of Microfluidic Paper-Based Analytical Devices. Trends Anal. Chem. 2018, 107, 196–211. [Google Scholar] [CrossRef]
- Morbioli, G.G.; Mazzu-Nascimento, T.; Stockton, A.M.; Carrilho, E. Technical Aspects and Challenges of Colorimetric Detection with Microfluidic Paper-Based Analytical Devices (mPADs)—A Review. Anal. Chim. Acta 2017, 970, 1–22. [Google Scholar] [CrossRef]
- Chinnadayyala, S.R.; Park, J.; Ngoc Le, H.T.; Santhosh, M.; Kadam, A.N.; Cho, S. Recent Advances in Microfluidic Paper-Based Electrochemiluminescence Analytical Devices for Point-of-Care Testing Applications. Biosens. Bioelectron. 2019, 126, 68–81. [Google Scholar] [CrossRef]
- Solhi, E.; Hasanzadeh, M.; Babaie, P. Electrochemical Paper-Based Analytical Devices (ePADs) toward Biosensing: Recent Advances and Challenges in Bioanalysis. Anal. Methods 2020, 12, 1398–1414. [Google Scholar] [CrossRef]
- Chung, T.H.; Dhar, B.R. Paper-Based Platforms for Microbial Electrochemical Cell-Based Biosensors: A Review. Biosens. Bioelectron. 2021, 192, 113485. [Google Scholar] [CrossRef]
- Quesada-González, D.; Merkoçi, A. Nanoparticle-Based Lateral Flow Biosensors. Biosens. Bioelectron. 2015, 73, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Devi, R.V.; Doble, M.; Verma, R.S. Nanomaterials for Early Detection of Cancer Biomarker with Special Emphasis on Gold Nanoparticles in Immunoassays/Sensors. Biosens. Bioelectron. 2015, 68, 688–698. [Google Scholar] [CrossRef]
- Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical Biosensors based on Nanomodified Screen-Printed Electrodes: Recent Applications in Clinical Analysis. Trends Anal. Chem. 2016, 79, 114–126. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Liu, M.; Kong, N.; Liu, J. Lab-on-Paper Micro- and Nano-Analytical Devices: Fabrication, Modification, Detection and Emerging Applications. Microchim. Acta 2016, 183, 1521–1542. [Google Scholar] [CrossRef]
- Ge, S.; Zhang, L.; Zhang, Y.; Lan, F.; Yan, M.; Yu, J. Nanomaterials-Modified Cellulose Paper as a Platform for Biosensing Applications. Nanoscale 2017, 9, 4366–4382. [Google Scholar] [CrossRef] [PubMed]
- Wongkaew, N.; Simsek, M.; Griesche, C.; Baeumner, A.J. Functional Nanomaterials and Nanostructures Enhancing Electrochemical Biosensors and Lab-on-a-Chip Performances: Recent Progress, Applications, and Future Perspective. Chem. Rev. 2019, 119, 120–194. [Google Scholar] [CrossRef]
- Selvakumar, B.; Kathiravan, A. Sensory Materials for Microfluidic Paper Based Analytical Devices—A Review. Talanta 2021, 235, 122733. [Google Scholar] [CrossRef]
- Patel, S.; Jamunkar, R.; Monisha, D.S.; Patle, T.K.; Kant, T.; Dewangan, K.; Shrivas, K. Recent Development in Nanomaterials Fabricated Paper-Based Colorimetric and Fluorescent Sensors: A Review. Trends Environ. Anal. Chem. 2021, 31, e00136. [Google Scholar] [CrossRef]
- Shirshahi, V.; Liu, G. Enhancing the Analytical Performance of Paper Lateral Flow Assays: From Chemistry to Engineering. Trends Anal. Chem. 2021, 136, 116200. [Google Scholar] [CrossRef]
- Díaz-González, M.; Escosura-Muñiz, A. Strip Modification and Alternative Architectures for Signal Amplification in Nanoparticle-Based Lateral Flow Assays. Anal. Bioanal. Chem. 2021, 413, 4111–4117. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, M.; Wang, Z.; Li, S.; Deng, Y.; He, N. Point-of-Care Diagnostics for Infectious Diseases: From Methods to Devices. Nano Today 2021, 37, 101092. [Google Scholar] [CrossRef]
- Hawkes, R.; Niday, E.; Gordon, J. A Dot-Immunobinding Assay for Monoclonal and Other Antibodies. Anal. Biochem. 1982, 119, 142–147. [Google Scholar] [CrossRef]
- Dungchai, W.; Chailapakul, O.; Henry, C.S. Electrochemical Detection for Paper-Based Microfluidics. Anal. Chem. 2009, 81, 5821–5826. [Google Scholar] [CrossRef] [PubMed]
- Baharfar, M.; Rahbar, M.; Tajik, M.; Liu, G.Z. Engineering Strategies for Enhancing the Performance of Electrochemical Paper-Based Analytical Devices. Biosens. Bioelectron. 2020, 167, 112506. [Google Scholar] [CrossRef]
- Zheng, X.; Li, L.; Cui, K.; Zhang, Y.; Zhang, L.; Ge, S.; Yu, J. Ultrasensitive Enzyme-Free Biosensor by Coupling Cyclodextrin Functionalized Au Nanoparticles and High-Performance Au-Paper Electrode. ACS Appl. Mater. Interfaces 2018, 10, 3333–3340. [Google Scholar] [CrossRef]
- Pinyorospathum, C.; Chaiyo, S.; Sae-ung, P.; Hoven, V.; Damsongsang, P.; Siangproh, W.; Chailapakul, O. Disposable Paper-Based Electrochemical Sensor using Thiol-Terminated Poly(2-Methacryloyloxyethyl Phosphorylcholine) for the Label-Free Detection of C-Reactive Protein. Microchim. Acta 2019, 186, 472. [Google Scholar] [CrossRef]
- Tian, T.; Liu, H.; Li, L.; Yu, J.; Ge, S.; Song, X.; Yan, M. Paper-Based Biosensor for Noninvasive Detection of Epidermal Growth Factor Receptor Mutations in Non-Small Cell Lung Cancer Patients. Sens. Actuators B Chem. 2017, 251, 440–445. [Google Scholar] [CrossRef]
- Cinti, S.; Cinotti, G.; Parolo, C.; Nguyen, E.P.; Caratelli, V.; Moscone, D.; Arduini, F.; Merkoci, A. Experimental Comparison in Sensing Breast Cancer Mutations by Signal ON and Signal OFF Paper-Based Electroanalytical Strips. Anal. Chem. 2020, 92, 1674–1679. [Google Scholar] [CrossRef]
- Eksin, E.; Torul, H.; Yarali, E.; Tamer, U.; Papakonstantinou, P.; Erdem, A. Paper-Based Electrode Assemble for Impedimetric Detection of miRNA. Talanta 2021, 225, 122043. [Google Scholar] [CrossRef]
- Ortone, V.; Matino, L.; Santoro, F.; Cinti, S. Merging Office/Filter Paper-Based Tools for Pre-Concentring and Detecting Heavy Metals in Drinking Water. Chem. Commun. 2021, 57, 7100–7103. [Google Scholar] [CrossRef] [PubMed]
- Benson, J.; Fung, C.M.; Lloyd, J.S.; Deganello, D.; Smith, N.A.; Teng, K.S. Direct Patterning of Gold Nanoparticles using Flexographic Printing for Biosensing Applications. Nanoscale Res. Lett. 2015, 10, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavithra, M.; Muruganand, S.; Parthiban, C. Development of Novel Paper Based Electrochemical Immunosensor with Self-Made Gold Nanoparticle Ink and Quinone Derivate for Highly Sensitive Carcinoembryonic Antigen. Sens. Actuators B Chem. 2018, 257, 496–503. [Google Scholar] [CrossRef]
- Cui, K.; Zhou, C.; Zhang, B.; Zhang, L.; Liu, Y.; Hao, S.; Tang, X.; Huang, Y.; Yu, J. Enhanced Catalytic Activity Induced by the Nanostructuring Effect in Pd Decoration onto Doped Ceria Enabling an Origami Paper Analytical Device for High Performance of Amyloid-β Bioassay. ACS Appl. Mater. Interfaces 2021, 13, 33937–33947. [Google Scholar] [CrossRef]
- Li, L.; Wang, T.; Zhang, Y.; Xu, C.; Zhang, L.; Cheng, X.; Liu, H.; Chen, X.; Yu, J. Editable TiO2 Nanomaterial-Modified Paper in Situ for Highly Efficient Detection of Carcinoembryonic Antigen by Photoelectrochemical Method. ACS Appl. Mater. Interfaces 2018, 10, 14594–14601. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, L.; Gao, C.; Zhu, P.; Yu, J. Microfluidic Paper-Based Photoelectrochemical Sensing Platform with Electron-Transfer Tunneling Distance Regulation Strategy for Thrombin Detection. Biosens. Bioelectron. 2019, 133, 1–7. [Google Scholar] [CrossRef]
- De França, C.C.L.; Meneses, D.; Silva, A.C.A.; Dantas, N.O.; De Abreu, F.C.; Petroni, J.M.; Lucca, B.G. Development of Novel Paper-Based Electrochemical Device Modified with CdSe/CdS Magic-Sized Quantum Dots and Application for the Sensing of Dopamine. Electrochim. Acta 2021, 367, 137486. [Google Scholar] [CrossRef]
- Mohan, J.M.; Amreen, K.; Kulkarni, M.B.; Javed, A.; Dubey, S.K.; Goel, S. Optimized Ink Jetted Paper Device for Electroanalytical Detection of Picric Acid. Colloid. Surface. B. 2021, 208, 112056. [Google Scholar] [CrossRef]
- Amatatongchai, M.; Sitanurak, J.; Sroysee, W.; Sodanat, S.; Chairam, S.; Jarujamrus, P.; Nacapricha, D.; Lieberzeit, P.A. Highly Sensitive and Selective Electrochemical Paper-Based Device using a Graphite Screen-Printed Electrode Modified with Molecularly Imprinted Polymers Coated Fe3O4@Au@SiO2 for Serotonin Determination. Anal. Chim. Acta 2019, 1077, 255–265. [Google Scholar] [CrossRef]
- Zhang, X.; Bao, N.; Luo, X.; Ding, S. Patchy Gold Coated Fe3O4 Nanospheres with Enhanced Catalytic Activity Applied for Paper-Based Bipolar Electrode-Electrochemiluminescence Aptasensors. Biosens. Bioelectron. 2018, 114, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Z.; Li, L.; Zhang, Y.; Zhang, L.N.; Ge, S.G.; Yu, J.H. Auto-Cleaning Paper-Based Electrochemiluminescence Biosensor Coupled with Binary Catalysis of Cubic Cu2O-Au and Polyethyleneimine for Quantification of Ni2+ and Hg2+. Biosens. Bioelectron. 2019, 126, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, L.; Zhang, S.; Zhao, P.; Ge, S.; Yu, J. Paper-Based Electrochemiluminescence Determination of Streptavidin Using Reticular DNA-Functionalized PtCu Nanoframes and Analyte-Triggered DNA Walker. Microchim. Acta 2020, 187, 530. [Google Scholar] [CrossRef] [PubMed]
- Pokpas, K.; Jahed, N.; McDonald, E.; Bezuidenhout, P.; Smith, S.; Land, K.; Iwuoha, E. Graphene-AuNP Enhanced Inkjet-Printed Silver Nanoparticle Paper Electrodes for the Detection of Nickel(II)-Dimethylglyoxime [Ni(dmgH2)] Complexes by Adsorptive Cathodic Stripping Voltammetry (AdCSV). Electroanalysis 2020, 32, 3017–3031. [Google Scholar] [CrossRef]
- Valentine, C.J.; Takagishi, K.; Umezu, S.; Daly, R.; De Volder, M. Paper-Based Electrochemical Sensors using Paper as a Scaffold to Create Porous Carbon Nanotube Electrodes. ACS Appl. Mater. Interfaces 2020, 12, 30680–30685. [Google Scholar] [CrossRef]
- Tran, V.; Ko, E.; Geng, Y.; Kim, M.; Jin, G.; Son, S.; Hur, W.; Seong, G. Micro-Patterning of Single-Walled Carbon Nanotubes and Its Surface Modification with Gold Nanoparticles for Electrochemical Paper-Based Non-Enzymatic Glucose Sensor. J. Electroanal. Chem. 2018, 826, 29–37. [Google Scholar] [CrossRef]
- Jampasa, S.; Pummoree, J.; Siangproh, W.; Khongchareonporn, N.; Ngamrojanavanich, N.; Chailapakul, O.; Chaiyo, S. “Signal-On” Electrochemical Biosensor based on a Competitive Immunoassay Format for the Sensitive Determination of Oxytetracycline. Sens. Actuators B Chem. 2020, 320, 128389. [Google Scholar] [CrossRef]
- Srisomwat, C.; Teengam, P.; Chuaypen, N.; Tangkijvanich, P.; Vilaivan, T.; Chailapakul, O. Pop-up Paper Electrochemical Device for Label-Free Hepatitis B Virus DNA Detection. Sens. Actuators B Chem. 2020, 316, 128077. [Google Scholar] [CrossRef]
- Pungjunun, K.; Yakoh, A.; Chaiyo, S.; Praphairaksit, N.; Siangproh, W.; Kalcher, K.; Chailapakul, O. Laser Engraved Microapillary Pump Paper-Based Microfluidic Device for Colorimetric and Electrochemical Detection of Salivary Thiocyanate. Microchim. Acta 2021, 188, 140. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Cheng, Z.; Chen, Q.; Qu, L.; Miao, X.; Feng, Q. Construction of a Paper-Based Electrochemical Biosensing Platform for Rapid and Accurate Detection of Adenosine Triphosphate (ATP). Sens. Actuators B Chem. 2018, 256, 931–937. [Google Scholar] [CrossRef]
- Pungjunun, K.; Chaiyo, S.; Praphairaksit, N.; Siangproh, W.; Ortner, A.; Kalcher, K.; Chailapaku, O.; Mehmeti, E. Electrochemical Detection of NOx Gas Based on Disposable Paper-Based Analytical Device using a Copper Nanoparticles-Modified Screen-Printed Graphene Electrode. Biosens. Bioelectron. 2019, 143, 111606. [Google Scholar] [CrossRef]
- Prasad, K.; Cao, X.; Gao, N.; Jin, Q.; Sanjay, S.; Henao-Pabon, G.; Li, X. A Low-Cost Nanomaterial-Based Electrochemical Immunosensor on Paper for High-Sensitivity Early Detection of Pancreatic Cancer. Sens. Actuators B Chem. 2020, 305, 127516. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, H.; Luo, J.; Liu, J.; Wang, L.; Fan, Y.; Yan, S.; Yang, Y.; Cai, X. A Novel Label-Free Microfluidic Paper-Based Immunosensor for Highly Sensitive Electrochemical Detection of Carcinoembryonic Antigen. Biosen. Bioelectron. 2016, 83, 319–326. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, J.; Liu, J.; Sun, S.; Xiong, Y.; Ma, Y.; Yan, S.; Yang, Y.; Yin, H.; Cai, X. Label-Free Microfluidic Paper-Based Electrochemical Aptasensor for Ultrasensitive and Simultaneous Multiplexed Detection of Cancer Biomarkers. Biosens. Bioelectron. 2019, 136, 84–90. [Google Scholar] [CrossRef]
- Ortega, F.; Regiart, M.; Rodríguez-Martínez, A.; Miguel-Pérez, D.; Serrano, M.; Lorente, J.; Tortella, G.; Rubilar, O.; Sapag, K.; Bertotti, M.; et al. Sandwich-Type Electrochemical Paper-Based Immunosensor for Claudin 7 and CD81 Dual Determination on Extracellular Vesicles from Breast Cancer Patients. Anal. Chem. 2021, 93, 1143–1153. [Google Scholar] [CrossRef]
- Scala-Benuzzi, M.L.; Raba, J.; Soler-Illia, G.J.A.A.; Schneider, R.J.; Messina, G.A. Novel Electrochemical Paper-Based Immunocapture Assay for the Quantitative Determination of Ethinylestradiol in Water Samples. Anal. Chem. 2018, 90, 4104–4111. [Google Scholar] [CrossRef] [Green Version]
- Cincotto, F.H.; Fava, E.L.; Moraes, F.C.; Fatibello-Filho, O.; Faria, R.C. A New Disposable Microfluidic Electrochemical Paper-Based Device for the Simultaneous Determination of Clinical Biomarkers. Talanta 2019, 195, 62–68. [Google Scholar] [CrossRef]
- Boonkaew, S.; Jang, I.; Noviana, E.; Siangproh, W.; Chailapakul, O.; Henry, C. Electrochemical Paper-Based Analytical Device for Multiplexed, Point-of-Care Detection of Cardiovascular Disease Biomarkers. Sens. Actuators B Chem. 2021, 330, 129336. [Google Scholar] [CrossRef]
- Dave, K.; Pachauri, N.; Dinda, A.; Solanki, P. RGO Modified Mediator Free Paper for Electrochemical Biosensing Platform. Appl. Surf. Sci. 2019, 463, 587–595. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, S.; Luo, J.; Xiong, Y.; Ming, T.; Liu, J.; Ma, Y.; Yan, S.; Yang, Y.; Yang, Z.; et al. Low Sample Volume Origami-Paper-Based Graphene-Modified Aptasensors for Label-Free Electrochemical Detection of Cancer Biomarker-EGFR. Microsyst. Nanoeng. 2020, 6, 32. [Google Scholar] [CrossRef]
- Ming, T.; Cheng, Y.; Xing, Y.; Luo, J.; Mao, G.; Liu, J.; Sun, S.; Kong, F.; Jin, H.; Cai, X. Electrochemical Microfluidic Paper-Based Aptasensor Platform Based on a Biotin-Streptavidin System for Label-Free Detection of Biomarkers. ACS Appl. Mater. Interfaces 2021, 13, 46317–46324. [Google Scholar] [CrossRef]
- Wei, X.; Guo, J.; Lian, H.; Sun, X.; Liu, B. Cobalt Metal-Organic Framework Modified Carbon Cloth/Paper Hybrid Electrochemical Button-Sensor for Nonenzymatic Glucose Diagnostics. Sens. Actuators B Chem. 2021, 329, 129205. [Google Scholar] [CrossRef]
- Zhou, C.; Cui, K.; Liu, Y.; Hao, S.; Zhang, L.; Ge, S.; Yu, J. Ultrasensitive Microfluidic Paper-Based Electrochemical/Visual Analytical Device via Signal Amplification of Pd@Hollow Zn/Co Core–Shell ZIF67/ZIF8 Nanoparticles for Prostate-Specific Antigen Detection. Anal. Chem. 2021, 93, 5459–5467. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Su, T.; Shang, Z.; Jin, D.; Shu, Y.; Xu, Q.; Hu, X. Flexible Paper-Based Ni-MOF Composite/AuNPs/CNTs Film Electrode for HIV DNA Detection. Biosens. Bioelectron. 2021, 184, 113229. [Google Scholar] [CrossRef]
- Ma, C.; Cao, Y.; Gou, X.; Zhu, J.-J. Recent Progress in Electrochemiluminescence Sensing and Imaging. Anal. Chem. 2020, 92, 431–454. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.S.; Skorupskii, G.; Dincă, M. Electrically Conductive Metal–Organic Frameworks. Chem. Rev. 2020, 120, 8536–8580. [Google Scholar] [CrossRef] [Green Version]
- Choleva, T.G.; Kappi, F.A.; Giokas, D.L.; Vlessidis, A.G. Paper-Based Assay of Antioxidant Activity Using Analyte-Mediated on-Paper Nucleation of Gold Nanoparticles as Colorimetric Probes. Anal. Chim. Acta 2015, 860, 61–69. [Google Scholar] [CrossRef]
- Alba-Patiño, A.; Russell, S.M.; Rica, R. Origami-Enabled Signal Amplification for Paper-Based Colorimetric Biosensors. Sens. Actuators B Chem. 2018, 273, 951–954. [Google Scholar] [CrossRef]
- Xie, L.; Zi, X.; Zeng, H.; Sun, J.; Xu, L.; Chen, S. Low-Cost Fabrication of a Paper-Based Microfluidic using a Folded Pattern Paper. Anal. Chim. Acta 2019, 1053, 131–138. [Google Scholar] [CrossRef]
- Liang, P.; Yu, H.; Guntupalli, B.; Xiao, Y. Paper-Based Device for Rapid Visualization of NADH Based on Dissolution of Gold Nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 15023–15030. [Google Scholar] [CrossRef]
- Liu, C.; Miao, Y.; Zhang, X.; Zhang, S.; Zhao, X. Colorimetric Determination of Cysteine by a Paper-Based Assay System using Aspartic Acid Modified Gold Nanoparticles. Microchim. Acta 2020, 187, 362. [Google Scholar] [CrossRef]
- Díaz-Amaya, S.; Zhao, M.; Allebach, J.P.; Chiu, G.T.-C.; Stanciu, L.A. Ionic Strength Influences on Biofunctional Au-Decorated Microparticles for Enhanced Performance in Multiplexed Colorimetric Sensors. ACS Appl. Mater. Interfaces 2020, 12, 32397–32409. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.-T.; Huang, C.-Y.; Chen, C.-A.; Shen, S.-W.; Wang, M.-C.; Cheng, C.-M.; Chen, C.-F. Diagnosis of Tuberculosis Using Colorimetric Gold Nanoparticles on a Paper-Based Analytical Device. ACS Sens. 2017, 2, 1345–1354. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-Y.; Lin, H.-T.; Chen, T.-H.; Chen, C.-A.; Chang, H.-T.; Chen, C.-F. Signal Amplified Gold Nanoparticles for Cancer Diagnosis on Paper-Based Analytical Devices. ACS Sens. 2018, 3, 174–182. [Google Scholar] [CrossRef]
- Sena-Torralba, A.; Alvarez-Diduk, R.; Parolo, C.; Torné-Morató, H.; Müller, A.; Merkoçi, A. Paper-Based Electrophoretic Bioassay: Biosensing in Whole Blood Operating via Smartphone. Anal. Chem. 2021, 93, 3112–3121. [Google Scholar] [CrossRef] [PubMed]
- Devadhasan, J.P.; Gu, J.; Chen, P.; Smith, S.; Thomas, B.; Gates-Hollingsworth, M.; Hau, D.; Pandit, S.; AuCoin, D.; Zenhausern, F. Critical Comparison between Large and Mini Vertical Flow Immunoassay Platforms for Yersinia Pestis Detection. Anal. Chem. 2021, 93, 9337–9344. [Google Scholar] [CrossRef]
- Lei, K.F.; Huang, C.-H.; Kuo, R.-L.; Chang, C.-K.; Chen, K.-F.; Tsao, K.-C.; Tsang, N.-M. Paper-Based Enzyme-Free Immunoassay for Rapid Detection and Subtyping of Influenza A H1N1 and H3N2 Viruses. Anal. Chim. Acta 2015, 883, 37–44. [Google Scholar] [CrossRef]
- Xu, F.Q.; Zhu, Q.Y.; Zhang, H.; Wang, Z.X. Preparation of Colloidal Gold-Labeled Immunochromatographic Strips for Detection of Soluble Interleukin-2 Receptors in Real Samples. Chinese J. Anal. Chem. 2021, 49, 973–981. [Google Scholar]
- Pang, R.Z.; Zhu, Q.Y.; Wei, J.; Wang, Y.Q.; Xu, F.Q.; Meng, X.Y.; Wang, Z.X. Development of a Gold-Nanorod-Based Lateral Flow Immunoassay for a Fast and Dual-Modal Detection of C-Reactive Protein in Clinical Plasma Samples. RSC Adv. 2021, 11, 28388–28394. [Google Scholar] [CrossRef]
- Li, F.; Guo, L.; Hu, Y.; Li, Z.; Liu, J.; He, J.; Cui, H. Multiplexed Chemiluminescence Determination of Three Acute Myocardial Infarction Biomarkers Based on Microfluidic Paper-Based Immunodevice Dual Amplified by Multifunctionalized Gold Nanoparticles. Talanta 2020, 207, 120346. [Google Scholar] [CrossRef]
- Ying, B.; Park, S.; Chen, L.; Dong, X.; Young, E.W.K.; Liu, X. NanoPADs and NanoFACEs: An Optically Transparent Nanopaper-Based Device for Biomedical Applications. Lab Chip 2020, 20, 3322–3333. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Hsu, C.-H.; Lu, B.-J.; Lin, P.-Y.; Ho, M.-L. Determination of Nitrite Ions in Environment Analysis with a Paper-Based Microfluidic Device. Dalton Trans. 2018, 47, 14799–14807. [Google Scholar] [CrossRef]
- Monisha; Shrivas, K.; Kant, T.; Patel, S.; Devi, R.; Dahariya, N.S.; Pervez, S.; Deb, M.K.; Rai, M.K.; Rai, J. Inkjet-Printed Paper-Based Colorimetric Sensor Coupled with Smartphone for Determination of Mercury (Hg2+). J. Hazard. Mater. 2021, 414, 125440. [Google Scholar] [CrossRef]
- Ferreira, D.C.M.; Giordano, G.F.; Soares, C.; De Oliveira, J.; Mendes, R.; Piazzetta, M.; Gobbi, A.; Cardoso, M. Optical Paper-Based Sensor for Ascorbic Acid Quantification using Silver Nanoparticles. Talanta 2015, 141, 188–194. [Google Scholar] [CrossRef]
- Mettakoonpitak, J.; Khongsoun, K.; Wongwan, N.; Kaewbutdee, S.; Siripinyanond, A.; Kuharuk, A.; Henry, C.S. Simple Biodegradable Plastic Screen-Printing for Microfluidic Paper-Based Analytical Devices. Sens. Actuators B Chem. 2021, 331, 129463. [Google Scholar] [CrossRef]
- Firdaus, M.L.; Aprian, A.; Meileza, N.; Hitsmi, M.; Elvia, R.; Rahmidar, L.; Khaydarov, R. Smartphone Coupled with a Paper-Based Colorimetric Device for Sensitive and Portable Mercury Ion Sensing. Chemosensors 2019, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Mavaei, M.; Chahardoli, A.; Fattahi, A.; Khoshroo, A. A Simple Method for Developing a Hand-Drawn Paper-Based Sensor for Mercury; Using Green Synthesized Silver Nanoparticles and Smartphone as a Hand-Held-Device for Colorimetric Assay. Glob. Chall. 2021, 5, 2000099. [Google Scholar] [CrossRef] [PubMed]
- Shrivas, K.; Patel, M.; Thakur, S.; Shankar, R. Food Safety Monitoring of the Pesticide Phenthoate using a Smartphone-Assisted Paperbased Sensor with Bimetallic Cu@Ag Core–Shell Nanoparticles. Lab Chip 2020, 20, 3996–4006. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, N.; Abarghoei, S.; Dadmehr, M.; Hosseini, M.; Sabahi, H.; Ganjali, M. Paper Based Colorimetric Detection of miRNA-21 using Ag/Pt Nanoclusters. Spectrochim. Acta A 2020, 227, 117529. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Liu, W.; Li, B.; Yang, C.J.; Jin, Y. Multichannel Paper Chip-Based Gas Pressure Bioassay for Simultaneous Detection of Multiple MicroRNAs. ACS Appl. Mater. Interfaces 2021, 13, 15008–15016. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Niua, X.; Li, X.; He, Y.; Song, H.; Peng, Y.; Pan, J.; Qiu, F.; Zhao, H.; Lan, M. A Smartphone-Integrated Ready-to-Use Paper-Based Sensor with Mesoporous Carbon-Dispersed Pd Nanoparticles as a Highly Active Peroxidase Mimic for H2O2 Detection. Sens. Actuators B Chem. 2018, 265, 412–420. [Google Scholar] [CrossRef]
- Feng, L.-X.; Tang, C.; Han, X.-X.; Zhang, H.-C.; Guo, F.-N.; Yang, T.; Wang, J.-H. Simultaneous and Sensitive Detection of Multiple Small Biological Molecules by Microfluidic Paper-Based Analytical Device Integrated with Zinc Oxide Nanorods. Talanta 2021, 232, 122499. [Google Scholar] [CrossRef]
- Jamil, S.; Nasir, M.; Ali, Y.; Nadeem, S.; Rashid, S.; Javed, M.Y.; Hayat, A. Cr2O3−TiO2-Modified Filter Paper-Based Portable Nanosensors for Optical and Colorimetric Detection of Hydrogen Peroxide. ACS Omega 2021, 6, 23368–23377. [Google Scholar] [CrossRef]
- Sawetwong, P.; Chairam, S.; Jarujamrus, P.; Amatatongchai, M. Enhanced Selectivity and Sensitivity for Colorimetric Determination of Glyphosate using Mn–ZnS Quantum Dot Embedded Molecularly Imprinted Polymers Combined with a 3D-Microfluidic Paper-Based Analytical Device. Talanta 2021, 225, 122077. [Google Scholar] [CrossRef]
- Kitchawengkul, N.; Prakobkij, A.; Anutrasakda, W.; Yodsin, N.; Jungsuttiwong, S.; Chunta, S.; Amatatongchai, M.; Jarujamrus, P. Mimicking Peroxidase-Like Activity of Nitrogen-Doped Carbon Dots (N-CDs) Coupled with a Laminated Three-Dimensional Microfluidic Paper-Based Analytical Device (Laminated 3D-μPAD) for Smart Sensing of Total Cholesterol from Whole Blood. Anal. Chem. 2021, 93, 6989–6999. [Google Scholar] [CrossRef]
- Liu, C.; Luo, Y.; Wen, H.; Qi, Y.; Shi, G.; Deng, J.; Zhou, T. Red-to-Blue Paper-Based Colorimetric Sensor Integrated with Smartphone for Point-of-Use Analysis of Cerebral AChE upon Cd2+ Exposure. Nanoscale 2021, 13, 1283–1290. [Google Scholar] [CrossRef]
- Huy, B.; Nghia, N.; Lee, Y.-I. Highly Sensitive Colorimetric Paper-Based Analytical Device for the Determination of Tetracycline using Green Fluorescent Carbon Nitride Nanoparticles. Microchem. J. 2020, 158, 105151. [Google Scholar] [CrossRef]
- Pimentel, E.S.; Brito-Pereira, R.; Marques-Almeida, T.; Ribeiro, C.; Vaz, F.; Lanceros-Mendez, S.; Cardoso, V.F. Tailoring Electrospun Poly(L-lactic acid) Nanofibers as Substrates for Microfluidic Applications. ACS Appl. Mater. Interfaces 2020, 12, 60–69. [Google Scholar] [CrossRef]
- Lawati, H.; Hassanzadeh, J. Dual-Function 2D Cobalt Metal-Organic Framework Embedded on Paper as a Point-of-Care Diagnostic Device: Application for the Quantification of Glucose. Anal. Chim. Acta 2020, 1139, 15–26. [Google Scholar] [CrossRef]
- Marín-Barroso, E.; Moreira, C.M.; Messina, G.A.; Bertolino, F.A.; Alderete, M.; Soler-Illia, G.J.A.A.; Raba, J.; Pereira, S.V. Paper Based Analytical Device Modified with Nanoporous Material for the Fluorescent Sensing of Gliadin Content in Different Food Samples. Microchem. J. 2018, 142, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Zhang, Q.; Zhang, Z.; Ding, X.; Jiang, J.; Zhang, W.; Li, P. Rapid, On-Site and Quantitative Paper-Based Immunoassay Platform for Concurrent Determination of Pesticide Residues and Mycotoxins. Anal. Chim. Acta 2019, 1078, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-J.; Kong, F.; Zhao, C.-Q.; Ding, S.-N. Ratiometric Fluorescent Nanosensors for Ultra-Sensitive Detection of Mercury Ions Based on AuNCs/MOFs. Analyst 2019, 144, 2523–2530. [Google Scholar] [CrossRef]
- Ungor, D.; Horváth, K.; Dékány, I.; Csapó, E. Red-Emitting Gold Nanoclusters for Rapid Fluorescence Sensing of Tryptophan Metabolites. Sens. Actuators B Chem. 2019, 288, 728–733. [Google Scholar] [CrossRef] [Green Version]
- Lert-itthiporn, A.; Srikritsadawong, P.; Choengchan, N. Foldable Paper-Based Analytical Device for Membraneless Gas-Separation and Determination of Iodate Based on Fluorescence Quenching of Gold Nanoclusters. Talanta 2021, 221, 121574. [Google Scholar] [CrossRef] [PubMed]
- Pena-Pereira, F.; Capón, N.; Calle, I.; Lavilla, I.; Bendicho, C. Fluorescent Poly(vinylpyrrolidone)-Supported Copper Nanoclusters in Miniaturized Analytical Systems for Iodine Sensing. Sens. Actuators B Chem. 2019, 299, 126979. [Google Scholar] [CrossRef]
- Yin, X.; Liang, L.; Zhao, P.; Lan, F.; Zhang, L.; Ge, S.; Yu, J. Double Signal Amplification Based on Palladium Nanoclusters and Nucleic Acid Cycles on a lPAD for Dual-Model Detection of MicroRNAs. J. Mater. Chem. B 2018, 6, 5795–5801. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Song, Z.; Jiang, Y.; Zhang, X.; Wang, L.; Zhao, H.; Cui, Y.; Gu, F.; Wang, Y.; Zheng, G. A Three-Dimensional Pinwheel-Shaped Paper-Based Microfluidic Analytical Device for Fluorescence Detection of Multiple Heavy Metals in Coastal Waters by Rational Device Design. Anal. Bioanal. Chem. 2021, 413, 3299–3313. [Google Scholar] [CrossRef]
- Liu, Q.; Lin, Y.; Xiong, J.; Wu, L.; Hou, X.; Xu, K.; Zheng, C. Disposable Paper-Based Analytical Device for Visual Speciation Analysis of Ag(I) and Silver Nanoparticles (AgNPs). Anal. Chem. 2019, 91, 3359–3366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ma, X.; Li, B.; Zhao, J.; Qi, J.; Hao, G.; Rong, J.; Yang, X. Fluorescence Detection of 2,4-Dichlorophenoxyacetic Acid by Ratiometric Fluorescence Imaging on Paper-Based Microfluidic Chips. Analyst 2020, 145, 963–974. [Google Scholar] [CrossRef]
- Thepmanee, O.; Prapainop, K.; Noppha, O.; Rattanawimanwong, N.; Siangproh, W.; Chailapakul, O.; Songsrirote, K. A Simple Paper-Based Approach for Arsenic Determination in Water using Hydride Generation Coupled with Mercaptosuccinic-Acid Capped CdTe Quantum Dots. Anal. Methods 2020, 12, 2718–2726. [Google Scholar] [CrossRef]
- Kuang, Y.; Wang, X.; Tian, X.; Yang, C.; Li, Y.; Nie, Y. Silica-Embedded CdTe Quantum Dots Functionalized with Rhodamine Derivative for Instant Visual Detection of Ferric Ions in Aqueous Media. J. Photoch. Photobiol. A 2019, 372, 140–146. [Google Scholar] [CrossRef]
- Ou, Q.; Tawfik, S.M.; Zhang, X.; Lee, Y.-I. Novel “Turn On–Off” Paper Sensor Based on Nonionic Conjugated Polythiophene-Coated CdTe QDs for Efficient Visual Detection of Cholinesterase Activity. Analyst 2020, 145, 4305–4313. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chen, Y.; Zhang, L.; Liu, W. An Inkjet Printing Paper-Based Immunodevice for Fluorescence Determination of Immunoglobulin G. Anal. Methods 2019, 11, 3452–3459. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.; Wang, Q.; Tang, D.; Lin, Y. Distance-Dependent Visual Fluorescence Immunoassay on CdTe Quantum Dot–Impregnated Paper through Silver Ion-Exchange Reaction. Microchim. Acta 2020, 187, 563. [Google Scholar] [CrossRef]
- Moreira, C.M.; Mar’ın-Barroso, E.; Pereira, S.V.; Raba, J.; Messina, G.A.; Bertolino, F.A. A Nanostructured Paper-Based Device for Phenylalanine Neonatal Screening by LED-Induced Fluorescence. Anal. Methods 2020, 12, 1624–1630. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Yeh, Y.-C. Rapid Synthesis of Microwave-Assisted Zinc Oxide Nanorods on a Paper-Based Analytical Device for Fluorometric Detection of L-Dopa. Colloids Surf. B 2021, 207, 111995. [Google Scholar] [CrossRef]
- Zhao, M.; Li, H.; Liu, W.; Chu, W.; Chen, Y. Paper-Based Laser Induced Fluorescence Immunodevice Combining with CdTe Embedded Silica Nanoparticles Signal Enhancement Strategy. Sens. Actuators B Chem. 2017, 242, 87–94. [Google Scholar] [CrossRef]
- Qiu, Z.; Shu, J.; Tang, D. Bioresponsive Release System for Visual Fluorescence Detection of Carcinoembryonic Antigen from Mesoporous Silica Nanocontainers Mediated Optical Color on Quantum Dot-Enzyme-Impregnated Paper. Anal. Chem. 2017, 89, 5152–5160. [Google Scholar] [CrossRef]
- Zhou, J.; Li, B.; Qi, A.; Shi, Y.; Qi, J.; Xu, H.; Chen, L. ZnSe Quantum Dot Based Ion Imprinting Technology for Fluorescence Detecting Cadmium and Lead Ions on a Three-Dimensional Rotary Paper-Based Microfluidic Chip. Sens. Actuators B Chem. 2020, 305, 127462. [Google Scholar] [CrossRef]
- Noor, M.O.; Hrovat, D.; Moazami-Goudarzi, M.; Espie, G.S.; Krull, U.J. Ratiometric Fluorescence Transduction by Hybridization after Isothermal Amplification for Determination of Zeptomole Quantities of Oligonucleotide Biomarkers with a Paper-Based Platform and Camera-Based Detection. Anal. Chim. Acta 2015, 885, 156–165. [Google Scholar] [CrossRef]
- Xia, Z.; Li, D.; Deng, W. Identification and Detection of Volatile Aldehydes as Lung Cancer Biomarkers by Vapor Generation Combined with Paper-Based Thin Film Microextraction. Anal. Chem. 2021, 93, 4924–4931. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Lan, F.; Li, L.; Su, M.; Ge, S.; Yu, J.; Liu, H.; Yan, M. Fluorescence “Turn-On” Determination of H2O2 using Multilayer Porous SiO2/NGQDs and PdAu Mimetics Enzymatic/Oxidative Cleavage of Single-Stranded DNA. Biosens. Bioelectron. 2016, 82, 204–211. [Google Scholar] [CrossRef]
- Wang, X.; Hou, J.; Lan, S.; Shen, C.; Huo, D.; Ji, Z.; Ma, Y.; Luo, H.; Zhang, S.; He, Q.; et al. MoS2 QDs-Based Sensor for Measurement of Fluazinam with Triple Signal Output. Anal. Chim. Acta 2020, 1108, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Apilux, W.; Siangproh, N.; Insin, O.C.; Prachayasittikule, V. Paper-Based Thioglycolic Acid (TGA)-Capped CdTe QD Device for Rapid Screening of Organophosphorus and Carbamate Insecticides. Anal. Methods 2017, 9, 519–527. [Google Scholar] [CrossRef]
- El-Shaheny, R.; Yoshida, S.; Fuchigami, T. Graphene Quantum Dots as a Nanoprobe for Analysis of O- and P-nitrophenols in Environmental Water Adopting Conventional Fluorometry and Smartphone Image Processing-Assisted Paper-Based Analytical Device. Microchem. J. 2020, 158, 105241. [Google Scholar] [CrossRef]
- Shah, K.G.; Singh, V.; Kauffman, P.C.; Abe, K.; Yager, P. Mobile Phone Ratiometric Imaging Enables Highly Sensitive Fluorescence Lateral Flow Immunoassays without External Optical Filters. Anal. Chem. 2018, 90, 6967–6974. [Google Scholar] [CrossRef]
- Liang, L.; Su, M.; Li, L.; Lan, F.; Yang, G.; Ge, S.; Yu, J.; Song, X. Aptamer-Based Fluorescent and Visual Biosensor for Multiplexed Monitoring of Cancer Cells in Microfluidic Paper-Based Analytical Devices. Sens. Actuators B Chem. 2016, 229, 347–354. [Google Scholar] [CrossRef]
- Ye, J.; Geng, Y.; Cao, F.; Sun, D.; Xu, S.; Chang, J.; Xu, W.; Chen, Q. A Smartphone-Assisted Paper-Based Analytical Device for Fluorescence Assay of Hg2+. Chem. Res. Chin. Univ. 2019, 35, 972–977. [Google Scholar] [CrossRef]
- Ninwong, B.; Sangkaew, P.; Hapa, P.; Ratnarathorn, N.; Menger, R.F.; Henry, C.S.; Dungchai, W. Sensitive Distance-Based Paper-Based Quantification of Mercury Ions Using Carbon Nanodots and Heating-Based Preconcentration. RSC Adv. 2020, 10, 9884–9893. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, X.; Miao, C.; Li, R.; Ji, Y. Fluorescent Paper–Based Sensor Based on Carbon Dots for Detection of Folic Acid. Anal. Bioanal. Chem. 2020, 412, 2805–2813. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.; Chu, S.; Liu, B.; Zhang, Q.; Zou, L.; Yu, S.; Jiang, C. Semiquantitative Visual Detection of Lead Ions with a Smartphone via a Colorimetric Paper-Based Analytical Device. Anal. Chem. 2019, 91, 9292–9299. [Google Scholar] [CrossRef]
- Hu, J.; Yang, X.; Peng, Q.; Wang, F.; Zhu, Y.; Hu, X.; Zheng, B.; Du, J.; Xiao, D. A Highly Sensitive Visual Sensor for Tetracycline in Food Samples by a Double-Signal Response Fluorescent Nanohybrid. Food Control 2020, 108, 106832. [Google Scholar] [CrossRef]
- Yehia, A.M.; Farag, M.A.; Tantawy, M.A. A Novel Trimodal System on a Paper-Based Microfluidic Device for Onsite Detection of the Date Rape Drug “Ketamine”. Anal. Chim. Acta 2020, 1104, 95–104. [Google Scholar] [CrossRef]
- Ortiz-Gomez, I.; Ortega-Muñoz, M.; Marín-Sánchez, A.; de Orbe-Payá, I.; Hernandez-Mateo, F.; Capitan-Vallvey, L.; Santoyo-Gonzalez, F.; Salinas-Castillo, A. A Vinyl Sulfone Clicked Carbon Dot-Engineered Microfluidic Paper-Based Analytical Device for Fluorometric Determination of Biothiols. Microchim. Acta 2020, 187, 421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, S.; Zhuo, S.; Ji, Y.; Li, R. A Carbon Dots Functionalized Paper Coupled with AgNPs Composites Platform: Application as a Sensor for Hydrogen Peroxide Detection Based on Surface Plasmon-Enhanced Energy Transfer. New J. Chem. 2021, 45, 6025–6032. [Google Scholar] [CrossRef]
- Tian, X.; Wang, J.; Li, Y.; Yang, C.; Lu, L.; Nie, Y. Sensitive Determination of Hardness and Fluoride in Ground Water by a Hybrid Nanosensor Based on Aggregation Induced FRET On and Off Mechanism. Sens. Actuators B Chem. 2018, 262, 522–530. [Google Scholar] [CrossRef]
- Ortiz-Gomez, I.; Toral-Lopez, V.; Romero, F.J.; De Orbe-Paya, I.; García, A.; Rodríguez, N.; Capitan-Vallvey, L.; Morales, D.; Salinas-Castillo, A. In Situ Synthesis of Fluorescent Silicon Nanodots for Determination of Total Carbohydrates in a Paper Microfluidic Device Combined with Laser Prepared Graphene Heater. Sens. Actuators B Chem. 2021, 332, 129506. [Google Scholar] [CrossRef]
- Liang, L.; Lan, F.; Yin, X.; Ge, S.; Yu, J.; Yan, M. Metal-Enhanced Fluorescence/Visual Bimodal Platform for Multiplexed Ultrasensitive Detection of MicroRNA with Reusable Paper Analytical Devices. Biosens. Bioelectron. 2017, 95, 181–188. [Google Scholar] [CrossRef]
- El-Shaheny, R.; Al-Khateeb, L.A.; El-Maghrabey, M. Dual-Excitation In-Lab-Made Device Based on a Handy UV Lamp and GQDs-Modified PADs for Simultaneous Determination of Acetaminophen and Its Endocrine Disrupting Impurity 4-Nitrophenol. Sens. Actuators B Chem. 2021, 348, 130657. [Google Scholar] [CrossRef]
- Wang, F.M.; Li, W.; Wang, J.S.; Ren, J.S.; Qu, X.G. Detection of Telomerase on Upconversion Nanoparticle Modified Cellulose Paper. Chem. Commun. 2015, 51, 11630–11633. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Liu, Y.H.; Chen, Y.; Xiong, Q.R.; Wang, Y.H.; Duan, H.W.; Lai, W.H. Improving the Performance of Upconversion Nanoprobe-Based Lateral Flow Immunoassays by Supramolecular Self-Assembly Core/Shell Strategies. Sens. Actuators B Chem. 2020, 318, 128233. [Google Scholar] [CrossRef]
- He, M.; Shang, N.; Zhu, Q.; Xu, J. Paper-Based Upconversion Fluorescence Aptasensor for the Quantitative Detection of Immunoglobulin E in Human Serum. Anal. Chim. Acta 2021, 1143, 93–100. [Google Scholar] [CrossRef]
- Na, M.; Zhang, S.; Liu, J.; Ma, S.; Han, Y.; Wang, Y.; He, Y.; Chen, H.; Chen, X. Determination of Pathogenic Bacteria―Bacillus Anthrax Spores in Environmental Samples by Ratiometric Fluorescence and Test Paper Based on Dual-Emission Fluorescent Silicon Nanoparticles. J. Hazard. Mater. 2020, 386, 121956. [Google Scholar] [CrossRef] [PubMed]
- Lv, S.; Tang, Y.; Zhang, K.; Tang, D. Wet NH3-Triggered NH2-MIL-125(Ti) Structural Switch for Visible Fluorescence Immunoassay Impregnated on Paper. Anal. Chem. 2018, 90, 14121–14125. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Zheng, Q.; Wang, H.; Liu, C.; Huang, X.; Xiao, Y. Double-Color Lanthanide Metal–Organic Framework Based Logic Device and Visual Ratiometric Fluorescence Water Microsensor for Solid Pharmaceuticals. Anal. Chem. 2020, 92, 1402–1408. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; He, C.; Zheng, Q.; Feng, L.; Xiong, L.; Xiao, Y. Dual Eu-MOFs Based Logic Device and Ratiometric Fluorescence Paper Microchip for Visual H2O2 Assay. J. Mater. Chem. C 2020, 8, 3562–3570. [Google Scholar] [CrossRef]
- Zhang, D.; Du, P.; Chen, J.; Guo, H.; Lu, X. Pyrazolate-Based Porphyrinic Metal-Organic Frameworks as Catechol Oxidase Mimic Enzyme for Fluorescent and Colorimetric Dual-Mode Detection of Dopamine with High Sensitivity and Specificity. Sens. Actuators B Chem. 2021, 341, 130000. [Google Scholar] [CrossRef]
- Yue, X.; Li, Y.; Xu, S.; Li, J.; Li, M.; Jiang, L.; Jie, M.; Bai, Y. A Portable Smartphone-Assisted Ratiometric Fluorescence Sensor for Intelligent and Visual Detection of Malachite Green. Food Chem. 2022, 371, 131164. [Google Scholar] [CrossRef]
- Abbas, A.; Brimer, A.; Slocik, J.M.; Tian, L.; Naik, R.R.; Singamaneni, S. Multifunctional Analytical Platform on a Paper Strip: Separation, Preconcentration, and Subattomolar Detection. Anal. Chem. 2013, 85, 3977–3983. [Google Scholar] [CrossRef] [PubMed]
- Torul, H.; Çiftçi, H.; Çetin, D.; Suludere, Z.; Boyacı, I.; Tamer, U. Paper Membrane-Based SERS Platform for the Determination of Glucose in Blood Samples. Anal. Bioanal. Chem. 2015, 407, 8243–8251. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Chong, X.; Squire, K.; Wang, A.X. Microfluidic Diatomite Analytical Devices for Illicit Drug Sensing with ppb-Level Sensitivity. Sens. Actuators B Chem. 2018, 259, 587–595. [Google Scholar] [CrossRef]
- Choi, S.; Moon, S.; Lee, S.; Kim, W.; Kim, S.; Kim, S.; Shin, J.-H.; Park, Y.-G.; Jin, K.-H.; Kim, T. A Recyclable CNC-Milled Microfluidic Platform for Colorimetric Assays and Label-Free Aged-Related Macular Degeneration Detection. Sens. Actuators B Chem. 2019, 290, 484–492. [Google Scholar] [CrossRef]
- Zheng, T.; Gao, Z.; Luo, Y.; Liu, X.; Zhao, W.; Lin, B. Manual-Slide-Engaged Paper Chip for Parallel SERS-Immunoassay Measurement of Clenbuterol from Swine Hair. Electrophoresis 2016, 37, 418–424. [Google Scholar] [CrossRef]
- Huang, Z.; Siddhanta, S.; Zhang, C.; Kickler, T.; Zheng, G.; Barman, I. Painting and Heating: A Nonconventional, Scalable Route to Sensitive Biomolecular Analysis with Plasmon-Enhanced Spectroscopy. J. Raman Spectrosc. 2017, 48, 1365–1374. [Google Scholar] [CrossRef]
- Li, H.; Geng, W.; Hassan, M.; Zuo, M.; Wei, W.; Wu, X.; Ouyang, Q.; Chen, Q. Rapid Detection of Chloramphenicol in Food Using SERS Flexible Sensor Coupled Artificial Intelligent Tools. Food Control 2021, 128, 108186. [Google Scholar] [CrossRef]
- Tegegne, W.; Su, W.; Beyene, A.; Huang, W.; Tsai, M.; Hwang, B. Flexible Hydrophobic Filter Paper-Based SERS Substrate Using Silver Nanocubes for Sensitive and Rapid Detection of Adenine. Microchem. J. 2021, 168, 106349. [Google Scholar] [CrossRef]
- Duan, H.; Deng, W.; Gan, Z.; Li, D.; Li, D. SERS-Based Chip for Discrimination of Formaldehyde and Acetaldehyde in Aqueous Solution using Silver Reduction. Microchim. Acta 2019, 186, 175. [Google Scholar] [CrossRef]
- Qi, L.; Xiao, M.; Wang, X.; Wang, C.; Wang, L.; Song, S.; Qu, X.; Li, L.; Shi, J.; Pei, H. DNA-Encoded Raman-Active Anisotropic Nanoparticles for microRNA Detection. Anal. Chem. 2017, 89, 9850–9856. [Google Scholar] [CrossRef]
- Li, D.; Duan, H.; Ma, Y.; Deng, W. Headspace-Sampling Paper-Based Analytical Device for Colorimetric/Surface-Enhanced Raman Scattering Dual Sensing of Sulfur Dioxide in Wine. Anal. Chem. 2018, 90, 5719–5727. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Jana, N.R. Paper-Based Microfluidic Approach for Surface-Enhanced Raman Spectroscopy and Highly Reproducible Detection of Proteins beyond Picomolar Concentration. ACS Appl. Mater. Interfaces 2015, 7, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhang, W.; Liu, C.; Foda, M.; Zhu, Y. Strawberry-Like SiO2/Ag Nanocomposites Immersed Filter Paper as SERS Substrate for Acrylamide Detection. Food Chem. 2020, 328, 127106. [Google Scholar] [CrossRef]
- Chen, M.; Yang, H.; Rong, L.; Chen, X. A Gas-Diffusion Microfluidic Paper-Based Analytical Device (μPAD) Coupled with Portable Surface-Enhanced Raman Scattering (SERS): Facile Determination of Sulphite in Wines. Analyst 2016, 141, 5511–5519. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Hou, X.; Gao, Y.; Fan, X.; Qiu, T. Inkjet-Printed Paper-Based Semiconducting Substrates for Surface-Enhanced Raman Spectroscopy. Nanotechnology 2020, 31, 055502. [Google Scholar] [CrossRef]
Nanomaterials | Modification Methods | Electrochemical Method | Analytes | Linear Ranges | Limit of Detection | Real Samples | Recovery | Ref. |
---|---|---|---|---|---|---|---|---|
AuNPs | In situ growth | DPV | CEA and PSA | 5 × 10−3 to 100 ng mL−1 (CEA) and 2 × 10−3 to 40 ng mL−1 (PSA) | 2 × 10−3 ng mL−1 (CEA) 1 × 10−3 ng mL−1 (PSA) | Human serum | - | [40] |
AuNPs | Electrodeposition | DPV | CRP | 5 to 5 × 103 ng mL−1 | 1.6 ng mL−1 | Certified human serum | - | [41] |
AuNPs | Electrodeposition | DPV | EGFR | 0.5 to 500 nmol L−1 | 0.167 nmol L−1 | Saliva samples | - | [42] |
AuNPs | Drop-casting | DPV | H1047R (A3140G) missense mutation in exon 20 | - | 5 nmol L−1 (signal on) and 6 nmol L−1 (signal off) | - | - | [43] |
AuNPs | Electrodeposition | Impedimetry | miRNA 155 | 0 to 4 × 103 ng mL−1 | 6.9 × 102 ng mL−1 (93.4 nmol L−1) | Fetal bovine serum | - | [44] |
AuNPs | Drop-casting | SWASV | Hg2+ | 5 to 200 ng mL−1 | 2.5 ng mL−1 | Drinking water | 95% to 104% | [45] |
Poly (N-vinylpyrolidone) AuNPs | Screen-printing | Chronoamperometry | Glucose | 1 × 104 to 1.5 × 106 nmol L−1 | 2.6 × 104 nmol L−1 | - | - | [46] |
Poly (N-vinylpyrolidone) AuNPs | Screen-printing | DPV | CEA | 1 to 100 ng mL−1 | 0.33 ng mL−1 | Diluted human serum | 99.58% to 102.50% | [47] |
Pd decoration of Cu/Co-doped CeO2 (CuCo-CeO2-Pd) nanospheres and urchin-like AuNPs | In situ growth | DPV | Amyloid-β | 1 × 10−3 to 100 nmol L−1 | 5 × 10−5 nmol L−1 | Artificial cerebrospinal fluid and human serum | 99% to 100.5% | [48] |
N-CDs, TiO2 NPs and Pt NPs | Drop-casting | PEC | CEA | 2 × 10−3 to 200 ng mL−1 | 1.0 × 10−3 ng mL−1 | Living MCF-7 cells | - | [49] |
TiO2 nanosheets and CeO2 NPs | In situ growth of TiO2 nanosheets and drop-casting of CeO2 NPs | PEC | Thrombin | 2 × 10−5 to 0.1 nmol L−1 | 6.7 × 10−6 nmol L−1 | Human serum | - | [50] |
CdSe/CdS magic-sized QDs | Drop-casting | DPV | Dopamine | 500 to 1.5 × 104 nmol L−1 | 96 nmol L−1 | Human serum | 95.2% to 102.6% | [51] |
ZnO NPs | Drop-casting | SWV | Picric acid | 4 × 103 to 6 × 104 nmol L−1 | 4.04 × 103 nmol L−1 | Tap water, lake water | 92.3% to 98.9% | [52] |
Molecularly imprinted polymer coated Fe3O4@Au@SiO2 NPs | Drop-casting | LSV | Serotonin | 10 to 106 nmol L−1 | 2 nmol L−1 | Pharmaceutical capsules and urine samples | 100% to 111% | [53] |
Patchy gold coated Fe3O4 nanospheres | - | ECL | CEA | 1 × 10−4 ng mL−1 to 15 ng mL−1 | 3 × 10−5 ng mL−1 | Human serum | - | [54] |
Cubic Cu2O-Au NPs and AgNPs | In situ growth (AgNPs) | ECL | Ni2+ and Hg2+ | 10 to 2 × 105 nmol L−1 (Ni2+) and 1 × 10−2 nmol L−1 to 1 × 103 nmol L−1 (Hg2+) | 3.1 nmol L−1 (Ni2+) and 3.8 × 10−3 nmol L−1 (Hg2+) | Lake water | 96.4% to 101.6% (Ni2+) and 96.0% to 104.0% (Hg2+) | [55] |
DNA-functionalized PtCu nanoframes | - | ECL | Streptavidin | 1 × 10−4 nmol L−1 to 100 nmol L−1 | 3.34 × 10−5 nmol L−1 | Human serum | 98.4% to 106.5% | [56] |
SWCNTs | Vaccum filtration | CV | Glucose | 5 × 10−5 to 1 × 107 nmol L−1 | 1.48 × 105 nmol L−1 | Coke | 97.3% to 105% | [59] |
Graphene | Screen-printing | DPV | Oxytetracycline | 1 to 200 ng mL−1 | 0.33 ng mL−1 | Milk, honey and shrimp | - | [60] |
Graphene | Screen-printing | DPV | Hepatitis B virus DNA | 5 × 10−2 to 100 nmol L−1 | 1.45 × 10−3 nmol L−1 | Plasmid constructs | - | [61] |
Graphene | Screen-printing | SWV | Salivary thiocyanate | 2.5 × 104 to 7 × 105 nmol L−1 | 6 × 103 nmol L−1 | Human saliva | - | [62] |
Graphene | Drop-casting | DPV | ATP | 3 × 102 to 4.5 × 105 nmol L−1 | 80 nmol L−1 | Human serum and cell lysates | 95.4% to 104.2% | [63] |
Graphene and CuNPs | Screen-printing (graphene) and in situ growth CuNPs | DPV | NOx | 0 to 150 vppm | 0.23 vppm | Ambient indoor and outdoor air, and exhaust gases | - | [64] |
Graphene and AuNPs | Drop-casting (graphene) and label (AuNPs) | DPV | Pseudopodium-enriched atypical kinase one | 1 × 10−2 to 1 × 103 ng mL−1 | 1 × 10−2 ng mL−1 | Human serum | 103% to 104% | [65] |
(NH2-G)/Thi/AuNPs nanocomposites | Drop-casting | DPV | CEA | 5 × 10−2 to 500 ng mL−1 | 1 × 10−2 ng mL−1 | Human serum | - | [66] |
(NH2-G)/Thi/AuNPs nanocomposites | Drop-casting | DPV | CEA and NSE | 1 × 10−2 to 500 ng mL−1 for CEA and 5 × 10−2 to 500 ng mL−1 for NSE | 2 × 10−3 ng mL−1 for CEA and 1 × 10−2 ng mL−1 for NSE | Human serum | - | [67] |
Reduced graphene | Screen-printing and in situ EC reduction | Amperometry | Claudin 7 and CD81 | 2 × 10−3 to 1 ng mL−1 (Claudin 7) and 0.01 to 10 ng mL−1 (CD81) | 4 × 10−4 ng mL−1 (Claudin 7) and 3 × 10−3 ng mL−1 (CD81) | Plasma of breast cancer patients | - | [68] |
Reduced graphene | Drop-casting and EC reduction | SWV | Ethinylestradiol | 5 × 10−4 to 0.12 ng mL−1 | 1 × 10−4 ng mL−1 | River water | 97.5% to 103.7% | [69] |
Graphene QDs | Drop-casting | SWV | UA and creatinine | 10 to 3 × 103 nmol L−1 | 8.4 nmol L−1 (UA) and 3.7 nmol L−1 (Creatinine) | Human urine | 98.9% to 101.5% | [70] |
GO | Drop-casting | SWV | CRP, cTnI and PCT | 1 to 1 × 105 ng mL−1 (CRP), 1 × 10−3 to 250 ng mL−1 (cTnI), 5 × 10−4 ng mL−1 to 250 ng mL−1 (PCT) | 0.38 ng mL−1 (CRP), 1.6 × 10−4 ng mL−1 (cTnI) and 2.7 × 10−4 ng mL−1 (PCT) | Human serum | - | [71] |
RGO and cysteine AuNPs | Drop-casting (RGO) and electrodeposition (AuNPs) | Chronoamperomatriy | IL-8 | 1 × 10−3 to 9 × 10−3 ng mL−1 | 5.89 × 10−4 ng mL−1 | - | - | [72] |
(NH2-GO)/Thi/AuNPs | Screen-printing | DPV | EGFR | 5 × 10−2 to 200 ng mL−1 | 5 × 10−2 ng mL−1 | Human serum | - | [73] |
rGO/Thi/S-AuNP/Chi | Drop-casting | Amperometry | 17β-E2 | 1 × 10−2 to 100 ng mL−1 | 1 × 10−2 ng mL−1 | Human serum | - | [74] |
Cobalt-MOF | In situ growth | Amperometry | Glucose | 8 × 105 to 1.6 × 107 nmol L−1 | 1.5 × 105 nmol L−1 | Serum, Urine and Saliva | 87.2% to 108.6% | [75] |
Pd@hollow Zn/Co core−shell ZIF67/ZIF8 NPs | Drop-casting | DPV | PSA | 5 × 10−3 ng mL−1 to 50 ng mL−1 | 7.8 × 10−4 ng mL−1 | - | - | [76] |
Ni-MOFs/AuNPs/MWCNTs/PVA | Vacuum filtration (MWCNT/PVA) and drop-casting (Ni-MOFs/AuNPs) | DPV | HIV DNA | 10 to 1 × 103 nmol L−1 | 0.13 nmol L−1 | Human serum | 95.5% to 103.8% | [77] |
Nanomaterials | Analytes | Linear Ranges | Limit of Detection | Real Samples | Recovery | Ref. |
---|---|---|---|---|---|---|
AuNPs | Gallic acid | 1 × 104 to 1 × 106 nmol L−1 | 1 × 103 nmol L−1 | Tea | 85.2% to 93.1% | [80] |
Avidin functionalized AuNPs | Ig G | - | 300 ng mL−1 | - | - | [81] |
Citrate stabilized AuNPs | Melamine | 100 to 106 ng mL−1 | 100 ng mL−1 | Milk | - | [82] |
Citrate stabilized AuNPs | NADH | - | 1.25 × 104 nmol L−1 | Cell Lysate | - | [83] |
Aspartic acid modified AuNPs | Cysteine | 9.99 × 104 to 9.987 × 105 nmol L−1 | 1 × 103 nmol L−1 | Human plasma | 99.2% to 101.1% | [84] |
ssDNA-PEI-Au-PS | Hg2+ and As3+ | 0 to 3 × 104 ng mL−1 | 1 × 103 ng mL−1 | River water | 96.2% to 116.7% | [85] |
ssDNA functionalized AuNPs | Tuberculosis DNA | 1.95 × 10−2 to 19.5 ng mL−1 | 1.95 × 10−2 ng mL−1 | Infected tissue | - | [86] |
ssDNA functionalized AuNPs | PSA | - | 1 × 10−2 ng mL−1 | Human serum | - | [87] |
Antibody functionalized AuNPs | Ig G | - | 284.52 ng mL−1 | Whole blood | - | [88] |
Antibody functionalized AuNPs | Yersinia Pestis | - | 2.5 × 10−2 ng mL−1 | - | - | [89] |
Antibody functionalized AuNPs | Influenza A H1N1 and H3N2 viruses | - | 2.7 × 103 pfu/assay for H1N1 detection and 2.7 ×104 pfu/assay for H3N2 detection | Cell lysate | - | [90] |
Antibodies functionalized AuNRs | sIL-2R | 1 to 6.25 × 103 ng mL−1 | 1.0 ng mL−1 | Mouse serum | 93% to 109% | [91] |
Antibodies functionalized AuNRs | CRP | 50 to 1 × 104 ng mL−1 | 1.3 ng mL−1 | Human plasma | - | [92] |
Co(II) catalyst, secondary antibody, luminol multifunctionalized AuNPs | H-FABP, cTnI and copeptin | 1 × 10−4 to 1 × 103 ng mL−1, 5 × 10−4 to 1 × 103 ng mL−1 and 1 × 10−3 to 1 × 106 ng mL−1 for H-FABP, cTnI and copeptin | 6 × 10−5 ng mL−1, 3 × 10−4 ng mL−1 and 4 × 10−4 ng mL−1 for H-FABP, cTnI and copeptin | Human serum | 94% to 108% | [93] |
Cu/Co-doped CeO2 (CuCo-CeO2-Pd) nanospheres and urchin-like AuNPs | Amyloid-β | 1 × 10−2 to 100 nmol L−1 | 5 × 10−4 nmol L−1 | Artificial cerebrospinal fluid (aCSF) and human serum | 99% to 100.5% | [48] |
Gold nanostars | Glucose | 0 to 2 × 107 nmol L−1 | 1.4 × 106 nmol L−1 | - | - | [94] |
PVP stabilized AgNPs | Nitrite | 10 to 5 × 103 nmol L−1 and 104 to 3.2 × 106 nmol L−1 | 8.5 × 10−2 nmol L−1 | Tap, river and lake water | 95.6% to 101.9% | [95] |
PVP stabilized AgNPs | Hg2+ | 40 to 1.2 × 103 ng mL−1 | 10 ng mL−1 | Tube well, river pond water, industrial waste and coal mine water | 92.5% to 96.0% | [96] |
PVP stabilized AgNPs | Ascorbic acid | 1 × 106 to 4 × 106 nmol L−1 | 8.28 × 104 nmol L−1 | Vitamin C tablet and artificial juice | - | [97] |
Citrate stabilized AgNPs | Cr3+ and Cl− | 50 to 1 × 103 ng mL−1 (Cr3+) and 1 × 104 to 5 × 105 ng mL−1 (Cl−) | 15 ng mL−1 (Cr3+) and 1 × 104 ng mL−1 (Cl−) | Instant noodle seasoning | - | [98] |
Citrate stabilized AgNPs | Hg2+ | 1 to 4 ng mL−1 | 0.86 ng mL−1 | River water | 98.9% to 101% | [99] |
Achillea Wilhelmsii extract coated AgNPs | Hg2+ | 1 × 103 to 7 × 105 nmol L−1 | 300 nmol L−1 | River, well and lake water | - | [100] |
Citrate capped Cu@Ag core@shell NPs | Phenthoate | 50 to 1.5 × 103 ng mL−1 | 15 ng mL−1 | Pond and river water, cucumber and potato | 92.6% to 97.4% | [101] |
DNA-templated Ag/Pt NCs | miRNA21 | 1 × 10−3 to 0.7 nmol L−1 | 6 × 10−4 nmol L−1 | Human urine | 93.8% to 106.0% | [102] |
ssDNA functionalized PtNPs | miRNAs | 1 × 10−2 to 100 nmol L−1 | 8.5 × 10−3 nmol L−1 (miRNA21) | Human Serum | 86.2% to 112.2% | [103] |
Pd NPs/meso-C | H2O2 | 5 × 103 to 3 × 105 nmol L−1 | 1 × 103 nmol L−1 | Commercial milk | 100.9% to 109.7% | [104] |
ZnONRs | Glucose and UA | Glucose (1 × 104 to 1 × 107 nmol L−1) and uric acid (1 × 104 to 5 × 106 nmol L−1) | 3 × 103 nmol L−1 for glucose and 4 × 103 nmol L−1 for uric acid | Human serum and urine | 89% to 109% | [105] |
Cr2O3-TiO2 nanocomposites | H2O2 | 5 to 1 × 105 nmol L−1 | 3 nmol L−1 | Tap water, milk and fetal bovine serum (FBS) albumin | 95.8% to 98% | [106] |
Mn-ZnS QDs | Glyphosate | 5 to 5 × 104 ng mL−1 | 2 ng mL−1 | Whole grain | 80.6% to 119.9% | [107] |
N-CDs | H2O2 | 5 × 104 to 1 × 107 nmol L−1 | 1.4 × 104 nmol L−1 | Human plasma | 91.0% to 113.0% | [108] |
CDs@Eu/GMP ICPs | Cerebral acetylcholinesterase | 0.1 mU mL−1 to 60 mU mL−1 | 0.033 mU mL−1 | Brain tissues and cerebral fluid | - | [109] |
Carbon nitride nanoparticles | Tetracycline | 800 to 4 × 105 nmol L−1 | 120 nmol L−1 | Shrimp samples and river water | 98.7% to 102.8% | [110] |
Poly(L-lactic acid) nanofibers | Glucose | 1 × 105 to 5 × 106 ng mL−1 | 1 × 105 ng mL−1 | - | - | [111] |
Cobalt (II)-terephthalate MOFs | Glucose | 5 × 104 to 1.5 × 107 nmol L−1 | 3.2 × 103 nmol L−1 | Human blood | 96.9% to 102.6% | [112] |
Nanomaterials | Analytes | Linear Ranges | Limit of Detection | Real Samples | Recovery | Ref. |
---|---|---|---|---|---|---|
AuNCs/MIL-68(In)-NH2/Cys | Hg2+ | 0.02 nmol L−1 to 200 nmol L−1 and 200 to 6 × 104 nmol L−1 | 6.7 × 10−3 nmol L−1 | Tap and Lake water | 91.3% to 110.2% | [115] |
γG-AuNCs | L-kynurenine (Kyn) | - | 5 × 103 nmol L−1 | Artificial cerebrospinal fluid | - | [116] |
BSA-AuNCs | Iodate | 5 × 103 to 1 × 105 nmol L−1 | 5 × 103 nmol L−1 | Iodized salts and fish sauces | 90.5% to 102% | [117] |
PVP-supported CuNCs | Iodine | 100 to 500 ng mL−1 | 29 ng mL−1 | - | 97% to 108% | [118] |
Graphitic carbon nitride nanosheets and ssDNA functionalized PdNCs | Let-7a | 5 × 10−2 to 1 × 103 nmol L−1 (Colorimetry) and 1 × 10−5 to 1 nmol L−1 (Fluorescence) | 1.6 × 10−2 nmol L−1 (Colorimetry) and 3 × 10−6 nmol L−1 (Fluorescence) | Human serum | 91% to 110% | [119] |
Imprinted polymer grafted CdTe QDs | Cu2+, Cd2+, Pb2+ and Hg2+ | - | 10 ng mL−1 (Cu2+), 7 ng mL−1 (Cd2+), 9 ng mL−1 (Pb2+) and 15 ng mL−1 (Hg2+) | Seawater | - | [120] |
CdTe QDs | Ag+ and Ag NPs | 50 to 1.1 × 104 ng mL−1 (Ag+) | 50 ng mL−1 (Ag+) | River water and antibacterial Products | 94% to 115% | [121] |
CdTe QDs | 2,4-dichlorophenoxyacetic acid | 560 to 8 × 104 nmol L−1 | 90 nmol L−1 | soybean sprouts and lake water | 86.2% to 109.5% | [122] |
Mercaptosuccinic-acid capped CdTe QDs | Arsenic | 50 to 3 × 104 ng mL−1 | 16 ng mL−1 | Water | 92% to 112% | [123] |
Silica-embedded CdTe QDs functionalized with rhodamine derivative | Fe3+ | 0 to 3.25 × 103 nmol L−1 | 26.5 nmol L−1 | Lake water and river water | 94.2% to 106.0% | [124] |
Polythiophene-coated CdTe QDs | Acetylcholinesterase | - | 2.13 U L−1 | Human serum | 107% to 112% | [125] |
Antibody functionalized CdTe QD and Au NPs | Immunoglobulin G | 10 to 100 ng mL−1 | 0.4 ng mL−1 | Human serum | 97% to 104% | [126] |
CdTe QDs and antibody functionalized AgNPs | Matrix metalloproteinase-7 (MMP7) | 0.01 to 30 ng mL−1 | 7.3 × 10−3 ng mL−1 | Human serum | 91.7% to 113.3% | [127] |
CdTe QDs embedded SiNPs | Alpha fetoprotein (AFP) | 0.001 to 20 ng mL−1 | 400 ng mL−1 | Human serum | - | [130] |
CdTe/CdSe QDs | Carcinoembryonic antigen (CEA) | 0.05 to 20 ng mL−1 | 6.7 × 10−3 ng mL−1 | Human serum | - | [131] |
ZnSe QDs | Cd2+ and Pb2+ | 1 to 70 ng mL−1 (Cd2+) and 1 to 60 ng mL−1 (Pb2+) | 0.245 ng mL−1 (Ca2+) and 0.335 ng mL−1 (Pb2+) | Lake water and Seawater | 95.0% to 105.1% | [132] |
CdSexS1-x@ZnS (core@shell) QDs | Oligonucleotide biomarkers | - | 1.5 × 10−3 nmol | - | - | [133] |
GNR-QD core−shell embedded MOF structures | Benzaldehyde | 2 to 5 × 103 ng mL−1 | 1.2 ng mL−1 | Human exhalation | - | [134] |
ssDNA functionalized QDs coated MSNs and GO | MCF-7, HL-60 and K562 cells | 180 to 8 × 107 (MCF-7 cell), 210 to 7 × 107 (HL-60 cell) and 200 to 7 × 107 cells mL−1 (K562 cell) | 62 (MCF-7 cell), 70 (HL-60 cell) and 65 (K562 cell) cells mL−1 | - | - | [140] |
N-CDs | Hg2+ | 1 × 104 to 8 × 105 nmol L−1 | 10.7 nmol L−1 | - | - | [141] |
N-CDs | Hg2+ | 500 to 2.5 × 104 ng mL−1 | 500 ng mL−1 | Drinking, pond and tap water | 80% to 111% | [142] |
CDs | Folic acid | 1 × 103 to 3 × 105 nmol L−1 | 280 nmol L−1 | Orange juice and urine | 95.8% to 106.2% | [143] |
Blue CDs and red CDs | Pb2+ | 0 to 200 nmol L−1 | 2.89 nmol L−1 | Tap water and lake water | 92.8% to115.2% | [144] |
CDs and hexametaphosphate capped AuNPs | Ca2+, Mg2+ and F− | 0 to 4.5 × 105 nmol L−1 (F−) | 2.1 × 104 nmol L−1 (F−) | Ground water | 96.2% to 109.5% | [149] |
ssDNA functionalized N-CDs and ssDNA functionalized CeO2 NPs | miRNAs | 1 × 10−7 to 1 nmol L−1 (miRNA210) and 2 × 10−7 to 2 nmol L−1 (miRNA21) | 3 × 10−8 nmol L−1 (miRNA210) and 6 × 10−8 nmol L−1 (miRNA21) | Cell lysates | 96.9% to 103.0% | [151] |
CDs@Eu/GMP ICPs | Acetylcholinesterase | 0 to 60 mU mL−1 | 2 mU mL−1 | Brain tissues and cerebrospinal fluid (CSF) | 98.3% to 98.8% | [152] |
UCNPs | Immunoglobulin E (IgE) | 0.5 to 50 IU mL−1 | 0.13 IU mL−1 | Human serum | - | [155] |
Eu@SiNPs | Bacillus anthrax spores | - | 2.38 × 104 spore mL−1 | Yellow river water, tap water and soil | 92.9% to 106.9% | [156] |
NH2-MIL-125(Ti) MOF and GDH/antibody functionalized AuNPs | CEA | 0.1 to 200 ng mL−1 | 0.041 ng mL−1 | Human serum | - | [157] |
Eu-DPA/PTA-NH2 MOF | H2O | 0 to 100% v/v | 0.01% v/v | Weisu granule, Cefuroxime axetil capsule and Azithromycin capsule | - | [158] |
Cu(II)-Pyrazolate-based porphyrinic MOFs | Dopamine | 2.5 to 1 × 103 nmol L−1 | 2.5 nmol L−1 | Human serum | - | [160] |
Al-MOF nanosheet | Malachite green | 500 to 2 × 105 ng mL−1 | 1.6 × 103 ng mL−1 | Fish tissue | 91.0% to 108.8% | [161] |
Nanomaterials | Analytes | Linear Ranges | Limit of Detection | Real Samples | Recovery | Ref |
---|---|---|---|---|---|---|
GNR-QD core−shell embedded MOF structures | Benzaldehyde | 0.1 to 10 ng mL−1 | 0.1 ng mL−1 | Human exhalation | - | [134] |
GNRs | Fluorescein and napthalenethiol | - | ∼1 × 10−7 nmol L−1 (Fluorescein) and 5 × 10−10 nmol L−1 (Naphtalenethiol) | Tap water | - | [162] |
GNRs modified with 4-mercaptophenylboronic acid (4-MBA) and 1-decanethiol (1-DT) molecules | Glucose | 5 × 105 to 1 × 107 nmol L−1 | 1 × 105 nmol L−1 | Blood | 88% | [163] |
AuNPs | Cocaine | - | 10 ng mL−1 | Human plasma | - | [164] |
AuNPs | Age-related macular degeneration aqueous humors: THV-I1043, THV-I1454 and THV-I1656 | - | - | Aqueous humors | - | [165] |
AuNPs | Clenbuterol | 1 × 10−4 to 1 × 102 ng mL−1 | 1 × 10−4 ng mL−1 | Swine hair | 104.8% to 116.2% | [166] |
AgNPs | P-selectin | 100 to 500 ng mL−1 | 104.2 ng mL−1 (ca. 0.7 nmol L−1) | - | - | [167] |
Flower-like AgNPs | Chloramphenicol | 1 × 10−2 to 1 × 105 ng mL−1 | 1 × 10−2 ng mL−1 | Pork | 90% to 102% | [168] |
Silver nanocubes | Adenine | 10 to 1 × 105 nmol L−1 | 0.89 nmol L−1 | Urine | 89% to 107% | [169] |
4-aminothiophenol-modified rGO/ Ag NPs | Formaldehyde (FA) and acetaldehyde (AA) | 4.5 × 10−4 to 480 ng mL−1 | 1.5 × 10−4 ng mL−1 (FA) and 1.3 × 10−3 ng mL−1 (AA) | Wine and human urine | 104.6% to 112.8% | [170] |
ssDNA functionalized anisotropic AgNPs | Has-miR-21 | - | 1 pmol L−1 | - | - | [171] |
Strawberry-like SiO2/Ag nanocomposites | Acrylamide | 0.1 to 5 × 104 nmol L−1 | 0.02 nmol L−1 | Cookies, chips and bread | 80.5% to 105.6% | [172] |
Silver coated AuNPs functionalized with 4-Mercapto Pyridine and glucose or 4-mercapto pyridine and biotin. | Streptavidin and concanavalin A | - | 1 × 10−5 nmol L−1 (Streptavidin) and 1 × 10−6 nmol L−1 (Concanavalin A) | - | - | [173] |
4-mercaptopyridine (Mpy)-modified GNRs-rGO hybrids | SO2 | 1 × 103 to 2 × 106 nmol L−1 | 1 × 103 nmol L−1 | Wine | 87.1% to 116.8% | [174] |
ZnO NPs | SO2 | 5 × 103 to 3 × 105 ng mL−1 | 2 × 103 ng mL−1 | Wine | - | [175] |
MoO3−X nanosheets | Rhodamine 6G | - | 100 nmol L−1 | - | - | [176] |
Detection Methods | The Main Nanomaterials | Advantages | Disadvantages | Limit of Detection | Ref. |
---|---|---|---|---|---|
EC PADs | AuNPs, graphene, MOF, multiple metallic NPs composites and functionalized NPs | High sensitivity, rapid response and easy miniaturization | Equipment-dependent, complicated operation, easy interfered with complex matrices | 1 pg mL−1 level for AuNPs, 0.1 pg mL−1 level for graphene, 0.1 mmol L−1 level for MOF, 1 × 10−3 pg mL−1 level for multiple metallic NPs composites and 1 × 10−2 pg mL−1 level for functionalized NPs | [40,50,56,68,75] |
Colorimetric PADs | Functionalized AuNPs and AgNPs, enzyme-like nanomaterials | Simplicity and convenience, readout with naked eye, rapidness, low cost and low sample consumption | Poor sensitivity, limited to qualitative or semi-quantitative analysis | 10 pg mL−1 level for functionalized AuNPs, 100 pmol L−1 level for functionalized AgNPs, 1 pmol L−1 level for enzyme-like nanomaterials | [48,89,95] |
Fluorometric PADs | NC, QD, CD, MOF | Low cost, easy operation | Reader-dependent | 1 pmol L−1 level for NC, 1 pg mL−1 level for QD, 1 × 103 pg mL−1 level for CD, 10 pg mL−1 level for MOF | [115,127,144,157] |
SERS PADs | AuNPs and AgNPs | On-site label-free detection, offered fingerprint signatures, high sensitivity | Equipment-dependent | 1 pg mL−1 level for AuNPs and AgNPs | [166,170] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, R.; Zhu, Q.; Wei, J.; Meng, X.; Wang, Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules 2022, 27, 508. https://doi.org/10.3390/molecules27020508
Pang R, Zhu Q, Wei J, Meng X, Wang Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules. 2022; 27(2):508. https://doi.org/10.3390/molecules27020508
Chicago/Turabian StylePang, Renzhu, Qunyan Zhu, Jia Wei, Xianying Meng, and Zhenxin Wang. 2022. "Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials" Molecules 27, no. 2: 508. https://doi.org/10.3390/molecules27020508