Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = miniaturized heater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2636 KiB  
Article
Dynamics of a Self-Excited Vibrating Thermal Energy Harvester with Shape Memory Alloys and PVDF Cantilevers
by Ivo Yotov, Georgi Todorov, Elitsa Gieva and Todor Todorov
Actuators 2025, 14(1), 8; https://doi.org/10.3390/act14010008 - 30 Dec 2024
Cited by 4 | Viewed by 972
Abstract
This paper discusses the dynamics of a novel energy harvester that converts heat into mechanical vibrations of two polyvinylidene fluoride (PVDF) piezoelectric cantilevers that generate electrical energy using a shape memory alloy (SMA) filament. The vibrations are generated by a symmetrical system of [...] Read more.
This paper discusses the dynamics of a novel energy harvester that converts heat into mechanical vibrations of two polyvinylidene fluoride (PVDF) piezoelectric cantilevers that generate electrical energy using a shape memory alloy (SMA) filament. The vibrations are generated by a symmetrical system of two masses placed on the SMA filament, which moves transversely due to its own longitudinal temperature contractions and extensions. Temperature differences over a heat source of constant temperature are the cause of the periodic changes in length of the SMA filament. An experimental setup was created to study the harvester by measuring the mass displacements and electrical voltages generated by the piezoelectric cantilevers. Data were obtained on the dependence of the output voltage and power on the load resistance of the consumer. The experimental results are validated by a multiphysics dynamical model, taking into account the relationships between the mechanical, thermal and electrical domains. The vibrational modeling of the SMA filament takes into account the hysteresis properties and their characteristics when the time gradient changes, leading to the appearance of minor and sub-minor hysteresis. Research has shown that from a heater with a constant temperature of 70 °C, the maximum power obtained is 3.6 μW at a load resistance of 4 MΩ, and a maximum voltage of 5.8 V was generated at a load resistance of 13 MΩ. An important feature of the proposed design is the possibility of miniaturizing the mechanical system. Full article
Show Figures

Figure 1

24 pages, 8755 KiB  
Article
The Development of a Next-Generation Latticed Resistojet Thruster for CubeSats
by Daniel Turner, Robert Howie and Phil Bland
Aerospace 2024, 11(9), 714; https://doi.org/10.3390/aerospace11090714 - 31 Aug 2024
Cited by 3 | Viewed by 2733
Abstract
CubeSat and small satellite resistojet heat exchanger designs are based on conventional concepts that have been used since the 1960s, being primarily limited to helical or twisted tape heat exchangers. The design flexibility enabled by new additive manufacturing technologies is yet to be [...] Read more.
CubeSat and small satellite resistojet heat exchanger designs are based on conventional concepts that have been used since the 1960s, being primarily limited to helical or twisted tape heat exchangers. The design flexibility enabled by new additive manufacturing technologies is yet to be properly harnessed. This study introduces a novel resistojet concept that incorporates a highly miniaturized lattice structure as the heat exchanger. A conjugate heat transfer analysis determined that the lattice with a diamond unit cell had superior thermal performance compared to the same lattice with a gyroid unit cell and increased the heat transfer rate by up to 11% compared to a helical heat exchanger of the same volume. Performance testing of the prototype thruster with integral diamond lattice indicated that specific impulses of up to 94 s were possible with a 30-Watt heater using nitrous oxide as the propellant. The prototype thruster weighed only 22 g and demonstrated a 67% reduction in the power required to achieve the same specific impulse as previous nitrous oxide resistojets designed for the small satellite platform. The development of highly miniaturized latticed resistojets is shown to be feasible and highly attractive for CubeSats, where mass and power are of the utmost importance. Full article
Show Figures

Figure 1

16 pages, 5461 KiB  
Article
A Novel Miniature and Selective CMOS Gas Sensor for Gas Mixture Analysis—Part 4: The Effect of Humidity
by Moshe Avraham, Adir Krayden, Hanin Ashkar, Dan Aronin, Sara Stolyarova, Tanya Blank, Dima Shlenkevitch and Yael Nemirovsky
Micromachines 2024, 15(2), 264; https://doi.org/10.3390/mi15020264 - 11 Feb 2024
Cited by 5 | Viewed by 2141
Abstract
This is the fourth part of a study presenting a miniature, combustion-type gas sensor (dubbed GMOS) based on a novel thermal sensor (dubbed TMOS). The TMOS is a micromachined CMOS-SOI transistor, which acts as the sensing element and is integrated with a catalytic [...] Read more.
This is the fourth part of a study presenting a miniature, combustion-type gas sensor (dubbed GMOS) based on a novel thermal sensor (dubbed TMOS). The TMOS is a micromachined CMOS-SOI transistor, which acts as the sensing element and is integrated with a catalytic reaction plate, where ignition of the gas takes place. The GMOS measures the temperature change due to a combustion exothermic reaction. The controlling parameters of the sensor are the ignition temperature applied to the catalytic layer and the increased temperature of the hotplate due to the released power of the combustion reaction. The solid-state device applies electrical parameters, which are related to the thermal parameters. The heating is applied by Joule heating with a resistor underneath the catalytic layer while the signal is monitored by the change in voltage of the TMOS sensor. Voltage, like temperature, is an intensive parameter, and one always measures changes in such parameters relative to a reference point. The reference point for both parameters (temperature and voltage) is the blind sensor, without any catalytic layer and hence where no reaction takes place. The present paper focuses on the study of the effect of humidity upon performance. In real life, the sensors are exposed to environmental parameters, where humidity plays a significant role. Humidity is high in storage rooms of fruits and vegetables, in refrigerators, in silos, in fields as well as in homes and cars. This study is significant and innovative since it extends our understanding of the performance of the GMOS, as well as pellistor sensors in general, in the presence of humidity. The three main challenges in simulating the performance are (i) how to define the operating temperature based on the input parameters of the heater voltage in the presence of humidity; (ii) how to measure the dynamics of the temperature increase during cyclic operation at a given duty cycle; and (iii) how to model the correlation between the operating temperature and the sensing response in the presence of humidity. Due to the complexity of the 3D analysis of packaged GMOS, and the many aspects of humidity simultanoesuly affecting performane, advanced simulation software is applied, incorporating computational fluid dynamics (CFD). The simulation and experimental data of this study show that the GMOS sensor can operate in the presence of high humidity. Full article
(This article belongs to the Special Issue CMOS-MEMS Fabrication Technologies and Devices)
Show Figures

Figure 1

22 pages, 9007 KiB  
Article
Control Software Design for a Multisensing Multicellular Microscale Gas Chromatography System
by Qu Xu, Xiangyu Zhao, Yutao Qin and Yogesh B. Gianchandani
Micromachines 2024, 15(1), 95; https://doi.org/10.3390/mi15010095 - 31 Dec 2023
Cited by 2 | Viewed by 1867
Abstract
Microscale gas chromatography (μGC) systems are miniaturized instruments that typically incorporate one or several microfabricated fluidic elements; such systems are generally well suited for the automated sampling and analysis of gas-phase chemicals. Advanced μGC systems may incorporate more than 15 elements and operate [...] Read more.
Microscale gas chromatography (μGC) systems are miniaturized instruments that typically incorporate one or several microfabricated fluidic elements; such systems are generally well suited for the automated sampling and analysis of gas-phase chemicals. Advanced μGC systems may incorporate more than 15 elements and operate these elements in different coordinated sequences to execute complex operations. In particular, the control software must manage the sampling and analysis operations of the μGC system in a time-sensitive manner; while operating multiple control loops, it must also manage error conditions, data acquisition, and user interactions when necessary. To address these challenges, this work describes the investigation of multithreaded control software and its evaluation with a representative μGC system. The μGC system is based on a progressive cellular architecture that uses multiple μGC cells to efficiently broaden the range of chemical analytes, with each cell incorporating multiple detectors. Implemented in Python language version 3.7.3 and executed by an embedded single-board computer, the control software enables the concurrent control of heaters, pumps, and valves while also gathering data from thermistors, pressure sensors, capacitive detectors, and photoionization detectors. A graphical user interface (UI) that operates on a laptop provides visualization of control parameters in real time. In experimental evaluations, the control software provided successful operation and readout for all the components, including eight sets of thermistors and heaters that form temperature feedback loops, two sets of pressure sensors and tunable gas pumps that form pressure head feedback loops, six capacitive detectors, three photoionization detectors, six valves, and an additional fixed-flow gas pump. A typical run analyzing 18 chemicals is presented. Although the operating system does not guarantee real-time operation, the relative standard deviations of the control loop timings were <0.5%. The control software successfully supported >1000 μGC runs that analyzed various chemical mixtures. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 2nd Edition)
Show Figures

Figure 1

15 pages, 4396 KiB  
Article
Nano Hotplate Fabrication for Metal Oxide-Based Gas Sensors by Combining Electron Beam and Focused Ion Beam Lithography
by Zhifu Feng, Damiano Giubertoni, Alessandro Cian, Matteo Valt, Mario Barozzi, Andrea Gaiardo and Vincenzo Guidi
Micromachines 2023, 14(11), 2060; https://doi.org/10.3390/mi14112060 - 4 Nov 2023
Viewed by 1767
Abstract
Metal oxide semiconductor (MOS) gas sensors are widely used for gas detection. Typically, the hotplate element is the key component in MOS gas sensors which provide a proper and tunable operation temperature. However, the low power efficiency of the standard hotplates greatly limits [...] Read more.
Metal oxide semiconductor (MOS) gas sensors are widely used for gas detection. Typically, the hotplate element is the key component in MOS gas sensors which provide a proper and tunable operation temperature. However, the low power efficiency of the standard hotplates greatly limits the portable application of MOS gas sensors. The miniaturization of the hotplate geometry is one of the most effective methods used to reduce its power consumption. In this work, a new method is presented, combining electron beam lithography (EBL) and focused ion beam (FIB) technologies to obtain low power consumption. EBL is used to define the low-resolution section of the electrode, and FIB technology is utilized to pattern the high-resolution part. Different Au++ ion fluences in FIBs are tested in different milling strategies. The resulting devices are characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and secondary ion mass spectrometry (SIMS). Furthermore, the electrical resistance of the hotplate is measured at different voltages, and the operational temperature is calculated based on the Pt temperature coefficient of resistance value. In addition, the thermal heater and electrical stability is studied at different temperatures for 110 h. Finally, the implementation of the fabricated hotplate in ZnO gas sensors is investigated using ethanol at 250 °C. Full article
(This article belongs to the Special Issue MEMS in Italy 2023)
Show Figures

Figure 1

14 pages, 2699 KiB  
Article
Miniaturized Non-Contact Heating and Transmitted Light Imaging Using an Inexpensive and Modular 3D-Printed Platform for Molecular Diagnostics
by Alex Laman, Debayan Das and Aashish Priye
Sensors 2023, 23(18), 7718; https://doi.org/10.3390/s23187718 - 7 Sep 2023
Cited by 2 | Viewed by 1905
Abstract
The ability to simultaneously heat and image samples using transmitted light is crucial for several biological applications. However, existing techniques such as heated stage microscopes, thermal cyclers equipped with imaging capabilities, or non-contact heating systems are often bulky, expensive, and complex. This work [...] Read more.
The ability to simultaneously heat and image samples using transmitted light is crucial for several biological applications. However, existing techniques such as heated stage microscopes, thermal cyclers equipped with imaging capabilities, or non-contact heating systems are often bulky, expensive, and complex. This work presents the development and characterization of a Miniaturized Optically-clear Thermal Enclosure (MOTE) system—an open-source, inexpensive, and low-powered modular system—capable of convectively heating samples while simultaneously imaging them with transmitted light. We develop and validate a computational fluid dynamics (CFD) model to design and optimize the heating chamber. The model simulates velocity and temperature profiles within the heating chamber for various chamber materials and sizes. The computational model yielded an optimal chamber dimension capable of achieving a stable temperature ranging from ambient to 95 °C with a spatial discrepancy of less than 1.5 °C, utilizing less than 8.5 W of power. The dual-functionality of the MOTE system, enabling synchronous heating and transmitted light imaging, was demonstrated through the successful execution of paper-based LAMP reactions to detect λ DNA samples in real-time down to 10 copies/µL of the target concentration. The MOTE system offers a promising and flexible platform for various applications, from molecular diagnostics to biochemical analyses, cell biology, genomics, and education. Full article
(This article belongs to the Special Issue Colorimetric Sensors: Methods and Applications)
Show Figures

Figure 1

13 pages, 4799 KiB  
Article
The Influence of Buffer Layer Type on the Electrical Properties of Metallic Layers Deposited on Composite Textile Substrates in the PVD Process
by Marcin Lebioda and Ewa Korzeniewska
Materials 2023, 16(13), 4856; https://doi.org/10.3390/ma16134856 - 6 Jul 2023
Cited by 5 | Viewed by 1257
Abstract
In the era of developing wearable electronics, the miniaturization of electronic systems and their implementation in the textile industry is one of the key issues. For this reason, it is important to select the appropriate textile substrates upon which it is possible to [...] Read more.
In the era of developing wearable electronics, the miniaturization of electronic systems and their implementation in the textile industry is one of the key issues. For this reason, it is important to select the appropriate textile substrates upon which it is possible to produce electroconductive structures, as well as their selection from the point of view of the electrical parameters’ stability. For this purpose, research related to the effect of heating a substrate on the resistance of the structures produced in the process of physical vacuum planting was conducted. Textile composites with a buffer layer made of polyurethane, Teflon, and acrylic were used as substrates in the tests. Such layers are an integral part of textile composites and a necessary element for producing structures with continuous electrical conductivity. The conducted tests showed that a buffer layer made of polyurethane (thermal conductivity, e.g., PERMACOL 5450 resin 0.16 W/mK) heated to 15 °C above room temperature was a layer that introduced changes into the surface resistance of the structures. The resistance values of the samples produced on a substrate containing a buffer layer of polyurethane varied in the range of 9–23%, depending on the manufacturer of the composite in the case of a self-heating mode, and in the case of an external heating mode, these changes were smaller and ranged from 8 to 16%. Such a phenomenon occurred regardless of the type of applied metal, and this was not observed in the case of composites with a Teflon or acrylic sublayer. For this reason, it is necessary to take into account the fact that textronic structures made on substrates containing a polyurethane layer may change the surface resistance depending on the temperature. The electrical parameters of such structures were checked by heating the structure using an external heater and self-heating mechanism. The same phenomenon was observed in both cases. Full article
(This article belongs to the Special Issue State of the Art: Surface and Coating Technologies)
Show Figures

Figure 1

13 pages, 2147 KiB  
Article
Rapid and Portable Detection of Hg and Cd in Grain Samples Based on Novel Catalytic Pyrolysis Composite Trap Coupled with Miniature Atomic Absorption Spectrometry
by Tengpeng Liu, Jixin Liu, Xuefei Mao, Xiaoming Jiang, Yabo Zhao and Yongzhong Qian
Foods 2023, 12(9), 1778; https://doi.org/10.3390/foods12091778 - 25 Apr 2023
Cited by 7 | Viewed by 2135
Abstract
As toxic metals, Hg and Cd are a concern for food safety and human health; their rapid and portable analysis is still a challenge. A portable and rapid Hg–Cd analyzer constructed from a metal–ceramic heater (MCH)-based electrothermal vaporizer (ETV), an on-line catalytic pyrolysis [...] Read more.
As toxic metals, Hg and Cd are a concern for food safety and human health; their rapid and portable analysis is still a challenge. A portable and rapid Hg–Cd analyzer constructed from a metal–ceramic heater (MCH)-based electrothermal vaporizer (ETV), an on-line catalytic pyrolysis furnace (CPF), a composite Pt/Ni trap, and a homemade miniature atomic absorption spectrometer (AAS) was proposed for grain analysis in this work. To enhance sensitivity, a new folded light path was designed for simultaneous Hg and Cd analysis using charge coupled device (CCD) in AAS. To eliminate the grain matrix interference, a catalytic pyrolysis furnace with aluminum oxide fillers was utilized to couple with a composite Pt/Ni trap. The method limits of detection (LODs) were 1.1 μg/kg and 0.3 μg/kg for Hg and Cd using a 20 mg grain sample, fulfilling the real sample analysis to monitor the grain contamination quickly; linearity R2 > 0.995 was reached only using standard solution calibration, indicating the sample was free of grain matrix interference. The favorable analytical accuracy and precision were validated by analyzing real and certified reference material (CRM) grains with recoveries of 97–103% and 96–111% for Hg and Cd, respectively. The total analysis time was less than 5 min without sample digestion or use of any chemicals, and the instrumental size and power consumption were <14 kg and 270 W, respectively. Compared with other rapid methods, this newly designed Hg–Cd analyzer is proven to be simple, portable, and robust and is, thus, suitable to quickly monitor Hg and Cd contamination in the field to protect grain and food safety. Full article
Show Figures

Graphical abstract

11 pages, 8443 KiB  
Article
Wireless Inchworm-like Compact Soft Robot by Induction Heating of Magnetic Composite
by Woojun Jung, Seonghyeon Lee and Yongha Hwang
Micromachines 2023, 14(1), 162; https://doi.org/10.3390/mi14010162 - 8 Jan 2023
Cited by 3 | Viewed by 3206
Abstract
Microrobots and nanorobots have been produced with various nature-inspired soft materials and operating mechanisms. However, freely operating a wirelessly miniaturized soft robot remains a challenge. In this study, a wireless crawling compact soft robot using induction heating was developed. The magnetic composite heater [...] Read more.
Microrobots and nanorobots have been produced with various nature-inspired soft materials and operating mechanisms. However, freely operating a wirelessly miniaturized soft robot remains a challenge. In this study, a wireless crawling compact soft robot using induction heating was developed. The magnetic composite heater built into the robot was heated wirelessly via induction heating, causing a phase change in the working fluid surrounding the heater. The pressure generated from the evaporated fluid induces the bending of the robot, which is composed of elastomers. During one cycle of bending by heating and shrinking by cooling, the difference in the frictional force between the two legs of the robot causes it to move forward. This robot moved 7240 μm, representing 103% of its body length, over nine repetitions. Because the robot’s surface is made of biocompatible materials, it offers new possibilities for a soft exploratory microrobot that can be used inside a living body or in a narrow pipe. Full article
(This article belongs to the Special Issue Magnetic Microrobots for Biomedical Applications)
Show Figures

Figure 1

19 pages, 5926 KiB  
Article
Development of FEM Calculation Methods to Analyse Subcooled Boiling Heat Transfer in Minichannels Based on Experimental Results
by Magdalena Piasecka, Beata Maciejewska and Paweł Łabędzki
Appl. Sci. 2022, 12(24), 12982; https://doi.org/10.3390/app122412982 - 17 Dec 2022
Cited by 1 | Viewed by 1820
Abstract
Even though two-phase heat transfer of refrigerants in minichannel heat sinks has been studied extensively, there is still a demand for improvements in overall thermal performance of miniature heat transfer exchangers. Experimental investigation and sophisticated heat transfer calculations with respect to heat transfer [...] Read more.
Even though two-phase heat transfer of refrigerants in minichannel heat sinks has been studied extensively, there is still a demand for improvements in overall thermal performance of miniature heat transfer exchangers. Experimental investigation and sophisticated heat transfer calculations with respect to heat transfer devices are still needed. In this work, a time-dependent experimental study of subcooled boiling was carried out for FC-72 flow in a heat sink, comprising of five asymmetrically heated minichannels. The heater surface temperature was continuously monitored by an infrared camera. The boiling heat transfer characteristics were investigated and the effect of the mass flow rate on the heat transfer coefficient was studied. In order to solve the heat transfer problem related to time-dependent flow boiling, two numerical methods, based on the FEM were applied, and based on the Trefftz functions (FEMT) and using the ADINA program. The results achieved with these two calculation methods were explored with an emphasis on the impact of the mass flow rate (range from 5 to 55 kg/h) on the resulting heat transfer coefficient. It was found that, with increasing mass flow, the heat transfer coefficient increased. Good agreement was found between the heat transfer coefficients, determined according to two numerical methods and the simple 1D calculation method. Full article
(This article belongs to the Special Issue Fluid Flow and Heat Transfer: Latest Advances and Prospects)
Show Figures

Figure 1

11 pages, 3136 KiB  
Article
Microfluidic Thermal Flowmeters for Drug Injection Monitoring
by Il Doh, Daniel Sim and Steve S. Kim
Sensors 2022, 22(9), 3151; https://doi.org/10.3390/s22093151 - 20 Apr 2022
Cited by 13 | Viewed by 3201
Abstract
This paper presents a microfluidic thermal flowmeter for monitoring injection pumps, which is essential to ensure proper patient treatment and reduce medication errors that can lead to severe injury or death. The standard gravimetric method for flow-rate monitoring requires a great deal of [...] Read more.
This paper presents a microfluidic thermal flowmeter for monitoring injection pumps, which is essential to ensure proper patient treatment and reduce medication errors that can lead to severe injury or death. The standard gravimetric method for flow-rate monitoring requires a great deal of preparation and laboratory equipment and is impractical in clinics. Therefore, an alternative to the standard method suitable for remote, small-scale, and frequent infusion-pump monitoring is in great demand. Here, we propose a miniaturized thermal flowmeter consisting of a silicon substrate, a platinum heater layer on a silicon dioxide thin-membrane, and a polymer microchannel to provide accurate flow-rate measurement. The present thermal flowmeter is fabricated by the micromachining and micromolding process and exhibits sensitivity, linearity, and uncertainty of 0.722 mW/(g/h), 98.7%, and (2.36 ± 0.80)%, respectively, in the flow-rate range of 0.5–2.5 g/h when the flowmeter is operated in the constant temperature mode with the channel width of 0.5 mm. The measurement range of flow rate can be easily adjusted by changing the cross-sectional microchannel dimension. The present miniaturized thermal flowmeter shows a high potential for infusion-pump calibration in clinical settings. Full article
(This article belongs to the Special Issue Human Health and Performance Monitoring Sensors)
Show Figures

Figure 1

12 pages, 2264 KiB  
Article
A Thermocycler Using a Chip Resistor Heater and a Glass Microchip for a Portable and Rapid Microchip-Based PCR Device
by Dongsun Yeom, Jeongtae Kim, Sungil Kim, Sanghoon Ahn, Jiyeon Choi, Youngwook Kim and Chiwan Koo
Micromachines 2022, 13(2), 339; https://doi.org/10.3390/mi13020339 - 21 Feb 2022
Cited by 14 | Viewed by 5070
Abstract
This study proposes a rapid and inexpensive thermocycler that enables rapid heating of samples using a thin glass chip and a cheap chip resistor to overcome the on-site diagnostic limitations of polymerase chain reaction (PCR). Microchip PCR devices have emerged to miniaturize conventional [...] Read more.
This study proposes a rapid and inexpensive thermocycler that enables rapid heating of samples using a thin glass chip and a cheap chip resistor to overcome the on-site diagnostic limitations of polymerase chain reaction (PCR). Microchip PCR devices have emerged to miniaturize conventional PCR systems and reduce operation time and cost. In general, PCR microchips require a thin-film heater fabricated through a semiconductor process, which is a complicated process, resulting in high costs. Therefore, this investigation substituted a general chip resistor for a thin-film heater. The proposed thermocycler consists of a compact glass microchip of 12.5 mm × 12.5 mm × 2 mm that could hold a 2 μL PCR sample and a surface-mounted chip resistor of 6432 size (6.4 mm × 3.2 mm). Improving heat transfer from the chip resistor heater to the PCR reaction chamber in the microchip was accomplished via the design and fabrication of a three-dimensional chip structure using selective laser-induced etching, a rapid prototyping technique that allowed to be embedded. The fabricated PCR microchip was combined with a thermistor temperature sensor, a blower fan, and a microcontroller. The assembled thermocycler could heat the sample at a maximum rate of 28.8 °C/s per second. When compared with a commercially available PCR apparatus running the same PCR protocol, the total PCR operating time with a DNA sample was reduced by about 20%. Full article
(This article belongs to the Special Issue Microfluidic System for Biochemical Application)
Show Figures

Figure 1

18 pages, 5867 KiB  
Article
Classification of Two Volatiles Using an eNose Composed by an Array of 16 Single-Type Miniature Micro-Machined Metal-Oxide Gas Sensors
by Jordi Palacín, Elena Rubies, Eduard Clotet and David Martínez
Sensors 2022, 22(3), 1120; https://doi.org/10.3390/s22031120 - 1 Feb 2022
Cited by 13 | Viewed by 4104
Abstract
The artificial replication of an olfactory system is currently an open problem. The development of a portable and low-cost artificial olfactory system, also called electronic nose or eNose, is usually based on the use of an array of different gas sensors types, sensitive [...] Read more.
The artificial replication of an olfactory system is currently an open problem. The development of a portable and low-cost artificial olfactory system, also called electronic nose or eNose, is usually based on the use of an array of different gas sensors types, sensitive to different target gases. Low-cost Metal-Oxide semiconductor (MOX) gas sensors are widely used in such arrays. MOX sensors are based on a thin layer of silicon oxide with embedded heaters that can operate at different temperature set points, which usually have the disadvantages of different volatile sensitivity in each individual sensor unit and also different crossed sensitivity to different volatiles (unspecificity). This paper presents and eNose composed by an array of 16 low-cost BME680 digital miniature sensors embedding a miniature MOX gas sensor proposed to unspecifically evaluate air quality. In this paper, the inherent variability and unspecificity that must be expected from the 16 embedded MOX gas sensors, combined with signal processing, are exploited to classify two target volatiles: ethanol and acetone. The proposed eNose reads the resistance of the sensing layer of the 16 embedded MOX gas sensors, applies PCA for dimensional reduction and k-NN for classification. The validation results have shown an instantaneous classification success higher than 94% two days after the calibration and higher than 70% two weeks after, so the majority classification of a sequence of measures has been always successful in laboratory conditions. These first validation results and the low-power consumption of the eNose (0.9 W) enables its future improvement and its use in portable and battery-operated applications. Full article
(This article belongs to the Special Issue Thin Film Gas Sensors)
Show Figures

Figure 1

5 pages, 2818 KiB  
Proceeding Paper
Cost-Effective Multiplex Real-Time PCR Chip System Using Open Platform Camera
by Sung-Hun Yun, Ji-Sung Park, Seul-Bit-Na Koo, Chan-Young Park, Yu-Seop Kim and Jong-Dae Kim
Eng. Proc. 2021, 6(1), 59; https://doi.org/10.3390/I3S2021Dresden-10071 - 17 May 2021
Viewed by 1703
Abstract
This paper proposes a cost-effective real-time multiplexed polymerase chain reaction (PCR) chip system for point-of-care (POC) testing. In the proposed system, nucleic acid amplification is performed in a reaction chamber built on a printed-circuit-board (PCB) substrate with a PCB pattern heater and a [...] Read more.
This paper proposes a cost-effective real-time multiplexed polymerase chain reaction (PCR) chip system for point-of-care (POC) testing. In the proposed system, nucleic acid amplification is performed in a reaction chamber built on a printed-circuit-board (PCB) substrate with a PCB pattern heater and a thermistor. Fluorescence can be detected through the transparent plastic on the other side of the substrate. Open platform cameras were used for miniaturization and cost-effectiveness. We also used simple and cost-effective oblique lighting to stimulate fluorescence. Response performance was investigated by observing the change in the average brightness of the chamber images with various reference dye concentrations. In addition, we investigated the interference properties between different colors by measuring the fluorescence response for each dye concentration mixed with the maximum concentration of the different dyes. Quantitative performance was validated using standard DNA solutions. Experimental results show that the proposed system is suitable for POC real-time multi-PCR systems. Full article
(This article belongs to the Proceedings of The 8th International Symposium on Sensor Science)
Show Figures

Figure 1

9 pages, 2817 KiB  
Letter
Highly Sensitive Flow Sensor Based on Flexible Dual-Layer Heating Structures
by Yu-Chao Yan, Cheng-Yu Jiang, Run-Bo Chen, Bing-He Ma, Jin-Jun Deng, Shao-Jun Zheng and Jian Luo
Sensors 2020, 20(22), 6657; https://doi.org/10.3390/s20226657 - 20 Nov 2020
Cited by 3 | Viewed by 2848
Abstract
Hot film sensors detect the flow shear stress based on the forced convection heat transfer to the fluid. Current hot film sensors have been significantly hindered by the relatively low sensitivity due to the massive heat conduction to the substrate. This paper describes [...] Read more.
Hot film sensors detect the flow shear stress based on the forced convection heat transfer to the fluid. Current hot film sensors have been significantly hindered by the relatively low sensitivity due to the massive heat conduction to the substrate. This paper describes the design, fabrication, simulation, and testing of a novel flow sensor with dual-layer hot film structures. More specifically, the heat conduction was insulated from the sensing heater to the substrate by controlling both sensing and guarding heaters working at the same temperature, resulting in a higher sensitivity. The experiment and simulation results showed that the sensitivity of the dual-layer hot film sensor was significantly improved in comparison to the single-layer sensor. Additionally, the dual-layer sensor was designed and fabricated in an integrated, flexible, and miniaturized manner. Its small size makes it an excellent candidate for flow detection. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop