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Abstract: Hot film sensors detect the flow shear stress based on the forced convection heat transfer to
the fluid. Current hot film sensors have been significantly hindered by the relatively low sensitivity
due to the massive heat conduction to the substrate. This paper describes the design, fabrication,
simulation, and testing of a novel flow sensor with dual-layer hot film structures. More specifically,
the heat conduction was insulated from the sensing heater to the substrate by controlling both
sensing and guarding heaters working at the same temperature, resulting in a higher sensitivity.
The experiment and simulation results showed that the sensitivity of the dual-layer hot film sensor
was significantly improved in comparison to the single-layer sensor. Additionally, the dual-layer
sensor was designed and fabricated in an integrated, flexible, and miniaturized manner. Its small size
makes it an excellent candidate for flow detection.
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1. Introduction

With the development of micro-machining and flexible electronic technology, flexible micro-sensors
have attracted wide attention in the applications of wearable devices [1–4] and artificial skin [5–7].
Previously, flexible sensors mainly focused on the detection of pressure [8–11] and temperature [12–14].
Increasing attention has been paid to flow detection in recent years [15–18].

Flow shear stress is an important parameter of fluid mechanics, which is directly related to the
flow friction on the surface of vehicles [19–21]. Based on the principle of forced convection heat transfer,
the hot film sensors are widely applied to the detection of flow shear stress. Previously, hot film sensors
were generally in a single-layer structure where a large amount of heat was dissipated from the sensing
heater to the substrate through heat conduction, weakening the sensors’ sensitivity to the flow shear
stress. In order to insulate the heat conduction from the sensing heater to the substrate and improve the
sensitivity to the flow shear stress, research on the heat insulation has been widely explored. Ou Y. et al.
fabricated a hot film sensor featuring a vacuum cavity under the sensing heater, because the vacuum
chamber provided a substrate with low thermal conductivity [22]. Although this type of sensor has
been successfully applied to flow measurement, it has been critically hampered by the sensitivity to
variance in air pressure. As a new type of heat-insulating scheme, a heat-insulating method with a
guarding heater structure appeared. Rustom B. Bhiladvala et al. simulated heat transfer based on
a hot film sensor with dual-layer structures, showing that the dual-layer structure was beneficial to
improving the sensitivity and response frequency of the hot film sensor [23,24]. However, they did
not fabricate the dual-layer hot film sensor or verify the simulation results practically. Gao Nan et al.
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bonded two overlapped nickel films on the double surfaces of a polyimide (PI) film to obtain a
sandwiched hot film sensor and carried out calibrations in a small wind tunnel [25,26]. However,
the heat-insulating layer of their sandwiched structure sensor was thick, leading to a large size of
the sensor (22 mm in width and 1.75 mm in length) and a compromised heat-insulating effect of the
guarding heater. Nevertheless, the approach to develop an integrated and miniaturized dual-layer
flexible hot film sensor has rarely been discussed or demonstrated.

In this paper, a micro flexible hot film sensor with dual-layer structure was designed and fabricated.
The polyamic acid (PAA) electrical-insulating layer was only 7 µm, and the total thickness of the
dual-layer sensor was within 80 µm, which kept the sensor flexible, miniaturized, and able to meet
the requirement of flow measurement. Simulations and experiments consolidated the advantages in
enhancing sensitivity and reducing heat conduction.

2. Fabrication

The hot film sensor detected flow by measuring the velocity gradient in the force convection heat
transfer process as shown in Figure 1. The velocity gradient was proportional to the flow shear stress,
which could be expressed as

τ = µ
dU(y)

dy
, (1)

where τ was the flow shear stress, µ was viscosity, and dU(y)/dy was the velocity gradient. The joule
heat generated by the sensing heater Qtot equal to the heat dissipation, and the main methods of heat
dissipation are heat conduction to substrate Qc and heat transfer to fluid Qf. When the flexible thermal
film sensor stays in heat balance, the heat dissipation relationship can be expressed as

Qtot = Qc + Q f , (2)
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Figure 1. The working principle of the dual-layer hot film sensor.

The heat conduction Qc of the hot film sensor to the substrate could be expressed as

Qc = λsA
∂Tc(y)
∂y

, (3)

where λs is thermal conductivity, A is the heat exchange area, and ∂Tc(y)/∂y is the temperature
gradient. The sensing heater and guarding heater were operated at the same working temperature,
where ∂Tc(y)/∂y was approximately zero. Therefore, the dual-layer hot film sensor can isolate the
heat conduction from the sensing heater to the substrate. For the sensing heater of the dual-layer hot
film sensor, the heat dissipation is equal to the heat convection transferring to the fluid.

The dual-layer hot film sensor consisted of a flexible PI foil, a lower guarding heater, a PAA
electrical-insulating layer, and an upper sensing heater. The photograph and structure of the flexible
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dual-layer hot film sensors are shown in Figure 2, and the fabrication processes are presented in
Figure 3. The center alignment error of the two-layer structures was less than 0.8 µm, and the total
thickness of the dual-layer sensor was within 80 µm.Sensors 2020, 20, x FOR PEER REVIEW 3 of 9 
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Figure 3. The fabrication processes for a flexible dual-layer hot film sensor.

The guarding heater of the dual-layer sensor was fabricated in the same way as the single-layer
hot film sensor [27]. Polydimethylsiloxane (PDMS) was spin-coated as an adhesive between the PI foil
and the glass carrier. A nickel film was sputtered onto the PI foil and patterned by photolithography
to obtain the guarding heater. PAA was spin-coated between the guarding heater and the sensing
heater with a thickness of 7 µm, forming an electrical-insulating layer after the imidization reaction.
Then, the sensing heater was fabricated by sputtering secondary nickel film onto the imido PAA and
patterned by photolithography again. Next, the flexible dual-layer hot film sensor was peeled off from
the glass. A heat treatment was carried out to enhance the adhesion between the guarding heater
and the PI foil, which also improved the temperature coefficients of resistance (TCR) of the two-layer
heaters. Finally, flexible circuit wires were welded into the two-layer heaters.
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The resistance and TCR were two basic parameters of the flexible dual-layer hot film sensors,
which were measured in a temperature-test system to ensure that the resistance of the sensor was
linear with the temperature as

R = R20[1 + α20(T − 20)], (4)

where R was the resistance of the heater at temperature T. R20 and α20 were the resistance and TCR at
20 °C, respectively.

The measurements of basic parameters were carried out at four equidistant temperatures from
20 to 80 ◦C. Table 1 shows the test results of the heaters’ parameters. “S” represents the sensing heater
and “G” represents the guarding heater. A group of “S” and “G” constitutes a dual-layer structured
sensor. The correlation coefficients R2 of the linear fitting were all better than 0.9999, indicating that
the resistances of the heaters exhibited excellent linear relationships with the temperatures.

Table 1. The basic parameters of four dual-layer hot film sensors.

Sensing
Heater

TCR
(ppm/◦C)

R20
(Ω)

Correlation
Coefficient R2

Guarding
Heater

TCR
(ppm/◦C)

R20
(Ω)

Correlation
Coefficient R2

S1 4373.4 15.40 0.9999 G1 3490.9 7.53 0.9999
S2 4370.0 15.10 1.0000 G2 3484.0 7.57 1.0000
S3 4357.7 15.48 1.0000 G3 3476.9 7.80 0.9999
S4 4358.4 15.66 0.9999 G4 3466.4 7.51 0.9999

3. Experiment

The flexible dual-layer hot film sensors were tested in a micro-wind tunnel system as shown in
Figure 4. Due to the limited height of the tunnel (0.535 mm), a fully developed flow could be generated
in the micro wind tunnel. The flow shear stress was linear to the wall static pressure gradient along the
streamwise. The wall static pressures were measured by a pressure scanner. The relationship between
the flow shear stress and the wall static pressure along the streamwise can be expressed as

τ = −
h
2

dp
dx

=
h
2

p5 − p1

4x
, (5)

where p1 and p5 are the wall static pressures at the first pressure tap and the fifth pressure tap, h is the
height of the wind tunnel, and x is distance between two adjacent pressure taps. The flexible dual-layer
hot film sensors were flush-mounted on the wall of the wind tunnel.
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Figure 4. Schematic diagram and photograph of micro-wind tunnel system. The wall static pressures
were measured by the pressure scanner. ∆x = 4 cm, h = 0.535 mm.

The sensing heater and guarding heater were required to work at the same temperature during
the calibrations. Hence, the working temperatures were controlled precisely. However, the common
constant temperature drive systems had only two wires, and the wire resistances would affect the
control accuracy of the sensor’s working temperature. The sensing heater and guarding heater of
the proposed dual-layer hot film sensor were designed with four wires to eliminate the influence of
wire resistances on the output voltage. The sensing heater and guarding heater were driven by an
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Agilent B2962A double-channel constant current source with controllable electric currents, and the
electric currents were measured by two Keysight 34465A digital multimeters in real-time. The output
voltages of the two-layer heaters were measured by a Dewesoft multichannel data acquisition system.
The working resistances and working temperatures of the two-layer heaters could be calculated with
the measured output voltages and electric currents. The two-layer heaters worked at the same target
temperature of 45 ◦C by adjusting the drive currents. Calibrations were conducted on single-layer
sensors of S1, S2, S3, S4 and dual-layer sensors S1G1, S2G2, S3G3, S4G4, respectively. Specifically,
the dual-layer hot film sensors could be regarded as single-layer hot film sensors when the guarding
heater did not heat, and the single-layer hot film sensors also worked at 45 ◦C.

Hot film sensors with dual-layer and single-layer structures were simulated by COMSOL software
to analyze the heat-insulating effect of the dual-layer structure on the heat conduction from the sensing
heater to the substrate. The simulation structural model is shown in Figure 5. The flexible dual-layer
hot film sensor was flush-mounted on the wall of the wind tunnel. The length of the sensor along the
flow direction was 50 µm. The height of the tunnel was 0.535 mm, therefore a fully developed laminar
flow, also known as Poiseuille flow, could be generated through it. The mesh size was determined by
the temperature gradient. The average temperature gradient and shear rate were calculated to obtain
the heat power and flow shear stress.
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4. Results and Discussion

Repetitive experiments were conducted three times to evaluate the repeatability of the calibration
system with sensor S1. The guarding heater G1 did not heat when calibrating sensor S1, hence, sensor
S1 could be regarded as a flexible single-layer hot film sensor. The experimental data of sensor S1 are
shown in Figure 6. The repeated data almost overlapped with a repetitive error of 0.13%, demonstrating
that the calibration system has high precision.
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The calibration data of single-layer and dual-layer hot film sensors are shown in Figure 7. The total
heating powers Qtot of the sensors are linear to the third power of the flow shear stresses. The total
heating powers Qtot of the dual-layer hot film sensor are far lower than those of the single-layer hot
film sensor, demonstrating that the dual-layer structure effectively reduced the heat conduction from
the sensing heater to the substrate.
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Table 2 shows the average sensitivities of the single-layer and dual-layer hot film sensors.
The average sensitivity was the average voltage variation of the sensor with the flow shear stress
varying from 0 to 30 Pa. Compared with the single-layer sensors, the dual-layer sensors significantly
improved the average sensitivity. For example, the dual-layer sensor S1G1 exhibited an average
sensitivity of 9.85 mV/Pa with the flow shear stress changing from 0 to 30 Pa, which improved by
110.47% in comparison with the single-layer sensor S1 (4.68 mV/Pa).

Table 2. The average sensitivities of the single-layer and dual-layer hot film sensors with the flow shear
stress varying from 0 to 30 Pa.

Sensor Average Sensitivity in
Single-Layer (mV/Pa)

Average Sensitivity in
Dual-Layer (mV/Pa) Improvement (%)

S1G1 4.68 9.85 110.47
S2G2 5.37 8.23 53.26
S3G3 4.62 7.89 70.78
S4G4 4.42 9.12 106.33

The heat transfer processes of a dual-layer hot film sensor were simulated to analyze the
heat-insulating effect of the micro dual-layer sensor. The temperature gradient of a dual-layer hot film
sensor at τ = 5 Pa is shown in Figure 8. The 99% thickness of temperature gradient was 20 µm, which
was much less than the thickness of velocity boundary layer (267 µm), indicating that the micro-sensor
was consistent with the assumption that the temperature boundary layer should be below the velocity
boundary layer. Compared with the single-layer hot film sensor (Figure 9a), the heat conduction power
Qs of the dual-layer hot film sensor (Figure 9b) was dramatically reduced. The heat transfer power
Qf transferring to the air was about 14% to 25% of the total heat power Qtot in the single-layer hot
film sensor—whereas the heat transfer to the air could reach from 89% to 91% through applying the
dual-layer structure. In addition, compared to the data in Figures 7 and 9, the total heating powers
Qtot of the two kinds of sensors obtained by simulation were close to those obtained by experiment,
revealing the reliability of the simulation results.
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5. Conclusions

In this paper, a novel dual-layer hot-film sensor for flow detection was proposed. This sensor
was fabricated on a flexible PI foil with two-layer nickel heaters. Meanwhile, the intermediate
electrical-insulation layer between the two nickel heaters was obtained by imidizing PAA. By effectively
insulating the heat conduction from the sensing heater to the substrate, these proposed dual-layer
flexible hot-film sensors could achieve from 53.26% to 110.47% improvement in sensitivities compared
to the single-layer hot-film sensors. This work presented and characterized a novel approach for heat
conduction insulating, and opened new avenues for research on the flexible sensor for flow shear
stress detection.
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