Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = microwave near-field sensors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2715 KiB  
Technical Note
Laser Observations of GALILEO Satellites at the CBK PAN Astrogeodynamic Observatory in Borowiec
by Paweł Lejba, Piotr Michałek, Tomasz Suchodolski, Adrian Smagło, Mateusz Matyszewski and Stanisław Zapaśnik
Remote Sens. 2024, 16(15), 2862; https://doi.org/10.3390/rs16152862 - 5 Aug 2024
Viewed by 1301
Abstract
The laser station (BORL) owned by the Space Research Centre of the Polish Academy of Sciences and situated at the Astrogeodynamic Observatory in Borowiec near Poznań regularly observes more than 100 different objects in low Earth orbit (LEO) and medium Earth orbit (MEO). [...] Read more.
The laser station (BORL) owned by the Space Research Centre of the Polish Academy of Sciences and situated at the Astrogeodynamic Observatory in Borowiec near Poznań regularly observes more than 100 different objects in low Earth orbit (LEO) and medium Earth orbit (MEO). The BORL sensor’s laser observation range is from 400 km to 24,500 km. The laser measurements taken by the BORL sensor are utilized to create various products, including the geocentric positions and movements of ground stations, satellite orbits, the components of the Earth’s gravitational field and their changes over time, Earth’s orientation parameters (EOPs), and the validation of the precise Galileo orbits derived using microwave measurements, among others. These products are essential for supporting local and global geodetic and geophysics research related to time. They are crucial for the International Terrestrial Reference Frame (ITRF), which is managed by the International Earth Rotation and Reference Systems Service (IERS). In 2023, the BORL laser station expanded its list of tracked objects to include all satellites of the European satellite navigation system GALILEO, totaling 28 satellites. During that year, the BORL laser station recorded 77 successful passes of GALILEO satellites, covering a total of 21 objects. The measurements taken allowed for the registration of 7419 returns, resulting in 342 normal points. The average RMS for all successful GALILEO observations in 2023 was 13.5 mm. Full article
(This article belongs to the Special Issue Advanced Remote Sensing Technology in Modern Geodesy)
Show Figures

Figure 1

18 pages, 7567 KiB  
Article
Noncontact Rotational Speed Measurement with Near-Field Microwave of Open-Ended Waveguide
by Yongjiang Bai, Ming Ye, Fang Yang, Chun Wang, Yingdi Dong, Jiye Yang, Guisheng Zhou and Yongjun Xie
Electronics 2024, 13(15), 3012; https://doi.org/10.3390/electronics13153012 - 31 Jul 2024
Viewed by 1013
Abstract
Rotational speed measurement is important for many applications. Here, a noncontact rotational speed test method based on the detection of the periodically perturbed near-field microwave of an open-ended waveguide is proposed. Both simulations and experiments were conducted to verify the near-field microwave rotational [...] Read more.
Rotational speed measurement is important for many applications. Here, a noncontact rotational speed test method based on the detection of the periodically perturbed near-field microwave of an open-ended waveguide is proposed. Both simulations and experiments were conducted to verify the near-field microwave rotational speed sensor. The constructed rotation speed sensing system was composed of a standard open-ended WR-42 waveguide (in our measurements, a waveguide-to-coaxial adapter was used to represent an open-ended waveguide) working at ~18 GHz, a radio frequency (RF) circulator, a signal generator, a, RF detector and an oscilloscope. A rotating fan to be measured was placed close to the waveguide’s mouth and, thus, the waveguide’s reflection coefficient was periodically modulated by the rotating fan blades. Then, the RF detector converted this varying reflection coefficient into a direct current (DC) voltage, namely, a periodical waveform. Finally, the rotational speed of the fan could be extracted from this waveform. Measurements using both the proposed near-field microwave method and conventional optical transmission/reflection methods were conducted for verification. The effect of the rotating fan’s location relative to the waveguide’s mouth was also studied. The results show the following: 1. The proposed method works well with a rotational speed of up to ~5000 RPM (rounds per minute), and an accuracy of 1.7% can be achieved. 2. Metallic or non-metallic fan blades are all suitable for this method. Compared with the existing radar method, the proposed method may be advantageous for rotation detection in a constrained space. Full article
Show Figures

Figure 1

31 pages, 4981 KiB  
Review
Review of Microwave Near-Field Sensing and Imaging Devices in Medical Applications
by Cristina Origlia, David O. Rodriguez-Duarte, Jorge A. Tobon Vasquez, Jean-Charles Bolomey and Francesca Vipiana
Sensors 2024, 24(14), 4515; https://doi.org/10.3390/s24144515 - 12 Jul 2024
Cited by 23 | Viewed by 6703
Abstract
Microwaves can safely and non-destructively illuminate and penetrate dielectric materials, making them an attractive solution for various medical tasks, including detection, diagnosis, classification, and monitoring. Their inherent electromagnetic properties, portability, cost-effectiveness, and the growth in computing capabilities have encouraged the development of numerous [...] Read more.
Microwaves can safely and non-destructively illuminate and penetrate dielectric materials, making them an attractive solution for various medical tasks, including detection, diagnosis, classification, and monitoring. Their inherent electromagnetic properties, portability, cost-effectiveness, and the growth in computing capabilities have encouraged the development of numerous microwave sensing and imaging systems in the medical field, with the potential to complement or even replace current gold-standard methods. This review aims to provide a comprehensive update on the latest advances in medical applications of microwaves, particularly focusing on the near-field ones working within the 1–15 GHz frequency range. It specifically examines significant strides in the development of clinical devices for brain stroke diagnosis and classification, breast cancer screening, and continuous blood glucose monitoring. The technical implementation and algorithmic aspects of prototypes and devices are discussed in detail, including the transceiver systems, radiating elements (such as antennas and sensors), and the imaging algorithms. Additionally, it provides an overview of other promising cutting-edge microwave medical applications, such as knee injuries and colon polyps detection, torso scanning and image-based monitoring of thermal therapy intervention. Finally, the review discusses the challenges of achieving clinical engagement with microwave-based technologies and explores future perspectives. Full article
(This article belongs to the Special Issue Microwave Sensing Systems)
Show Figures

Figure 1

17 pages, 5274 KiB  
Review
Reviewing Space-Borne GNSS-Reflectometry for Detecting Freeze/Thaw Conditions of Near-Surface Soils
by Haishan Liang and Xuerui Wu
Remote Sens. 2024, 16(11), 1828; https://doi.org/10.3390/rs16111828 - 21 May 2024
Cited by 1 | Viewed by 1460
Abstract
GNSS-Reflectometry, a technique that harnesses the power of microwave remote sensing, is poised to revolutionize our ability to detect and monitor near-surface soil freeze/thaw processes. This technique’s theoretical underpinnings are deeply rooted in the comprehensive explanation of the Zhang–Zhao dielectric constant model, which [...] Read more.
GNSS-Reflectometry, a technique that harnesses the power of microwave remote sensing, is poised to revolutionize our ability to detect and monitor near-surface soil freeze/thaw processes. This technique’s theoretical underpinnings are deeply rooted in the comprehensive explanation of the Zhang–Zhao dielectric constant model, which provides crucial insights into the behavior of frozen and thawed soils. The model elucidates how the dielectric properties of soil change as it transitions between frozen and thawed states, offering a scientific basis for understanding reflectivity variations. Furthermore, the theoretical framework includes a set of formulas that are instrumental in calculating reflectivity at Lower Right (LR) polarization and in deriving Dual-Polarization Differential Observables (DDMs). These calculations are pivotal for interpreting the signals captured by GNSS-R sensors, allowing for the detection of subtle changes in the soil’s surface conditions. The evolution of GNSS-R as a tool for detecting freeze/thaw phenomena has been substantiated through qualitative analyses involving multiple satellite missions, such as SMAP-R, TDS-1, and CYGNSS. These analyses have provided empirical evidence of the technique’s effectiveness, illustrating its capacity to capture the dynamics of soil freezing and thawing processes. In addition to these qualitative assessments, the application of a discriminant retrieval algorithm using data from CYGNSS and F3E GNOS-R has further solidified the technique’s potential. This algorithm contributes to refining the accuracy of freeze/thaw detection by distinguishing between frozen and thawed soil states with greater precision. The deployment of space-borne GNSS-R for monitoring near-surface freeze/thaw cycles has yielded commendable results, exhibiting robust consistency and delivering relatively precise retrieval outcomes. These achievements stand as testaments to the technique’s viability and its growing significance in the field of remote sensing. However, it is imperative to recognize and actively address certain limitations that have been highlighted in this review. These limitations serve as critical focal points for future research endeavors, directing the efforts toward enhancing the technique’s overall performance and applicability. Addressing these challenges will be essential for leveraging the full potential of GNSS-R to advance our understanding and management of near-surface soil freeze/thaw processes. Full article
(This article belongs to the Special Issue SoOP-Reflectometry or GNSS-Reflectometry: Theory and Applications)
Show Figures

Figure 1

17 pages, 5263 KiB  
Article
The Optimization of Microwave Field Characteristics for ODMR Measurement of Nitrogen-Vacancy Centers in Diamond
by Zhenxian Fan, Li Xing, Feixiang Wu, Xiaojuan Feng and Jintao Zhang
Photonics 2024, 11(5), 436; https://doi.org/10.3390/photonics11050436 - 8 May 2024
Cited by 2 | Viewed by 3026
Abstract
A typical solid-state quantum sensor can be developed based on negatively charged nitrogen-vacancy (NV) centers in diamond. The electron spin state of NV can be controlled and read at room temperature. Through optical detection magnetic resonance (ODMR) technology, temperature measurement [...] Read more.
A typical solid-state quantum sensor can be developed based on negatively charged nitrogen-vacancy (NV) centers in diamond. The electron spin state of NV can be controlled and read at room temperature. Through optical detection magnetic resonance (ODMR) technology, temperature measurement can be achieved at the nanoscale. The key to ODMR technology is to apply microwave resonance to manipulate the electron spin state of the NV. Therefore, the microwave field characteristics formed near the NV have a crucial impact on the sensitivity of ODMR measurement. This article mainly focuses on the temperature situation in cellular applications and simulates the influence of structural parameters of double open loop resonant (DOLR) microwave antennas and broadband large-area (BLA) microwave antennas on the microwave field’s resonance frequency, quality factor Q, magnetic field strength, uniformity, etc. The parameters are optimized to have sufficient bandwidth, high signal-to-noise ratio, low power loss, and high magnetic field strength in the temperature range of 36 °C to 42.5 °C. Finally, the ODMR spectra are used for effect comparison, and the signal-to-noise ratio and Q values of the ODMR spectra are compared when using different antennas. We have provided an optimization method for the design of microwave antennas and it is concluded that the DOLR microwave antenna is more suitable for living cell temperature measurement in the future. Full article
(This article belongs to the Special Issue Optically Pumped Magnetometer and Its Application)
Show Figures

Figure 1

14 pages, 2634 KiB  
Article
Measuring Sedimentation Profiles for Nanoparticle Characterization through a Square Spiral Resonator Sensor
by Miguel Monteagudo Honrubia, Gianluca Caposciutti, Francisco Javier Herraiz-Martínez, Javier Matanza Domingo, Bernardo Tellini and Romano Giannetti
Sensors 2024, 24(9), 2735; https://doi.org/10.3390/s24092735 - 25 Apr 2024
Cited by 2 | Viewed by 1430
Abstract
Metallic nanoscale particles attract a growing interest in several fields, thanks to their unique bonding characteristics; applications are appearing in the literature in the fields of, for example, sensor coatings and biochemical compound detection. However, the controlled fabrication of such nanopowders is often [...] Read more.
Metallic nanoscale particles attract a growing interest in several fields, thanks to their unique bonding characteristics; applications are appearing in the literature in the fields of, for example, sensor coatings and biochemical compound detection. However, the controlled fabrication of such nanopowders is often cumbersome, especially because their characterization is normally slow, involving procedures such as electron microscopy. On the other hand, microwave sensors based on near-field effects on materials are being developed with high sensitivity and show promising characteristics. In this paper, the authors show how a microwave sensor based on a Square Spiral Resonator can be used to characterize paraffin dispersions of nanoparticles conveniently and cost-effectively. Full article
(This article belongs to the Special Issue Nanomaterials in Chemical Sensors)
Show Figures

Figure 1

15 pages, 1690 KiB  
Article
A Microwave Differential Dielectric Sensor Based on Mode Splitting of Coupled Resonators
by Ali M. Almuhlafi, Mohammed S. Alshaykh, Mansour Alajmi, Bassam Alshammari and Omar M. Ramahi
Sensors 2024, 24(3), 1020; https://doi.org/10.3390/s24031020 - 5 Feb 2024
Cited by 2 | Viewed by 2405
Abstract
This study explores the viability of using the avoided mode crossing phenomenon in the microwave regime to design microwave differential sensors. While the design concept can be applied to any type of planar electrically small resonators, here, it is implemented on split-ring resonators [...] Read more.
This study explores the viability of using the avoided mode crossing phenomenon in the microwave regime to design microwave differential sensors. While the design concept can be applied to any type of planar electrically small resonators, here, it is implemented on split-ring resonators (SRRs). We use two coupled synchronous SRRs loaded onto a two-port microstrip line system to demonstrate the avoided mode crossing by varying the distance between the split of the resonators to control the coupling strength. As the coupling becomes stronger, the split in the resonance frequencies of the system increases. Alternatively, by controlling the strength of the coupling by materials under test (MUTs), we utilize the system as a microwave differential sensor. First, the avoided mode crossing is theoretically investigated using the classical microwave coupled resonator techniques. Then, the system is designed and simulated using a 3D full-wave numerical simulation. To validate the concept, a two-port microstrip line, which is magnetically coupled to two synchronous SRRs, is utilized as a sensor, where the inter-resonator coupling is chosen to be electric coupling controlled by the dielectric constant of MUTs. For the experimental validation, the sensor was fabricated using printed circuit board technology. Two solid slabs with dielectric constants of 2.33 and 9.2 were employed to demonstrate the potential of the system as a novel differential microwave sensor. Full article
(This article belongs to the Special Issue Toward Advanced Microwave Sensors)
Show Figures

Figure 1

30 pages, 3076 KiB  
Review
Precipitation Monitoring Using Commercial Microwave Links: Current Status, Challenges and Prospectives
by Peng Zhang, Xichuan Liu and Kang Pu
Remote Sens. 2023, 15(19), 4821; https://doi.org/10.3390/rs15194821 - 4 Oct 2023
Cited by 9 | Viewed by 3397
Abstract
As rainfall exhibits high spatiotemporal variability, accurate and real-time rainfall monitoring is vitally important in fields such as hydrometeorological research, agriculture and disaster prevention and control. Nevertheless, the current dedicated rain sensors cannot fulfill the requirement for comprehensive precipitation observation, owing to their [...] Read more.
As rainfall exhibits high spatiotemporal variability, accurate and real-time rainfall monitoring is vitally important in fields such as hydrometeorological research, agriculture and disaster prevention and control. Nevertheless, the current dedicated rain sensors cannot fulfill the requirement for comprehensive precipitation observation, owing to their respective limitations. Within the last two decades, the utilization of commercial microwave links (CMLs) for rainfall estimation, as an opportunistic sensing method, has generated considerable attention. Relying on CML networks deployed and maintained by mobile network operators can provide near-surface precipitation information over large areas at a low cost. Although scholars have developed several algorithms for obtaining rainfall estimates from CML data, the rainfall estimation technique based on CMLs remains challenging due to the complex effect in the microwave radiation transmission process. In this paper, we provide a comprehensive review of the technical principles, developments and workflows for this technology, alongside its application in environmental monitoring and hydrological modeling. Furthermore, this paper outlines the current challenges and future research directions, which will hopefully draw the attention of researchers and provide valuable guidance. Full article
Show Figures

Figure 1

43 pages, 1140 KiB  
Review
Measurement of Total Dissolved Solids and Total Suspended Solids in Water Systems: A Review of the Issues, Conventional, and Remote Sensing Techniques
by Godson Ebenezer Adjovu, Haroon Stephen, David James and Sajjad Ahmad
Remote Sens. 2023, 15(14), 3534; https://doi.org/10.3390/rs15143534 - 13 Jul 2023
Cited by 137 | Viewed by 44545
Abstract
This study provides a comprehensive review of the efforts utilized in the measurement of water quality parameters (WQPs) with a focus on total dissolved solids (TDS) and total suspended solids (TSS). The current method used in the measurement of TDS and TSS includes [...] Read more.
This study provides a comprehensive review of the efforts utilized in the measurement of water quality parameters (WQPs) with a focus on total dissolved solids (TDS) and total suspended solids (TSS). The current method used in the measurement of TDS and TSS includes conventional field and gravimetric approaches. These methods are limited due to the associated cost and labor, and limited spatial coverages. Remote Sensing (RS) applications have, however, been used over the past few decades as an alternative to overcome these limitations. Although they also present underlying atmospheric interferences in images, radiometric and spectral resolution issues. Studies of these WQPs with RS, therefore, require the knowledge and utilization of the best mechanisms. The use of RS for retrieval of TDS, TSS, and their forms has been explored in many studies using images from airborne sensors onboard unmanned aerial vehicles (UAVs) and satellite sensors such as those onboard the Landsat, Sentinel-2, Aqua, and Terra platforms. The images and their spectral properties serve as inputs for deep learning analysis and statistical, and machine learning models. Methods used to retrieve these WQP measurements are dependent on the optical properties of the inland water bodies. While TSS is an optically active parameter, TDS is optically inactive with a low signal–noise ratio. The detection of TDS in the visible, near-infrared, and infrared bands is due to some process that (usually) co-occurs with changes in the TDS that is affecting a WQP that is optically active. This study revealed significant improvements in incorporating RS and conventional approaches in estimating WQPs. The findings reveal that improved spatiotemporal resolution has the potential to effectively detect changes in the WQPs. For effective monitoring of TDS and TSS using RS, we recommend employing atmospheric correction mechanisms to reduce image atmospheric interference, exploration of the fusion of optical and microwave bands, high-resolution hyperspectral images, utilization of ML and deep learning models, calibration and validation using observed data measured from conventional methods. Further studies could focus on the development of new technology and sensors using UAVs and satellite images to produce real-time in situ monitoring of TDS and TSS. The findings presented in this review aid in consolidating understanding and advancement of TDS and TSS measurements in a single repository thereby offering stakeholders, researchers, decision-makers, and regulatory bodies a go-to information resource to enhance their monitoring efforts and mitigation of water quality impairments. Full article
Show Figures

Graphical abstract

16 pages, 6093 KiB  
Article
Near-Field Imaging of Dielectric Components Using an Array of Microwave Sensors
by Yuki Gao, Maryam Ravan and Reza K. Amineh
Electronics 2023, 12(6), 1507; https://doi.org/10.3390/electronics12061507 - 22 Mar 2023
Cited by 5 | Viewed by 2911
Abstract
Microwave imaging is a high-resolution, noninvasive, and noncontact method for detecting hidden defects, cracks, and objects with applications for testing nonmetallic components such as printed circuit boards, biomedical diagnosis, aerospace components inspection, etc. In this paper, an array of microwave sensors designed based [...] Read more.
Microwave imaging is a high-resolution, noninvasive, and noncontact method for detecting hidden defects, cracks, and objects with applications for testing nonmetallic components such as printed circuit boards, biomedical diagnosis, aerospace components inspection, etc. In this paper, an array of microwave sensors designed based on complementary split ring resonators (CSRR) are used to evaluate the hidden features in dielectric media with applications in nondestructive testing and biomedical diagnosis. In this array, each element resonates at a different frequency in the range of 1 GHz to 10 GHz. Even though the operating frequencies are not that high, the acquisition of evanescent waves in extreme proximity to the imaged object and processing them using near-field holographic imaging allows for obtaining high-resolution images. The performance of the proposed method is demonstrated through simulation and experimental results. Full article
(This article belongs to the Special Issue Applications of RF/Microwave/Millimeter-Wave/THz Imaging)
Show Figures

Figure 1

22 pages, 14096 KiB  
Article
Detection of Semi-Solid Materials Utilizing Triple-Rings CSRR Microwave Sensor
by Ahmed Jamal Abdullah Al-Gburi, Norhanani Abd Rahman, Zahriladha Zakaria and Merih Palandoken
Sensors 2023, 23(6), 3058; https://doi.org/10.3390/s23063058 - 12 Mar 2023
Cited by 28 | Viewed by 3651
Abstract
This article proposes the design, fabrication and measurement of a triple-rings complementary split-ring resonator (CSRR) microwave sensor for semi-solid material detection. The triple-rings CSRR sensor was developed based on the CSRR configuration with curve-feed designed together, utilizing a high-frequency structure simulator (HFSS) microwave [...] Read more.
This article proposes the design, fabrication and measurement of a triple-rings complementary split-ring resonator (CSRR) microwave sensor for semi-solid material detection. The triple-rings CSRR sensor was developed based on the CSRR configuration with curve-feed designed together, utilizing a high-frequency structure simulator (HFSS) microwave studio. The designed triple rings CSRR sensor resonates at 2.5 GHz, performs in transmission mode, and senses shift in frequency. Six cases of the sample under tests (SUTs) were simulated and measured. These SUTs are Air (without SUT), Java turmeric, Mango ginger, Black Turmeric, Turmeric, and Di-water, and detailed sensitivity analysis is conducted for the frequency resonant at 2.5 GHz. The semi-solid tested mechanism is undertaken using a polypropylene (PP) tube. The samples of dielectric material are filled into PP tube channels and loaded in the CSRR centre hole. The e-fields near the resonator will affect the interaction with the SUTs. The finalized CSRR triple-rings sensor was incorporated with defective ground structure (DGS) to deliver high-performance characteristics in microstrip circuits, leading to a high Q-factor magnitude. The suggested sensor has a Q-factor of 520 at 2.5 GHz with high sensitivity of about 4.806 and 4.773 for Di-water and Turmeric samples, respectively. The relationship between loss tangent, permittivity, and Q-factor at the resonant frequency has been compared and discussed. These given outcomes make the presented sensor ideal for detecting semi-solid materials. Full article
Show Figures

Graphical abstract

20 pages, 6904 KiB  
Article
Circularly Polarized Textile Sensors for Microwave-Based Smart Bra Monitoring System
by Dalia N. Elsheakh, Yasmine K. Elgendy, Mennatullah E. Elsayed and Angie R. Eldamak
Micromachines 2023, 14(3), 586; https://doi.org/10.3390/mi14030586 - 28 Feb 2023
Cited by 15 | Viewed by 2938
Abstract
This paper presents a conformal and biodegradable circularly polarized microwave sensor (CPMS) that can be utilized in several medical applications. The proposed textile sensor can be implemented in a Smart Bra system for breast cancer detection (BCD) and a wireless body area network [...] Read more.
This paper presents a conformal and biodegradable circularly polarized microwave sensor (CPMS) that can be utilized in several medical applications. The proposed textile sensor can be implemented in a Smart Bra system for breast cancer detection (BCD) and a wireless body area network (WBAN). The proposed sensor is composed of a wideband circularly polarized (CP) textile-based monopole antenna with an overall size of 33.5 × 33.5 mm2 (0.2 λo × 0.2 λo) and CPW feed line. The radiating element and ground are fabricated using silver conductive fabric and stitched to a cotton substrate of thickness 2 mm. In the proposed design, a slot is etched in the radiating element to extend bandwidth from 1.8 to 8 GHz at |S11| ≤ −10 dB. It realizes a circularly polarized output with AR ≤ 3 dB operation band from 1.8 to 4 GHz and an average gain of 6 dBi. The proposed CPMS’s performance is studied both off-body (air) and on-body in proximity to breast models with and without tumors using near-field microwave imaging. Moreover, the axial ratio is recorded as a feature for a circularly polarized antenna and adds another degree of freedom for cancer detection and data analysis. It assists in detecting tumors in the breast by analyzing the magnitude of the electric field components in vertical and horizontal directions. Finally, the radiation properties are recorded, as well as the specific absorption rate (SAR), to ensure safe operation. The proposed CPMS covers a bandwidth of 1.8–8 GHz with SAR values following the 1 g and 10 g standards. The proposed work demonstrates the feasibility of using textile antennas in wearables, microwave sensing systems, and wireless body area networks (WBANs). Full article
(This article belongs to the Special Issue Microwave Antennas: From Fundamental Research to Applications)
Show Figures

Figure 1

17 pages, 1003 KiB  
Article
A Novel Coupling Mechanism for CSRRs as Near-Field Dielectric Sensors
by Ali M. Albishi
Sensors 2022, 22(9), 3313; https://doi.org/10.3390/s22093313 - 26 Apr 2022
Cited by 15 | Viewed by 3979
Abstract
This work proposes a novel coupling mechanism for a complementary split-ring resonator as a planar near-field microwave sensor for dielectric materials. The resonator is etched into the ground plane of a microstrip line. This mechanism is based on the inductive coupling synthesized by [...] Read more.
This work proposes a novel coupling mechanism for a complementary split-ring resonator as a planar near-field microwave sensor for dielectric materials. The resonator is etched into the ground plane of a microstrip line. This mechanism is based on the inductive coupling synthesized by utilizing a via that connects the power plane of the microstrip line to the central island of the resonator. The proposed coupling makes the coupling capacitance between the transmission line and the resonator relatively small and insignificant compared to the capacitance of the resonator, making it more sensitive to changes in the dielectric constant of the materials under test. In addition, the coupling is no longer dependent solely on the capacitive coupling, which significantly reduces the coupling degradation caused by loading the resonator with dielectric materials, so the inductive coupling plays an important role in the proposed design. Therefore, the proposed coupling mechanism improves the sensitivity and enhances the coupling between the transmission line and the resonator. The sensor is evaluated for sensitivity, normalized resonance shift, and coupling factor using a full-wave numerical simulation. The sensitivity of the proposed sensor is 12% and 5.6% when detecting dielectric constants of 2 and 10, respectively. Compared to recent studies, the sensitivity improvement when detecting similar permittivity is 20% (1.32 times) and 9.8% (1.1 times). For verification, the proposed sensor is manufactured using PCB technology and is used to detect the presence of two dielectric laminates. Full article
(This article belongs to the Special Issue State-of-the-Art Technologies in Microwave Sensors)
Show Figures

Figure 1

19 pages, 5824 KiB  
Article
A Blended Sea Ice Concentration Product from AMSR2 and VIIRS
by Richard Dworak, Yinghui Liu, Jeffrey Key and Walter N. Meier
Remote Sens. 2021, 13(15), 2982; https://doi.org/10.3390/rs13152982 - 29 Jul 2021
Cited by 6 | Viewed by 3403
Abstract
An effective blended Sea-Ice Concentration (SIC) product has been developed that utilizes ice concentrations from passive microwave and visible/infrared satellite instruments, specifically the Advanced Microwave Scanning Radiometer-2 (AMSR2) and the Visible Infrared Imaging Radiometer Suite (VIIRS). The blending takes advantage of the all-sky [...] Read more.
An effective blended Sea-Ice Concentration (SIC) product has been developed that utilizes ice concentrations from passive microwave and visible/infrared satellite instruments, specifically the Advanced Microwave Scanning Radiometer-2 (AMSR2) and the Visible Infrared Imaging Radiometer Suite (VIIRS). The blending takes advantage of the all-sky capability of the AMSR2 sensor and the high spatial resolution of VIIRS, though it utilizes only the clear sky characteristics of VIIRS. After both VIIRS and AMSR2 images are remapped to a 1 km EASE-Grid version 2, a Best Linear Unbiased Estimator (BLUE) method is used to combine the AMSR2 and VIIRS SIC for a blended product at 1 km resolution under clear-sky conditions. Under cloudy-sky conditions the AMSR2 SIC with bias correction is used. For validation, high spatial resolution Landsat data are collocated with VIIRS and AMSR2 from 1 February 2017 to 31 October 2019. Bias, standard deviation, and root mean squared errors are calculated for the SICs of VIIRS, AMSR2, and the blended field. The blended SIC outperforms the individual VIIRS and AMSR2 SICs. The higher spatial resolution VIIRS data provide beneficial information to improve upon AMSR2 SIC under clear-sky conditions, especially during the summer melt season, as the AMSR2 SIC has a consistent negative bias near and above the melting point. Full article
(This article belongs to the Special Issue Polar Sea Ice: Detection, Monitoring and Modeling)
Show Figures

Figure 1

18 pages, 1133 KiB  
Article
On the Optimal Field Sensing in Near-Field Characterization
by Amedeo Capozzoli, Claudio Curcio and Angelo Liseno
Sensors 2021, 21(13), 4460; https://doi.org/10.3390/s21134460 - 29 Jun 2021
Cited by 14 | Viewed by 2380
Abstract
We deal with the problem of characterizing a source or scatterer from electromagnetic radiated or scattered field measurements. The problem refers to the amplitude and phase measurements which has applications also to interferometric approaches at optical frequencies. From low frequencies (microwaves) to high [...] Read more.
We deal with the problem of characterizing a source or scatterer from electromagnetic radiated or scattered field measurements. The problem refers to the amplitude and phase measurements which has applications also to interferometric approaches at optical frequencies. From low frequencies (microwaves) to high frequencies or optics, application examples are near-field/far-field transformations, object restoration from measurements within a pupil, near-field THz imaging, optical coherence tomography and ptychography. When analyzing the transmitting-sensing system, we can define “optimal virtual” sensors by using the Singular Value Decomposition (SVD) approach which has been, since long time, recognized as the “optimal” tool to manage linear algebraic problems. The problem however emerges of discretizing the relevant singular functions, thus defining the field sampling. To this end, we have recently developed an approach based on the Singular Value Optimization (SVO) technique. To make the “virtual” sensors physically realizable, in this paper, two approaches are considered: casting the “virtual” field sensors into arrays reaching the same performance of the “virtual” ones; operating a segmentation of the receiver. Concerning the array case, two ways are followed: synthesize the array by a generalized Gaussian quadrature discretizing the linear reception functionals and use elementary sensors according to SVO. We show that SVO is “optimal” in the sense that it leads to the use of elementary, non-uniformly located field sensors having the same performance of the “virtual” sensors and that generalized Gaussian quadrature has essentially the same performance. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop