Noncontact Rotational Speed Measurement with Near-Field Microwave of Open-Ended Waveguide
Abstract
1. Introduction
2. Principle and Simulations
2.1. Principle of the Proposed Measurement Method
2.2. Simulations
3. Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Dong, L.; Zhang, C.; Wang, L.; Huang, Q. Rotational speed measurement based on LC wireless sensors. Sensors 2021, 21, 8055. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Jia, P.; Guan, X.; Xiong, J.; Liu, W.; Zhang, H.; Li, C. Wireless passive high-temperature sensor readout system for rotational-speed measurement. J. Sens. 2021, 2021, 6656527. [Google Scholar] [CrossRef]
- Hancke, G.P.; Viljoen, C.F.T. The microprocessor measurement of low values of rotational speed and acceleration. IEEE Trans. Instrum. Meas. 1990, 39, 1014–1017. [Google Scholar] [CrossRef]
- Silva, W.L.; Lima, A.M.N.; Oliveira, A. Speed estimation of an induction motor operating in the nonstationary mode by using rotor slot harmonics. IEEE Trans. Instrum. Meas. 2015, 64, 984–994. [Google Scholar] [CrossRef]
- Wang, L.; Yan, Y.; Hu, Y.; Qian, X. Rotational Speed measurement through electrostatic sensing and correlation signal processing. IEEE Trans. Instrum. Meas. 2014, 63, 1190–1199. [Google Scholar] [CrossRef]
- Fabian, T.; Brasseur, G. A robust capacitive angular speed sensor. IEEE Trans. Instrum. Meas. 1998, 47, 280–284. [Google Scholar] [CrossRef]
- Li, C.; Jia, M.; Xue, Y.; Hong, Y.; Feng, Q.; Jia, P.; Lu, H.; Xiong, J. Synchronous online monitoring of rotational speed and temperature for rotating parts in high temperature environment. IEEE Access 2021, 9, 96257–96266. [Google Scholar] [CrossRef]
- Li, K.; Li, Y.; Han, Y. A magnetic induction-based highly dynamic rotational angular rate measurement method. IEEE Access 2017, 5, 8118–8125. [Google Scholar] [CrossRef]
- Hu, X.; Tian, J. Noncontact measurement of rotational movement using IR-UWB radar. In Proceedings of the 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Guilin, China, 18–21 October 2016. [Google Scholar]
- Varshney, P.K.; Akhtar, M.J. Substrate integrated waveguide derived novel two-way rotation sensor. IEEE Sens. J. 2021, 21, 1519–1526. [Google Scholar] [CrossRef]
- Horestani, A.K.; Shaterian, Z.; Martin, F. Rotation sensor based on the cross-polarized excitation of split ring resonators (SRRs). IEEE Sens. J. 2020, 20, 9706–9714. [Google Scholar] [CrossRef]
- Regalla, P.; Kumar, A.V.P. A fixed-frequency angular displacement sensor based on dielectric-loaded metal strip resonator. IEEE Sens. J. 2021, 21, 2669–2675. [Google Scholar] [CrossRef]
- Jha, A.K.; Lamecki, A.; Mrozowski, M.; Bozzi, M. A highly sensitive planar microwave sensor for detecting direction and angle of rotation. IEEE Trans. Microw. Theory Tech. 2020, 68, 1598–1609. [Google Scholar] [CrossRef]
- Jha, A.K.; Lamecki, A.; Mrozowski, M.; Bozzi, M. A microwave sensor with operating band selection to detect rotation and proximity in the rapid prototyping industry. IEEE Trans. Ind. Electron. 2021, 68, 683–693. [Google Scholar] [CrossRef]
- Ding, Y.; Lee, C.; Li, Y.; Wang, Z.; Li, G. An angular displacement sensor-based active feedback open complementary split-ring resonator. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 1079–1082. [Google Scholar] [CrossRef]
- Jha, A.K.; Delmonte, N.; Lamecki, A.; Mrozowski, M.; Bozzi, M. Design of microwave-based angular displacement sensor. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 306–308. [Google Scholar] [CrossRef]
- Chio, C.; Tam, K.; Gómez-García, R. Filtering angular displacement sensor based on transversal section with parallel-coupled-line path and U-shaped coupled slotline. IEEE Sens. J. 2022, 22, 1218–1226. [Google Scholar] [CrossRef]
- Cheong, P.; Wu, K. Full-range CSRR-based angular displacement sensing with multiport interferometric platform. IEEE Trans. Microw. Theory Tech. 2021, 69, 4813–4821. [Google Scholar] [CrossRef]
- Abdolrazzaghi, M.; Daneshmand, M. Multifunctional ultrahigh sensitive microwave planar sensor to monitor mechanical motion: Rotation, displacement, and stretch. Sensors 2020, 20, 1184. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Wang, Q. A rotation speed measurement system based on millimeter wave. In Proceedings of the 2022 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI), Virtual, 17–19 October 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, Y.; Choi, I.-S. Measurement of the rotational speed of industrial wind turbine blades using a low cost 24GHz Doppler radar. In Proceedings of the 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany, 22–26 March 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Ding, R.; Jin, H.; Shen, D. Rotation speed sensing with mmWave Radar. In Proceedings of the IEEE INFOCOM 2023—IEEE Conference on Computer Communications, New York, NY, USA, 17–20 May 2023. [Google Scholar] [CrossRef]
Symbol | Values | Symbol | Values |
---|---|---|---|
L1 | 11.00 | w | 2.00 |
L2 | 5.00 | r1 | 15.00 |
L3 | 6.00 | r2 | 3.00 |
L4 | 10.00 | Δx | 0.00 |
h | 1.00 | Δy | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Ye, M.; Yang, F.; Wang, C.; Dong, Y.; Yang, J.; Zhou, G.; Xie, Y. Noncontact Rotational Speed Measurement with Near-Field Microwave of Open-Ended Waveguide. Electronics 2024, 13, 3012. https://doi.org/10.3390/electronics13153012
Bai Y, Ye M, Yang F, Wang C, Dong Y, Yang J, Zhou G, Xie Y. Noncontact Rotational Speed Measurement with Near-Field Microwave of Open-Ended Waveguide. Electronics. 2024; 13(15):3012. https://doi.org/10.3390/electronics13153012
Chicago/Turabian StyleBai, Yongjiang, Ming Ye, Fang Yang, Chun Wang, Yingdi Dong, Jiye Yang, Guisheng Zhou, and Yongjun Xie. 2024. "Noncontact Rotational Speed Measurement with Near-Field Microwave of Open-Ended Waveguide" Electronics 13, no. 15: 3012. https://doi.org/10.3390/electronics13153012
APA StyleBai, Y., Ye, M., Yang, F., Wang, C., Dong, Y., Yang, J., Zhou, G., & Xie, Y. (2024). Noncontact Rotational Speed Measurement with Near-Field Microwave of Open-Ended Waveguide. Electronics, 13(15), 3012. https://doi.org/10.3390/electronics13153012