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Abstract: As rainfall exhibits high spatiotemporal variability, accurate and real-time rainfall moni-
toring is vitally important in fields such as hydrometeorological research, agriculture and disaster
prevention and control. Nevertheless, the current dedicated rain sensors cannot fulfill the requirement
for comprehensive precipitation observation, owing to their respective limitations. Within the last
two decades, the utilization of commercial microwave links (CMLs) for rainfall estimation, as an
opportunistic sensing method, has generated considerable attention. Relying on CML networks
deployed and maintained by mobile network operators can provide near-surface precipitation in-
formation over large areas at a low cost. Although scholars have developed several algorithms for
obtaining rainfall estimates from CML data, the rainfall estimation technique based on CMLs remains
challenging due to the complex effect in the microwave radiation transmission process. In this paper,
we provide a comprehensive review of the technical principles, developments and workflows for
this technology, alongside its application in environmental monitoring and hydrological modeling.
Furthermore, this paper outlines the current challenges and future research directions, which will
hopefully draw the attention of researchers and provide valuable guidance.

Keywords: commercial microwave links (CMLs); opportunistic sensing; rainfall estimation;
environment monitoring; remote sensing

1. Introduction
1.1. Background

Precipitation, as one of the most significant links in the Earth’s water cycle, is intimately
associated with people’s lives. The spatial and temporal heterogeneity of precipitation
development is the main cause of natural disasters such as droughts, floods and mud-
slides [1]. Accurate monitoring of precipitation has significant implications in fields such
as agriculture, hydrometeorological research and water resource management.

Currently, meteorological operations mainly rely on rain gauges, weather radar and
meteorological satellites to measure precipitation. However, due to the inherent limitations
of these dedicated rain sensors, quantitative precipitation products still cannot satisfy the
requirements of comprehensive meteorological observations, especially as global warming
may lead to more extreme precipitation events [2]. Rain gauges, which are believed to
provide point measurements of surface rainfall, are unsuitable for constructing a monitoring
network due to their low spatial representativeness. In addition, wind and splash effects
introduce uncertainties in its measurement [3]. Contrary to rain gauges, based on the
statistical power–law relationship between the radar reflectivity Z and the rain rate R,
weather radar allows for quantitative precipitation estimation (QPE) over large areas.
However, the parameters of the Z–R relationship are highly sensitive to the raindrop
size distribution (DSD) associated with precipitation types, geographical locations and
climatic characteristics, which may cause large systematic biases [4]. Other uncertainty
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sources include ground clutter, beam blockage, bright bands and the vertical variability
of the precipitation system [5]. As meteorological satellite technology matures, satellites
can measure precipitation almost globally, which is especially important in areas where
radar and rain gauges are not available [6]. However, subject to low spatial and temporal
resolution, satellite products are not available for small-scale hydrological applications,
such as catchment modeling in urban and mountainous areas. Moreover, although several
satellite-based rainfall inversion algorithms have been developed [7,8], the accuracy of
their estimates still needs to be improved [9].

Consequently, the concept of opportunistic rainfall measurement methods emerged,
and the potential of devices such as commercial microwave links (CMLs) [10], personal
weather stations [11], vehicle windscreen wipers [12] and street cameras [13] has been
successively explored. These methods can provide additional precipitation information
and promise to improve dedicated precipitation products, with CMLs being one that has
the most prospective application. Based on existing CML networks built and maintained
by mobile network operators, it can provide alternative precipitation observations in a cost-
effective manner in areas lacking rain sensors [14] or additional precipitation information
in areas with existing rainfall observations to enhance the spatial and temporal resolution
as well as the accuracy of precipitation products [15,16].

1.2. The Principle and Development of Rainfall Estimation by CMLs

CMLs typically provide line-of-sight wireless backhaul connectivity for cellular com-
munication networks, as well as serving as infrastructure for services such as smart cities.
As shown in Figure 1, CMLs transmit microwave signals which carry data information
between two cell towers to achieve message communication at two locations. Currently,
the operating frequencies of CMLs mainly range from 15 to 40 GHz and are extending
to the E-band due to the demand for higher bandwidth. In these frequencies, where the
wavelengths are comparable to the size of the raindrop particles, the microwave signals are
significantly attenuated by scattering and absorption. Considering the rainfall at location x
on the path, the specific rain-induced attenuation γ(x) (dB·km−1) at that location can be
calculated as:

γ(x) = 4.343 × 103
∫

D
Qext(D, f , T) · Nx(D)dD (1)

where Qext(D, f, T) (m2) is the extinction cross section of a raindrop particle of size D (mm),
which is related to the signal frequency f (GHz) and raindrop temperature T (K). Nx(D)
(m−3·mm−1), i.e., the DSD function, is the number concentration of raindrop particles of
size D at location x. Meanwhile, according to the definition of rain rate, the rain rate R(x)
(mm·h−1) at this location can be expressed as:

R(x) = 6 × 10−4π
∫

D
V(D)Nx(D)D3dD (2)

where V(D) (m·s−1) is the falling velocity of a raindrop of size D. Since both γ(x) and R(x)
are functions of Nx(D), the relationship between the two can be deduced. The theoretical
calculation results show that the relationship between γ and R approximates a power–law
form [17]:

γ(x) = aR(x)b (3)

where a (mm−b·hb·dB·km−1) and b (dimensionless) are the power–law parameters, which
are associated with frequency, polarization and, to a lesser extent, with DSD [18,19] (com-
pared to the Z–R relationship). The total attenuation A (dB) of a CML of length L (km) due
to rainfall on the path can be obtained by integrating γ(x) over the path:

A =
∫ L

0
γ(x)dx = a

∫ L

0
R(x)bdx (4)
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Figure 1. The basic principle of estimating rainfall using CMLs. CMLs typically connect two cell
towers and carry information via microwave signals to enable data exchange between the two
locations. When rainfall occurs on the CML path, the received signal is significantly attenuated due
to scattering and absorption of the wave by raindrop particles. The path-averaged rain rate can be
retrieved based on the power–law relationship between rain rate and rain-induced attenuation.

Then, the specific rain-induced attenuation over the entire CML path can be expressed as:

γ =
A
L

=
a
L

∫ L

0
R(x)bdx (5)

Substitute Equation (3) into (5) to obtain an estimate R̂ of the path-averaged rain rate,
with the real path-averaged rain rate R shown by Equation (7):

R̂ =

(∫ L
0 R(x)bdx

L

)1/b

(6)

R =
1
L

∫ L

0
R(x)dx (7)

Figure 2 presents the scatter plot of CML rainfall estimates versus real rain rates at
different frequencies and rainfall types. It can be seen that the deviation between the CML
rain rate and the real rain rate is much larger for frequencies outside of 22 to 38 GHz.
Comparing the path-averaged rain rate, R, with R̂, it is straightforward to realize that the
two are equal only if b approximates unity or R(x) is nearly constant. This means that taking
into account the spatial variability of rainfall, only CMLs operating within 20 to 40 GHz are
suitable for rainfall estimation. However, in the last century, the low frequency of prevalent
CMLs was not applicable for monitoring rainfall. This is reflected in the insensitivity of
the microwave signal to rainfall on the one hand, and due to the inherent error between
the rainfall estimate R̂ and the path-averaged rain rate R on the other. In addition, it is too
expensive to deploy a dedicated microwave link rainfall monitoring network compared to
radar-based regional measurements. As a result, studies 20 years ago were mainly limited to
dedicated experimental microwave links. Based on a multi-band dual-polarized microwave
link of the Tropical Rainfall Measuring Mission (TRMM), Rincon et al. [20] demonstrated
the validity of the power–law relationship for rainfall estimation; subsequently, scientists
further found that estimating rain rate using dual-frequency differential attenuation has a
higher stability than single-frequency does [21–24].

The landmark breakthrough in this technology occurred around 2006. As we enter
the 21st century, the growing demand for wireless network terminals, such as cellphones,
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has led to a dramatic increase in the number of CMLs with operating frequencies ranging
from 20 to 40 GHz. The mobile network operators who installed and maintained these
CMLs have established an adequate infrastructure for monitoring rainfall using CMLs.
As a result, the large quantity of CMLs that are otherwise used for communications can
be used as opportunistic sensors, and the signal impairments that are undesirable to
telecommunication engineers instead become an additional source of rainfall information.
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Figure 2. Two-dimensional scatter plots obtained from real rain rates and rain rates inverted by the
γ–R relation at frequencies (a) 6 GHz, (b) 10 GHz, (c) 15 GHz, (d) 18 GHz, (e) 22 GHz, (f) 26 GHz,
(g) 38 GHz, (h) 50 GHz, (i) 60 GHz, (j) 73 GHz, (k) 83 GHz and (l) 92 GHz. It is worth noting that
the real rain rates are obtained from an OTT Parsivel disdrometer deployed in Nanjing, whereas the
CML-based rain rates are simulatively calculated using the T-matrix algorithm based on the γ–R
relationship and the DSD data recorded by the disdrometer. The rainfall types are identified using the
disdrometer data according to the classification criteria proposed in [25]. (Reprinted with permission
from Pu et al., 2023. Copyright 2023 IEEE).

In Israel, Messer et al. [10] used CMLs to estimate rainfall for the first time and compared
them with rain gauges and radar, demonstrating the potential of CMLs. Almost simulta-
neously, a rainfall inversion experiment in the Netherlands [26] also suggested that CMLs
could be an effective complement to radar QPE. Later, experimental studies on the estima-
tion of rainfall using CMLs have successively been carried out in France [27], Germany [28],
Switzerland [29,30], the Czech Republic [31], Italy [32], Brazil [33], China [34,35], Sri Lanka [36],
some countries in Africa [37–39], etc., as shown in Figure 3.
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based on CMLs. Notably, Antarctica and the Arctic have been omitted from the figure. In addition,
the number of research is based on the references in this paper, which may not fully encompass all
published studies but can reflect the approximate distribution.

This paper provides a detailed overview of the techniques for rainfall estimation
based on CMLs, in contrast to previous review articles [40–43], with the aim of providing a
comprehensive introduction to readers new to the field and offering researchers our view of
current challenges and future research directions for the technique. The rest of this paper is
organized as follows: Section 2 details the processes involved in obtaining rainfall estimates
from the attenuation information of the CMLs. Other applications of CMLs as opportunistic
sensors are discussed in Section 3. Section 4 summarizes the current challenges. In Section 5
we present possible future directions. Section 6 provides a conclusion and outlook.

2. Procedures in Deriving Rainfall Maps from Attenuation

When the path of CMLs is exposed to rainfall, additional attenuation of the microwave
signal occurs accordingly. However, these attenuation increments are not entirely due to
scattering and absorption by raindrop particles. Phenomena such as electronic component
drift, changes in water vapor, multipath effects, and wet antenna effects can also lead to
changes in signal quality. Deriving rainfall estimates from CML attenuation is, therefore, a
sophisticated process, which is described in detail in this section.

2.1. Classification of Dry and Wet Periods

As mentioned above, phenomena other than or triggered by rainfall may also cause
signal impairment. Therefore, when we obtain attenuation data for CMLs, typically the
transmitted signal level (TSL) minus the received signal level (RSL), the first critical issue is
to determine at each timestamp whether the CMLs are affected by rainfall. More simply,
the CML data need to be classified into dry (rain free) and wet (rainy) periods. In order to
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accomplish the classification of dry and wet periods, scholars have developed a variety of
methods, which can be broadly divided into three categories.

The first category is based on the analysis of attenuation sequences to determine whether
rainfall exists on the path of CMLs. The simplest way to distinguish between dry and wet
periods is based on a global threshold for attenuation, with periods above the threshold
being treated as wet [44]. Rahimi et al. [23] found that RSL sequences of dual-frequency
microwave links are highly correlated during wet periods and suggested setting correlation
thresholds to distinguish between dry and wet periods. Further, Overeem et al. [45] extended
the spatial correlation of rainfall from individual CMLs to all CMLs within a certain range and
proposed the so-called nearby link approach (NLA). They considered a time period as wet if
the RSLs of at least half of the CMLs in the range decreased simultaneously during that time
period. In addition, Schleiss et al. [27] found significant differences in the local variability of
signal attenuation between dry and wet periods and proposed the use of a rolling window to
calculate the standard deviation of the attenuation sequence to identify dry and wet periods
based on a predetermined threshold. Recently, Graf et al. [46] proposed an improved version
of this algorithm, arguing that the threshold can depend on the fluctuating trend of individual
CMLs rather than only on climatology. Based on the short-time Fourier transform of the RSL
sequence, Chwala et al. [28] found that the normalized amplitude difference between low and
high frequencies of the power spectrum can be used to determine the dry and wet periods.

The second category of classification methods relies on dedicated rainfall observations
in the vicinity of CMLs. As near-surface rainfall measurement instruments, rain gauges are
widely used to achieve dry/wet period classification for CMLs [47,48]. In the literature [49],
considering the elevation angle of the radar, if the path-averaged rain rate of the radar
QPE is greater than 0.1 mm/h, the current and subsequent time steps are regarded as wet
periods. Kumah et al. [50,51] utilized Meteosat Second Generation satellites to check for
the presence of rain areas in the path of CMLs.

The last category is data-driven approaches based on machine learning. Thanks
to the massive data, they can derive hidden feature information to explore patterns of
signal fluctuations and apply them to dry and wet period classification. Reller et al. [52]
demonstrated the applicability of a factor graph-based quasi-periodic signal model for dry
and wet period classification. The literature [53,54] reported cases where Markov models
were employed to determine dry and wet periods. In addition, dry/wet classification
based on the multifamily likelihood ratio test [55] and the kernel Fisher discriminant
analysis [56] have been attempted. Subsequently, time-delay neural networks [57], long
short-term memory neural networks (LSTM) [58,59], support vector machines (SVM) [60]
and convolutional neural networks (CNN) [61] are also used for dry and wet period
identification for CMLs. In [62], the dry and wet period classification performance of several
machine learning models was compared and the ensemble machine learning classifier was
recommended as the preferred one. Additional information on existing dry and wet period
classification algorithms can be found in Table 1.

Table 1. Existing techniques for dry and wet period classification.

Authors and
Year Country Highlights

Rahimi et al.
(2003) [23] England

The RSL sequences of dual-frequency CMLs were found to increase in correlation
during the wet period, and a correlation threshold was used to distinguish between
dry and wet periods. The classification method detected approximately 80% of dry
periods and 92.5% of wet periods.

Upton et al.
(2005) [48] England

Rain gauge data in the vicinity of CMLs were used to differentiate between dry and
wet periods and compared with the classification method of dual-frequency CMLs.
The use of nearby rain gauge data could well improve the dry and wet period
classification of dual-frequency CMLs.
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Table 1. Cont.

Authors and Year Country Highlights

Leijnse et al.
(2007) [44] The Netherlands Based on the historical data, a simple global threshold was constructed and the portion above the

threshold was treated as wet periods.

Schleiss et al.
(2010) [27] France

Based on the different local variability of dry/wet period attenuation, the standard deviation of
attenuation was calculated using a rolling window to differentiate between dry and wet periods
according to a preset threshold. On average, 92% of wet periods, 86% of dry periods and 93% of
total rainfall were identified.

Overeem et al.
(2011) [49] The Netherlands

Radar data were used to distinguish between dry and wet periods; considering that the
correlation of RSL sequences of nearby CMLs in wet periods rises, the nearby link approach
(NLA) was proposed to distinguish between dry and wet periods. Both radar and NLA were
able to invert rainfall accurately with similar results.

Reller et al.
(2011) [52] Switzerland The Gaussian factor graph was used to distinguish between the dry and wet periods. Case

studies showed that the proposed method has a high classification performance.

Chwala et al.
(2012) [28] Germany

Due to the significant increase in the high-frequency components of the signal during the wet
period, a spectral analysis method based on the short-time Fourier transform was proposed to
classify dry and wet periods. The weighted mean error rate of the classification results was as
low as 0.098.

Wang et al.
(2012) [54] Switzerland

A Markov switching model was used to differentiate between dry and wet periods, which was
compared with rolling standard deviation, factor graphs and the global threshold method. The
false-positive and false-negative rates were about 8% and 15%, respectively, in the case of a
stationary baseline. In the case of an unstable baseline, the false-positive and false-negative rates
were about 5% and 23%, respectively.

Rayitsfeld et al.
(2012) [53] Israel A Hidden Markov Model was used to determine the dry and wet periods. Rainfall inversions

using this method showed good correlation and low bias compared with rain gauge results.

Cherkassky et al.
(2012) [63] Israel

Based on the statistical characteristics of attenuation, a linear Fisher’s discriminant was used to
distinguish between dry and wet periods and was able to identify 83% of wet periods, with a
false-positive rate of 12%.

Harel et al.
(2013) [55] Israel An algorithm based on a multifamily likelihood ratio test was used to separate dry and wet

periods, and the true-positive rate could reach about 90%.

Dordević et al.
(2013) [57] Germany

Focused time-delay neural networks were used to distinguish between dry and wet periods. The
average test error of the classification results was only 1.1095%, with a correlation coefficient
of 0.9647.

Cherkassky et al.
(2014) [56] Israel

Based on the statistical characteristics of attenuation, the kernel Fisher’s discrimination was used
to distinguish dry and wet periods. The results showed that the classification accuracy could
reach 85.35%.

He et al.
(2019) [59] China A dry and wet period classification algorithm based on LSTM was proposed. The daily

classification accuracy exceeded 60%, with some results achieving up to 98%.

Polz et al.
(2020) [61] Germany A dry and wet period classification algorithm based on CNN was proposed. An average of 76%

wet periods and 97% dry periods were detected in the validation results.

Song et al.
(2020) [60] China

SVM was used to distinguish between dry and wet periods based on statistical features of
attenuation. The classification accuracy exceeded 0.8 and the majority of the outcomes displayed
true-positive and false-positive rates that exceeded 0.9 and were less than 0.2, respectively.

Kumah et al.
(2020) [50] Kenya Satellite data were used to identify rain areas along the CML path. The accuracy of rainfall

inversion for CMLs supported by satellite data was high.

2.2. Determination of Baseline

After the classification of dry and wet periods, the wet period attenuation cannot be
used directly for rainfall inversion; instead, the baseline attenuation (also known as the zero-
level attenuation), which consists mainly of free-space losses and gas attenuation, needs to
be removed from the wet period attenuation. Considering the generally short duration of
rainfall, a common assumption is that factors affecting baseline attenuation may differ little
between the wet period and the preceding dry period. Thus, the baseline can be set as the
most recent dry period attenuation prior to rainfall [23] or the average dry period attenuation
over a period of time before and after the rainfall event [64] and kept constant during the
wet period. However, a constant baseline during the wet period may be impractical. To
reflect the variability of the baseline during the wet period, Upton et al. [48] linearly interpo-
lated the dry period attenuation at both ends of the rainfall event to determine the baseline.
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Fenicia et al. [65] compared a single-parameter baseline model based on a low-pass linear
filter with a constant baseline model and found the former to have superior performance.
Based on the temporal distribution of rainfall, the baseline can also be estimated as the median
of all dry period attenuation over a long period prior to the wet period [45].

Furthermore, some baseline estimation algorithms have been developed that do not
require dry and wet period classification. Assuming that the rain rate is a random process,
Ostrometzky et al. [66] demonstrated that information about the baseline is hidden in
the minimum attenuation and suggested using a sliding window to estimate the baseline.
For the median attenuation method described above, the baseline can be estimated as the
median of all attenuations by utilizing a sufficiently large window without the need for
dry/wet classification because the window can contain more dry-period samples [45,47].

2.3. Wet Antenna Attenuation (WAA) Correction

Rainfall not only scatters and absorbs microwaves, but other phenomena associated
with it, such as increased water vapor, decreased temperature and antenna wetting, can
lead to additional attenuation that cannot be eliminated by the baseline. Considering that
attenuation due to temperature and water vapor variations is typically one to two orders of
magnitude smaller than rain-induced attenuation (with the possible exception of the water
vapor absorption band around 22 GHz), these can generally be ignored. However, the water
film covering antennas can change the antenna’s directivity, efficiency and reflectivity [67],
introducing additional attenuation up to a few dB. The lack of correction for wet antenna
attenuation (WAA) has been shown to lead to a significant overestimation of rainfall
estimates based on CMLs [26].

In order to eliminate the effect of WAA, an exponential model related to the measured
attenuation was proposed by Kharadly et al. [68]. Later, based on the fact that measured
attenuation consists of path attenuation and WAA, the literature [69] extended the expo-
nential WAA model to link it to path attenuation. Leijnse et al. [70] assumed a power–law
relationship between the water film thickness and the rain rate and calculated the WAA
based on the water film thickness and electromagnetic scattering theory. Some studies [71]
also treated WAA directly as a function of rain rate. Overeem et al. [49] suggested ignoring
the process of antenna wetting and drying and treating WAA as constant. On the contrary,
long antenna drying and wetting processes have also been observed, and time-dependent
dynamic WAA models have been proposed [29,72]. Pastorek et al. [73] compared the above
empirical models and found that the WAA model, which is directly related to the rain rate,
performs better, and that because the parameters of the model are independent of the CML
frequency and path length, it is portable to CMLs with similar antenna characteristics. In
the absence of rainfall observations, Fencl et al. [74] suggest that WAA can be quantified by
using short CMLs, or, if short CMLs are not available, by statistics from CMLs and rainfall
climatology. On the basis of the analysis of WAA time series, the LSTM algorithm [75] has
also been applied to WAA estimation. In addition, since WAA is mainly related to antenna
reflectivity, Moroder et al. [76] have developed a microwave measurement system that
can measure attenuation and WAA simultaneously, which may present opportunities for
WAA correction.

2.4. Calibration of the γ–R Relationship and Rainfall Estimation

For the coefficients a and b in the relationship between specific rain-induced at-
tenuation and rain rate, the International Telecommunication Union Recommendations
(ITU-R) [77] provide a reliable reference in the absence of microphysical information for
rainfall. However, the ITU-R model, as a statistical model fitted from global data, has been
found to potentially perform sub-optimally in localized areas in several reports [78–82].
As shown in Figure 4, for the Nanjing area, the ITU-R model would significantly over-
estimate rainfall under high rain rate conditions compared to the local γ–R relationship.
Therefore, based on T-matrix or the Mie scattering theory, some scholars have also utilized
DSD data to fit power–law parameters appropriate to the local climate. Using data from
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the disdrometer deployed in Nanjing, China, Song et al. [83] estimated rainfall using the
improved γ–R relationship. The study concluded that the results are more accurate than
the ITU-R model and highlighted the significance of establishing the local γ–R relationship.
Han et al. [84] then fit the power–law relationship for stratiform and convective rainfall
separately, demonstrating superior performance over the ITU–R relationship.
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Figure 4. Scatter plots of specific rain-induced attenuation and rain rates at different frequencies. It is
worth noting that the rain rates are obtained from an OTT Parsivel disdrometer deployed in Nanjing,
whereas the specific rain-induced attenuations are simulated using the T-matrix algorithm based on
the DSD data recorded by the disdrometer.

After calibration of the power–law relationship, the path-averaged rain rate can be
estimated based on Equations (4) and (6):
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2.5. Rainfall Mapping

Although line-integrated rainfall observations are certainly valuable for many hy-
drometeorological studies and applications, the need to provide the spatial distribution
of rainfall, i.e., generate rainfall maps from the estimations of CMLs, is more necessary.
The simplest approach is to treat the CMLs as virtual rain gauges located at their midpoint
location [45]. However, such an assumption is not reasonable given the heterogeneity of
rainfall over the path of long-distance CMLs. Therefore, Goldshtein et al. [85] proposed an
iterative algorithm to represent CML measurements using multiple data points along the
path. Several studies [86,87] compared the two strategies and found that the dominance
of the latter is positively correlated with the spatial variability of rainfall. Then, spatial
interpolation techniques such as inverse distance weighting (IDW) and ordinary kriging
(OK) can be employed to reconstruct sparse rainfall estimates to continuous spatial distri-
bution. Eshel et al. [88] quantitatively analyzed the performance of different interpolation
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algorithms. The results showed the OK algorithm, which uses more priori information,
performs slightly better than IDW. More sophisticated algorithms that consider rainfall
inhomogeneity over the paths of CMLs include tomographic analysis techniques [32,89,90],
the block kriging type approach [91], stochastic reconstruction algorithms [92,93] and the
compressed sensing theory [94–97]. Furthermore, the literature [98] reported that CMLs
can provide information on the spatial structure of rainfall fields and that the error in the
estimation of the spatial autocorrelation function is only 5%.

3. Other Applications
3.1. Environmental Monitoring Other Than Rainfall Estimation

Due to the interaction of microwaves with the atmosphere during transmission, the
signals of CMLs carry atmospheric environmental information. On the basis of electromagnetic
theory, considering the absorption bands of different atmospheric variables separately, CMLs
can theoretically invert atmospheric variables for the purpose of environmental monitoring.

3.1.1. Monitoring Phenomena Related to Water Vapor

The method of monitoring water vapor using CMLs that are operating at the water
vapor absorption band around 22 GHz was first proposed by David et al. [99], whereas
Chwala et al. [100] and Montomoli et al. [101] also suggested the use of phase delay and
normalized differential spectral attenuation to measure absolute humidity, respectively.
Subsequently, Alpert et al. [102] generated daily moisture fields in Israel, and the results
were in better agreement with ground-based observations than the current weather predic-
tion product. With the expansion of microwave frequencies, the potential of E-band CMLs
to monitor near-surface water vapor was demonstrated in [103]. In addition, deep learning
methods have also been applied to water vapor estimation by CMLs. Song et al. [104]
trained an SVM model using prior data from RSL and water vapor density to mitigate the
estimation error introduced by the process of extracting water vapor attenuation from RSL.
Pu et al. [105] achieved high temporal resolution (5-min) water vapor retrieval based on
E-band CMLs using an LSTM deep learning model. More studies using CMLs for water
vapor estimation can be found in the literature [106–109]. In addition to these, CMLs have
been shown to be valid in recognizing and measuring fog [110–112] and dew [113].

3.1.2. DSD Estimation

Assuming that the DSD follows a gamma distribution, Rincon et al. [21] and
Berne et al. [114] estimated the average DSD over the path using dual-frequency and
dual-polarized microwave links, respectively, which was in good agreement with the refer-
ence measurements. However, the above studies simplify the three-parameter model of
DSD by setting a fixed shape parameter in the former and defining the slope parameter
as a function of the shape parameter in the latter. This may lead to inherent errors in the
algorithm. Therefore, a three-parameter estimation model for DSD based on dual-frequency,
dual-polarized CMLs has been proposed in the literature [115]. Van Leth et al. [116] com-
pared the three-parameter and two-parameter models for DSD estimation and found that
the three-parameter model has limited superiority and slower retrieval.

3.1.3. Precipitation Type Identification

By analyzing the different attenuation patterns of snow and rainfall on microwaves,
Holt et al. [117,118] suggested that dual-frequency CMLs could be used to distinguish
between rainfall, snow and wet snow. Subsequently, Cherkassky et al. employed the
attenuation dynamics from CMLs as a discriminant feature, and successively proposed
Fisher-based linear [63] and kernel discriminant [56] methods to distinguish between
rainfall and sleet. With the emergence of deep learning methods, Pu et al. [119] reported the
success of utilizing the extreme learning machine algorithm to construct the hydrometeor
identification model. The results show that the model performance improves as the input
features and the overall frequency or frequency difference (in the case of dual- and tri-
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frequency) increase. The algorithm for classifying rainfall types can be found in [120],
where the authors implemented the distinction between convective and stratiform rainfall
by constructing deep learning models based on the differential attenuation rates of multi-
frequency dual-polarization CMLs. Moreover, Ostrometzky et al. [121] derived total mixed
cumulative precipitation containing rain, snow and sleet using at least three CMLs on the
same path, and the results were in fair agreement with the rain gauge.

3.1.4. Monitoring Phenomena Related to Air Refractivity

Since local temperature and humidity variations due to turbulent eddies lead to fluc-
tuations in air refractivity, which cause the microwave signal of CMLs to scintillate, the
sensible and latent heat fluxes associated with the air refractivity can be estimated by CML
signals. On the basis of this principle, Leijnse et al. [122] proposed a method for estimating
the sensible and latent heat fluxes and, hence, the areal evaporation using CMLs with
consideration of the surface energy budget constraints. In addition, since temperature
inversions, which are the main cause of poor air quality, lead to multipath and ducting
phenomena in electromagnetic waves, thereby relatively amplifying or attenuating RSLs,
David et al. [123] utilized CMLs to detect temperature inversions and, thus, air pollution.
Similarly, the literature [124] measured wildfire smoke particulate matter concentrations us-
ing CMLs and found a power–law relationship between RSL fluctuations and PM10/PM2.5
(particulate matter concentration less than 2.5/10 µm). In addition, given the relationship
between pollutant washout and rainfall, CMLs have the potential to point out areas with
improved air quality [125].

3.1.5. Dynamics of Rainfall and Wind

Based on a dense CML network, the spatial distribution of rainfall with high spatial
and temporal resolution can be theoretically reconstructed [126,127]. According to the
analysis of the spatiotemporal evolution of the rainfall field, the dynamics of precipitation,
and thereby the dynamics of wind, can be retrieved [128]. Using a stochastic space-time
model based on a rainfall advection and a nonlinear extended Kalman filter, Zinevich
et al. [129] attempted to obtain rainfall dynamics information from CML observations.
Subsequently, the wind dynamics can be obtained by calculating the speed and direction of
rain cloud movement.

3.2. Hydrological Application
3.2.1. Cooperation with Dedicated Rain Sensors

As an additional source of precipitation information, rainfall estimates from CMLs can
supplement or cooperate with dedicated rain sensors. Bianchi et al. [130] utilized CMLs for
quality control of rain gauges and detected the occurrence error and quantification error
separately. In contrast, Fencl et al. [131] proposed a method for adjusting rainfall estimates
from CMLs using rain gauges, demonstrating that even distant rain gauges can reduce bias.
Rain gauges are also most commonly used to reconstruct rainfall fields in conjunction with
CMLs [85,92,93].

Due to uncertainties such as Z–R relationships, ground clutter and microwave attenua-
tion, Radar QPE requires near-surface rainfall information for improvement.
Krämer et al. [132] first suggested that microwave links could be used to improve rainfall
estimates from X-band radars. In their procedure, microwave link measurements were used
on the one hand for radar attenuation correction and on the other hand to calibrate the Z–R
relationship. Shortly after, Rahimi et al. [133] proposed a backward iterative algorithm for
the attenuation calibration of X-band radars via attenuation measurements of microwave
links. The results show that the method is effective in recovering the reflectivity informa-
tion, especially under heavy rainfall conditions. More studies focused on radar attenuation
correction using CMLs can be found in [134–137]. In addition, Cummings et al. [138]
proposed a mean-field bias adjustment method for a radar QPE based on CMLs, with
similar results to a rain gauge-based adjusted QPE. Liberman et al. [139] then fused radar
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and CML rainfall observations to reconstruct accurate rainfall maps. Furthermore, CMLs
can be combined with radar to invert the vertical profile of rainfall, which is of interest in
semi-arid regions for studying the Virga phenomenon (evaporation of precipitation before
reaching the ground) and improving the accuracy of near-surface rainfall estimates [140].

For meteorological satellites, Kumah et al. [50,51] improved rain area detection and
rainfall estimation by combining signals from satellites and CMLs. In addition, they
attempted to construct a random forest model to map the satellite-retrieved cloud top
attributes to the ground rainfall by taking the rainfall estimates from CMLs as the true
values [141]. The results show that the algorithm enables rainfall inversion with high spatial
and temporal resolution. In addition, in regions where dedicated rain sensors are scarce,
CMLs may be the most promising option to validate rainfall products from satellites [142].

There are also research groups that assimilate precipitation data from CMLs and
multiple dedicated rain sensors to jointly reconstruct the rainfall field. Bianchi et al. [30]
used variational and Gauss–Newton methods to invert rainfall fields from observations
of rain gauges, radar and CMLs in Switzerland, which resulted in improvements over the
raw radar QPE. In addition, as described in Section 2.1, dedicated rain sensors can also
contribute to the dry and wet period classification of CMLs.

3.2.2. Hydrological Modeling

Accurate hydrological models, which are generally supported by rain gauge and
radar data, are essential for water resource management, disaster warning and hydrologi-
cal research. However, considering the limited spatial representativeness of rain gauges
and the coarse spatial resolution of radar, as well as their unavailability in urban and
mountainous areas, there is an urgent need for additional near-surface precipitation in-
formation for small- and medium-scale hydrological modeling in these regions. As early
as 2005, Grum et al. [143] attempted to integrate rainfall measurements from microwave
links into hydrological modeling. Fencl et al. [31] compared the urban drainage model
derived from CMLs with that of rain gauges and found that the former can significantly
improve pipe flow prediction. They also tried to input the rainfall measurements from
CMLs and rain gauges into the runoff model at the same time [144]. The results showed
that CMLs improve predictions of hydrograph dynamics compared to the model using
only rain gauge data. Subsequently, in [145], they demonstrated that the performance of
runoff prediction is related to the sensitivity of CMLs to rainfall and their location in the
catchment. Moreover, as the bias in rainfall estimates from CMLs would propagate into
hydrological models [146], they also made efforts to obtain unbiased rainfall estimates
from CMLs to optimize hydrological modeling [147,148]. In addition to modeling urban
drainage, CMLs have also been used for river runoff simulation [149–151] and disaster
warning [152–156].

4. Challenges in Rainfall Estimation by CMLs

Despite extensive research within the past two decades, the CML-based rainfall esti-
mation technique still confronts certain challenges (refer to Table 2), which will be described
in detail in the remainder of this section.

Table 2. Challenges faced by CML rainfall measurement techniques.

Challenges Highlights

Data Acquisition

1. Sampling strategy: usually low sampling frequency [70], limited quantization level [64] and
recording only extreme values [157].

2. Variation of TSL during rainfall due to ATPC [158].
3. Difficulty in sharing data [42].
4. Trend of fiber optics replacing CMLs.
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Table 2. Cont.

Challenges Highlights

Baseline estimates

1. Dry and wet period classification methods can still produce misclassification due to the effects of coarse
quantization, the multipath effect, wet antenna effect, etc.

2. Collecting the calibrated training set required for dry and wet period classification methods is time
consuming due to the uneven rainfall distribution and unbalanced datasets may lead to model overfitting
or performance degradation.

3. Limited by the sampling strategy and quantization resolution of the CML data, researchers have to ignore,
to varying degrees, changes in the baseline during wet periods [138].

WAA Quantification

1. The characteristics of WAA are highly dependent on the antenna properties of CMLs and existing empirical
models may be less portable for CMLs with different characteristics [159].

2. Due to the uncertainty in the baseline estimation, the WAA model may no longer simply compensate for
WAA but include corrections for WAA and other unknown sources of bias.

3. The properties of WAA induced by fog and dew have not been studied specifically.

γ–R Relationship

1. Nonlinearity of the γ-R relationship leads to systematic bias between rainfall estimates and path-averaged
rain rates [160].

2. Dependence of the γ-R relationship on DSD leads to reduced applicability of the power–law approximation
to the γ-R relationship [18].

Reconstruction of the Rainfall
Spatial Distribution

1. Most studies directly treat CML-based rainfall estimates as the rain rate at the midpoint location of the path,
ignoring the variability of rainfall on the CML path [45,126,127].

2. Limitations in the mapping methodology would lead to errors in the rainfall maps.
3. The unique topology of the CML networks with uneven distribution densities presents challenges for the

accurate mapping of rainfall [161].

4.1. Data Acquisition

In general, CML data derives from the mobile network operator’s Network Man-
agement System (NMS), which typically records maximum and minimum TSLs and
RSLs at a 15 min time resolution. Although NMS can work at higher frequencies, for
the purpose of checking the quality of communications, a time step of 15 min is satis-
factory for mobile network operators. However, for rainfall monitoring, such a coarse
sampling frequency may miss important information given the high temporal variability
of rainfall. In addition, the sampling strategy of recording only extreme values poses
difficulties in deriving the average rain rate over a 15 min period [157]. One solution is
to calculate the maximum and minimum rain rates using maximum and minimum atten-
uation, respectively, to obtain an unbiased estimate of the mean rain rate according to the
local rain rate probability function [10]. Another common approach treats a simple weighted
average of the maximum and minimum rain rates as the average rain rate [49]. The litera-
ture [162] provides an introduction and comparison of three methods for estimating parameters
from extreme values. Moreover, deep learning methods may also be an alternative [163,164].
Leijnse et al. [70] compared three sampling strategies for CML data and found that the per-
formance of rainfall estimation was, in descending order, continuous measurements, 15 min
averages and 15 min instantaneous values. Pudashine et al. [165] further compared the sam-
pling strategy of 15 min averages with 15 min maximum/minimum, demonstrating the
slight advantage of the latter. In the Netherlands, rainfall estimation experiments using
CMLs demonstrated that 15 min maximum/minimum sampling is superior to instanta-
neous sampling at the same time step because the former contains information over the
entire time interval [166]. In addition, NMS records RSL values with a resolution of typi-
cally 0.1, 0.3 or even 1 dB. As shown in Figure 5, the coarse quantization resolution limits
the precision of the CMLs in estimating the rain rate [64,167]. Although this phenomenon
can be mitigated with an increasing frequency and path length, it introduces other prob-
lems such as high energy consumption for high-frequency signals and rainfall variability
over long paths. Moreover, coarse quantization also limits the analysis of the pattern of
signal variation.
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To ensure communication quality during rainfall, some CMLs are configured with
automatic transmit power control (ATPC) to minimize RSL fluctuations. However, it can
introduce additional errors, especially under low-temporal-resolution sampling conditions
or with only RSL data available [158].

Currently, only a few research groups have shared their CML datasets [168–170], which
may be related to the commercial confidentiality of mobile network operators. However,
open access to the data may bring more insights.

Finally, in some developed countries, operators are planning to replace CMLs with
fiber optic communications, which undoubtedly hurts the availability of CML data.

4.2. Baseline Estimates

The estimation of the baseline is of great importance in the operational flow of rainfall
inversion by CMLs as it determines whether non-rain-induced attenuation can be accu-
rately eliminated. As for baseline estimation approaches that require dry and wet period
classification, though several methods based on different principles have been proposed for
the classification of dry and wet periods, there remain difficulties in accurately determining
whether rainfall exists along the path of CMLs at the current time. Since we only acquired
RSL data (and in some cases TSL as well), it is difficult to determine what factors are
responsible for the attenuation variations produced in the paths of the CMLs. Scintillation
effects and multipath effects due to, for example, changes in the refractive index of air,
may also lead to anomalous fluctuations in signal attenuation during dry periods, which
may be incorrectly judged as wet periods. In addition, water films that accumulate on the
antenna due to dew or after rainfall may produce false positives. Coarse RSL quantization
also limits the ability of CMLs to detect light rain, especially for low-frequency short CMLs.
These undoubtedly pose a negative impact on classification accuracy.

Moreover, for conventional empirical threshold-based classification methods, a priori
information is required to make a comprehensive calibration of thresholds in order to obtain
comparatively high dry and wet period detection capabilities simultaneously. Machine
learning methods typically have a higher classification accuracy but require large, labeled
datasets for training. However, on the one hand, it is not always the case that dedicated
rain sensors exist in the vicinity of CMLs to provide rainfall data; on the other hand, due
to the inhomogeneity of the rainfall distribution, the dataset is usually unbalanced (much
fewer data in the wet period than in the dry period), which not only implies that it takes
more time to collect enough wet period data, but also leads to the requirement of balancing
the training set using undersampling or oversampling methods, which may contribute to
overfitting or poorer performance of the model.

After dry and wet period classifications, the baseline will be determined by the dry
period attenuation over a period of time around the rainfall event. In contrast, methods to
estimate the baseline without dry and wet period information usually dynamically update
the statistical values of attenuation in past time periods as the baseline. This may be a
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reasonable reference as the historical information on attenuation is able to reflect the classic
state of CMLs working in the dry period. The problem is the fact that the baseline for the
wet period will not remain constant but will vary with some regularity, and could possibly
be quite different from the past dry period attenuation due to phenomena caused by rainfall
such as increased water vapor, decreased temperatures, changes in the device conditions,
etc. However, subject to the coarse sampling and quantization resolution of the RSL, most
researchers have to ignore, to varying degrees, changes in the baseline during wet periods.

4.3. WAA Quantification

After the estimation of the baseline, another important source of error is the quan-
tification of WAA. Undercompensation of WAA can lead to a systematic overestimation
of rainfall. This phenomenon is especially exacerbated by higher WAA relative to rain-
induced attenuation under short CML and light rain. Although a variety of empirical
or semi-empirical WAA models have been developed, most of these studies have been
derived from a few CMLs with limited frequency. In fact, WAA is highly correlated with
the attributes of CML antennas, leading to the possibility that the properties of WAA found
from different CMLs may be completely different: Schleiss et al. [29] reported antenna
wetting times of up to 36 min, but other studies [46,73] have found wetting dynamics to be
negligible. Additionally, contrary to common sense, hydrophobic antennas tend to form
water beads on the antenna surface, which are more resistant to evaporation than the water
film formed by hydrophilic antennas, prolonging the duration of the WAA’s impact after
rainfall events end [159]. Therefore, the existing empirical WAA models may not be as
portable for CMLs with different characteristics.

Another source of error is the way that WAA is calculated. In general, WAA values are
obtained by measured attenuation minus the baseline and rain-induced attenuation, which
is converted from rain rates measured by rain sensors near CMLs. However, as mentioned
in Section 4.2, there is uncertainty in the estimation of the baseline, in which case the model
may no longer simply compensate for WAA but include corrections for WAA and other
unknown sources of bias. Furthermore, the number of antennas wetted during rainfall is also
an important unknown factor, especially in the case of long CMLs and small-area rainfall.

Finally, in addition to rainfall, phenomena such as dew and fog may likewise wet
the radome and produce WAA, which needs to be filtered out [126]. However, dew- and
fog-induced WAA has still not been specifically studied for the properties of its dynamics
and magnitude.

4.4. γ–R Relationship

As shown in Equations (6) and (7), accurate rainfall inversion can only be guaranteed if
the γ-R relationship is close to linear or if rainfall is uniform on the path of CMLs. Although
existing CMLs, most of which operate at 15 to 40 GHz, have a parameter b that can be
approximated as 1, with the growing demand for bandwidth, higher-frequency CMLs
will have to pay more attention to this problem [160], which will introduce considerable
inherent errors into the rainfall estimation. This phenomenon is mitigated in the case of
short CMLs because the variability of their path rainfall tends to be negligible.

Another source of uncertainty worth noting is the influence of DSD on the γ-R relation-
ship. For CMLs outside of about 30 GHz, the dependence of the γ-R relationship on DSD
is getting higher (Figure 4), i.e., the agreement between the scatter corresponding to γ-R
and the fitted curve decreases, resulting in lower accuracy in rainfall estimation [18]. It has
been shown that long-range spatial averaging of DSDs over the paths of CMLs can reduce
rainfall estimation errors because the γ-R relationship over the paths becomes closer to the
fitted power law as the path length increases [171,172]. In addition, considering different
DSDs for stratiform and convective rainfall, the accuracy of rainfall inversion of the γ-R
relationship for different rainfall types was analyzed by Pu et al. [160]. The results show
that stratiform rainfall always exhibits a negative bias above 10 GHz, whereas convective
rainfall exhibits a negative and positive bias below and above 50 GHz, respectively. Fitting
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power law relationships to different types of rainfall separately can provide more accurate
rainfall estimates [47,84], but it requires additional information about the rainfall type.

4.5. Reconstruction of the Rainfall Spatial Distribution

In reconstructing the continuous spatial distribution of rainfall using sparse rainfall es-
timates from CMLs, uncertainties are inevitable. Although Gaona et al. [173] demonstrated
that. In the Netherlands. the error in estimating rainfall by CMLs was greater compared to
rainfall mapping, rainfall mapping is likely to be more critical over a larger area. The main
sources of uncertainty in rainfall mapping include the representation of path-averaged
rainfall estimates, systematic errors in mapping methods, and the density and distribution
of CMLs. Firstly, the majority of studies simply treat the path-averaged rainfall estimates
for CMLs as the rain rate at the midpoint of their path [45,126,127], which is feasible for
short CMLs; but, for long CMLs, this undoubtedly ignores the spatial variability of rainfall
on the path.

Secondly, mapping methods, regardless of geostatistical interpolation algorithms,
tomographic reconstruction techniques, stochastic mixing or compressed sensing, each have
their own limitations in their principles. When applying these methods, these limitations
are, of course, reflected in the errors of the rainfall maps.

Thirdly, CMLs are not always distributed in high densities. Due to their purpose of
communication, the density of CMLs in sparsely populated areas is usually much lower
than in densely populated areas. This results in the poor ability of CMLs to capture the spa-
tial distribution of rainfall in these areas. In addition, the unique topology of CML networks
is not designed for measuring rainfall and does not facilitate rainfall mapping [161].

5. Future Work

Although CMLs, as opportunistic sensors, have the advantages of a low cost, high
spatial and temporal resolution and wide coverage over traditional rain sensors, there
is still a lot of room for improvement, as mentioned in Section 4. As shown in Table 3,
the focus of our future work may need to concentrate on the following points, which are
detailed in the remainder of this section.

Table 3. Potential future work regarding rainfall measurement techniques based on CMLs.

Future Works Highlights

Enhanced Collaboration with
Mobile Network Operators

1. Improve the sampling frequency and strategy for CML data [174].
2. Promote data sharing.
3. Obtain information other than signal strength information (e.g., phase) [100,118,175].
4. Mutual benefits for researchers and CML operators [176].

Improvement of
Processing Procedures

1. Improve the accuracy of dry and wet period classification.
2. Investigate baseline dynamics [177].
3. Establish WAA models that take into account the characteristics of CML.
4. Improve the accuracy of rainfall inversion by combining deep learning and

power–law relationship [178].
5. Develop rainfall mapping methods that consider the unique topology and

measurement characteristics of CMLs [179,180].
6. Investigate efficient and cost-effective methods for calibrating CML processing

procedures.

Data Assimilation 1. Assimilate CML data from different operators [181].
2. Assimilate rainfall observations from CML with other rain sensors [91].

Error Analysis of CMLs Applied to
Mountainous Areas

Study the effects of unique topographic and climatic conditions in mountainous areas on
rainfall measurement techniques for CMLs.
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Table 3. Cont.

Future Works Highlights

Exploration of Other Applications of
CMLs Explore the potential of CMLs to monitor plant, animal and human activities [159,182,183].

Rainfall Prediction Research rainfall forecasts based on CML data [184,185].

Application and Error Analysis of
High-frequency CMLs Application and error analysis of rainfall inversion for high-frequency CMLs [47,186].

Combination with Earth–space
microwave links Reconstruct the three-dimensional spatial rainfall field using CMLs in conjunction with ESLs [187].

Attempts to Estimate Rainfall using
Cellphone Signals

Attempt to establish the rainfall attenuation model of low-frequency non-line-of-sight signals between
cellphones and cell towers.

5.1. Enhanced Collaboration with Mobile Network Operators

To advance the development of rainfall estimation techniques using CMLs, in the
first place, we need to strengthen our collaboration with mobile network operators who
are the maintainers and data providers of CMLs. Firstly, although the current sampling
strategy for most CML data is not that satisfactory, it can be indeed improved. One
solution is to install data loggers on cell towers, which can sample RSLs with free temporal
resolution and accuracy [28]. However, the high expense of deploying and maintaining
data loggers for a large number of CMLs undermines their low-cost advantage. In fact,
some research groups [14,54] have already realized data acquisition with high temporal
resolution via simple network management protocol (SNMP), which is a standard network
management protocol widely used in TCP/IP networks. It is capable of supporting NMS
for monitoring CMLs connected to the cellular network. Depending on the customized
SNMP data acquisition software, RSL and TSL can be polled at a set sampling step as low
as a few seconds. Despite the fact that the data quantization is still limited by the CML
hardware, such CML data with high sampling frequencies are favorable for investigating
variation patterns of signal attenuation. And, thanks to Chwala et al. [174], the related
software has been open-sourced at GitHub. However, SNMP must be used only under the
license of the mobile network operators as it requires access to their intranet. Therefore,
trust between the research groups and the CML operators is a must.

Secondly, for commercial confidentiality reasons, mobile network operators usually
permit the use of CML data only to the relevant research group; thus, CML data are
generally not shared among different research groups. However, open access to high-
quality CML data may be able to bring more insights into the issues. Researchers need to
convince CML operators and guarantee that the data will be used without jeopardizing
their interests.

Thirdly, the CML data now used for rainfall inversion are mainly signal strength infor-
mation. In fact, many CMLs are configured with multiple sub-links due to communication
needs, which may lead to additional opportunities for identifying hydrometeors [118],
improving the accuracy of rainfall inversion [175] and humidity estimation [100] if phase
information of microwave signal is available.

Finally, it is unrealistic for mobile network operators to provide CML data at no cost
or for only researchers to pay for it. In fact, as operators provide CML data, hydrometeo-
rological researchers can utilize expertise to assist operators in the design and real-time
decision making of CML networks, as described in [176]. In addition, considering the prac-
tical value of CML rainfall measurement technology, researchers can help CML operators
to operationalize and productize it for sale to fields such as agriculture, water resource
management and meteorological research.

5.2. Improvement of Processing Procedures

Even though multiple procedures for processing CML data have been developed to date,
they still have a lot of room for improvement. For dry and wet period classification, the WAA
caused by antenna wetting by dew or fog, the WAA dynamics after rainfall and the drift of
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attenuation in the dry period induced by such factors as the occlusion of metallic objects in
the path may produce false positives. In addition, due to the insensitivity of most existing
CMLs to light rain, light rain events are often missed. However, limited by the availability of
signal level data only and the similarity of the two types of phenomena, current classification
algorithms are still unable to cope with these problems effectively. In the future, based on
CML data with high temporal and quantization resolution, it may be possible to make a
breakthrough by discovering the differences between the above phenomena.

For baseline determination, the baseline should not be constant during wet periods
because of changes in the equipment conditions of the CMLs and in the environment along
their paths. Existing methods more or less ignore this. With the rise of machine learning,
time-series prediction algorithms based on recurrent neural networks, such as LSTM, may
enable the estimation of wet period baselines [177].

For WAA correction, since WAA is highly dependent on antenna properties, the find-
ings on WAA may vary from one research group to another. However, state-of-the-art
WAA modeling is still limited to a small number of CMLs, which are usually from the same
operators, and the mechanism of action between WAA and antenna properties remains un-
systematically investigated. Although these models have been validated on large datasets,
the errors may be masked in large-scale comparisons. In the future, investigating the effect
of different antenna characteristic parameters on the WAA model by controlling variables
may be a solution to achieve a more robust WAA quantization.

For rainfall inversion using the γ-R relationship, the power–law approximation in-
troduces inherent errors due to the nonlinearity of the curve and the dependence on DSD.
One possible solution is to utilize deep learning to substitute the γ-R relationship [188–191].
Habi et al. [178] have compared data-driven Recurrent Neural Network (RNN) algorithms
with traditional power–law relations. The results show that the former has better perfor-
mance but poorer robustness. Adding a temporal normalization layer can improve the
robustness of the RNN algorithm, but at the same time compromise performance. In the
future, perhaps an attempt can be made to combine deep learning with power–law relations
to ensure excellent performance and robustness at the same time.

For rainfall mapping, most studies still use CML-based rainfall estimates as the rain
rate at the midpoint of the path. This not only fails to take into account the spatial vari-
ability of rainfall on the path, but also ignores the advantage of CMLs in providing linear-
integrated measurements. In addition, most rainfall mapping techniques directly follow
the rainfall mapping methods of dedicated rain sensor networks. Future work could fo-
cus on improving rainfall mapping techniques by considering the unique topology and
measurement characteristics of CMLs [179,180].

In addition, since the proposed CML processing procedures are usually applicable
to different regions, open-source algorithms are not directly usable. While dedicated
rainfall observations can be used to calibrate the algorithms to specific climates and CML
networks [192], calibrating algorithms using only CML data remains a challenge in regions
where rain sensors are not already available. Investigating low-cost but efficient calibration
methods in these regions (such as utilizing other opportunistic rain sensors) may be a
future direction of research.

5.3. Data Assimilation

One advantage of the use of CMLs for rainfall estimation is the availability of a
sufficient network of virtual sensors; however, it is common that there may be more than
one mobile network operator in a region. This means that their data need to be assimilated
with each other because the sampling strategy and data format are quite likely to be
different for different operators. Blettner et al. [181] recently reported the case of using
CMLs from Germany and the Czech Republic to generate transboundary rainfall maps
and found different anomalous behavior for heterogeneous datasets, emphasizing the
importance of quality control algorithms. In addition, the situation is potentially improved
in the future if access to the operator’s NMS is available as in Section 5.1.
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In addition, in areas where dedicated precipitation observations exist, excessive focus should
not be placed on discussing CML-only-based rainfall estimates. It may be more meaningful
to assimilate CMLs with traditional rain sensors or even other opportunistic sensors [91] to
complement the spatiotemporal resolution and accuracy of precipitation products.

5.4. Error Analysis of CMLs Applied to Mountainous Areas

A strength of the CML rainfall measurement technique, which has been widely men-
tioned in many literatures [41–43], is that it is available in mountainous areas where the
deployment of radar and rain gauges is difficult. However, due to the unique topographic
and climatic conditions of mountainous areas, the CML rainfall measurement technique
may need to be adapted. First, the elevation angles of CMLs in mountainous areas are no
longer negligible and can even reach tens of degrees [193]. Therefore, the calculation of the
raindrop extinction cross-section needs to take into account the tilt angle of the raindrop
with respect to microwave propagation, but little attention has been paid to this in the
calibration of the γ-R relationship [28]. Second, the rainfall distribution on the inclined path
is more heterogeneous because the variation of rainfall in the vertical direction needs to be
considered in addition to the horizontal direction [194,195]. In order to validate that CMLs
can substitute radar and rain gauges in mountainous areas and to promote the application
of this technology, a systematic analysis of their performance on inclined paths must be
performed based on experiments or simulations in the future.

5.5. Exploration of Other Applications of CMLs

In operation, CMLs are not only affected by the atmospheric environment but may
also suffer from plant, animal and human activities. Moshe et al. [182] reported that the
presence of birds along the path of CMLs causes additional attenuation and suggested the
use of CMLs to monitor migratory birds. And, Hunt et al. [183] discovered that a cellular
network signal strength of 2.4 GHz is related to the presence of vegetation in the path, and,
if present, as well as to the water content of the vegetation and the distance the signal passes
through the vegetation. Thus, the links between CMLs and arbitrary microwave receivers
can be used to estimate vegetation characteristics. Furthermore, in [159], artificially caused
occlusion of objects in the path was found to lead to a drift in the attenuation of the CMLs.
It would be interesting to monitor these phenomena using CMLs. The variation character
of the attenuation due to these phenomena could be studied in the future to enable the
identification and observation of these phenomena.

5.6. Rainfall Prediction

After rainfall mapping, rainfall paths and intensities can be forecasted in the short
term based on the variation of the spatial distribution of rainfall over time. Commonly,
such short-term forecasts are supported by radar data. However, in economically backward
developing countries or in areas unavailable to radar, rainfall maps based on CMLs may be
an alternate option [196]. Imhoff et al. [185] constructed nowcasts for the first time in the
Netherlands using country-wide rainfall maps based on CMLs and found that CMLs gave
better results than radar in general. Recently, Zhang et al. [184] also carried out rainfall
field nowcasting experiments based on CMLs in Jiangyin City, China, and found that
the LSTM-based nowcasting algorithm has better performance for stratiform and mixed
precipitation compared to convective precipitation. In addition, based on the assumption
that atmospheric variables related to rainfall change prior to a rainfall event affect CMLs,
CMLs can also directly predict whether and how much rain will fall in the future without
the need for rainfall mapping [197]. Further research on techniques for predicting rainfall
using CMLs could be useful for disaster prevention and control, especially in poor tropical
regions where extreme events are common.
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5.7. Application and Error Analysis of High-frequency CMLs

With fifth-generation (5G) and even sixth-generation (6G) wireless systems in opera-
tion, huge data throughput is forcing operators to design E-band CMLs at 71 to 86 GHz and
replace older equipment. This may lead to new opportunities because these high-frequency
CMLs are more sensitive to light rain and water vapor [47,198,199]. However, the increase
in frequency also leads to nonlinearities in the γ-R relationship and increased dependence
on DSD. In addition, high-frequency CMLs also suffer from more energy loss and, there-
fore, the path length is correspondingly shorter, which may lead to a more severe negative
impact of WAA [186]. An error analysis of high-frequency CMLs could contribute to their
future application in environmental monitoring.

5.8. Combination with Earth–Space Microwave Links

Similar to CMLs, microwave radiation from Earth–space links (ESLs), which connect
satellites and ground receivers, will also be attenuated by rainfall [177,200,201]. Importantly,
in contrast to CMLs, the downlink signal of ESLs can tilt through the rain area to obtain
vertical information on precipitation [202–204]. Furthermore, with the development of
satellite communications, a large number of satellites are expected to be launched in the
near future [205]. Therefore, fusing opportunistic rainfall information from ESLs may be
a topic for improving and expanding rainfall estimation based on CMLs [187,206,207].
However, most of the existing studies are still limited to examining rainfall measurement
techniques based on CMLs and ESLs separately, and works on combining CMLs and ESLs
have not yet been emphasized [208]. Future work could attempt the joint reconstruction of
three-dimensional spatial rainfall fields using both ESLs and CMLs.

5.9. Attempts to Estimate Rainfall Using Cellphone Signals

As fiber optic communications are increasingly used in cellular communication net-
works, CMLs will become less available in certain areas. In this case, the large number of
links between user terminals and cell towers (base stations) may be an alternative. These
non-line-of-sight links typically operate at frequencies below 6 GHz and are, thus, the-
oretically insensitive to rainfall in the propagation path [209]. However, during rainfall,
the wetting effect of obstacles in the path [210,211], reflective surfaces (walls, grounds,
etc.) [212–214] and the transmitting antenna [215,216] may significantly affect the signal
quality. Beritelli et al. [217] constructed a probabilistic neural network to distinguish rainfall
classes using statistical features of 4G/Long Term Evolution (LTE) signals and achieved a
classification accuracy of 96.7%. Subsequently, Song et al. [218] built a 2 GHz experimental
link and used the C4.5 algorithm to implement the classification of dry and wet periods
based on cellphone signals. In order to estimate the distance using low-frequency radio
signals, Fang et al. [219] developed a path loss model considering rainfall attenuation
effects, which achieved a satisfactory performance. Therefore, with distances between
the receiving terminal and the cell tower known, the model should be able to provide
accurate rainfall estimation. Recently, the literature [220] also reported cases of estimating
rainfall using cellphone signals based on deep learning algorithms. Although preliminary
studies on the use of cellphone signals to monitor rainfall have been conducted, the law
of rainfall-induced comprehensive effects on signal propagation is still unclear and the
generalization ability of the models proposed in the above studies is yet to be verified.
Therefore, future explorations can attempt to model low-frequency non-line-of-sight signal
transmissions to address the limitations in current studies of rainfall measurement by
cellphone signals, especially in regions where the number of CMLs is decreasing.

6. Conclusions and Outlook

In this article, we provide a systematic overview of rainfall measurement techniques
based on CMLs and summarize current challenges and possible future research directions.
Compared to dedicated rain sensors, CMLs can economically provide near-surface pre-
cipitation information with a high spatial and temporal resolution and wide coverage,
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which can effectively complement dedicated precipitation observations. Within the past
20 years, scholars have comprehensively studied the processing flow of CML data and
made great progress. However, the technology still faces some challenges [40,221,222].
Most importantly, breakthroughs must be made in data acquisition and CML data with
high temporal and quantization resolutions may bring new insights into dry and wet
period classification, baseline estimation and WAA correction. Encouragingly, a number
of research groups have recently openly shared their high-quality datasets [169,170,223],
making a critical contribution to the investigation of CML technology.

Another practical challenge is the gradual replacement of CMLs by fiber optic com-
munication technologies. Due to the advantages of fiber optic transmission, such as high
speed, low loss, high interference immunity and large information-carrying capacity, there
is a tendency for the proportion of fiber optics to gradually increase in cellular communi-
cation networks. However, considering the difficulty and high cost of fiber deployment,
developing countries, where CMLs have the greatest potential, will continue to rely on
CMLs for a long time to come. Moreover, low-frequency non-line-of-sight links between
cell towers and cellphone terminals have also shown potential to estimate precipitation,
which could be an alternative in areas where the number of CMLs is decreasing.

As the demand for bandwidth continues to increase, the frequency of CMLs will ex-
pand towards higher frequencies in the future, which opens up the possibility of monitoring
water vapor and improving the accuracy of light rain inversion. However, a systematic error
analysis of rainfall inversion with high-frequency CMLs, especially for the γ-R relationship,
is needed before application.

An additional issue that has not been widely investigated but is highly desirable is the
productization and commercialization of rainfall estimates based on CMLs. While many
studies have demonstrated that CMLs can provide reliable rainfall estimates or improve
dedicated precipitation products, only a few operational precipitation products from CMLs
have been reported so far [196]. On the one hand, rainfall inversion algorithms based on
CMLs still face some challenges, as described in Section 4. On the other hand, and more
importantly, in order to provide 24/7 real-time rainfall products, operators need to ensure
reliable real-time availability of CML data, which entails additional costs and potential
commercial confidentiality issues. Achieving this goal may be able to enhance collaboration
between researchers and mobile network operators.

To conclude, we hope that our analysis and comments on the technique will help
researchers recognize the current challenges and conduct further research.
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