Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = micronozzles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2565 KB  
Article
Transparent SU-8 Micronozzle Array with Minimal Dead Volume for Parallel Liquid-to-Liquid Sample Ejection
by Kentaro Tanagi, Anuj Tiwari, Sho Kawaharada, Shunya Okamoto, Takayuki Shibata, Tuhin Subhra Santra and Moeto Nagai
Micro 2025, 5(3), 42; https://doi.org/10.3390/micro5030042 - 18 Sep 2025
Viewed by 804
Abstract
High-throughput biological and chemical assays increasingly require parallel sample manipulation using arrays of micronozzle apertures. Liquid-to-liquid ejection avoids air–liquid interfaces, thereby reducing sample evaporation and mechanical stress while simplifying device operation. However, existing microfluidic platforms for parallel handling suffer from high dead volume, [...] Read more.
High-throughput biological and chemical assays increasingly require parallel sample manipulation using arrays of micronozzle apertures. Liquid-to-liquid ejection avoids air–liquid interfaces, thereby reducing sample evaporation and mechanical stress while simplifying device operation. However, existing microfluidic platforms for parallel handling suffer from high dead volume, limited optical access, and poor scalability due to thick structural layers. Here, we present a transparent three-layer 4 × 4 micronozzle array with 40 μm diameter openings and a photolithographically fabricated SU-8 membrane. Our sacrificial layer process yields a 30 µm SU-8 membrane—approximately a 70% reduction in thickness—thereby lowering vertical channel dead volume and eliminating the need for costly glass etching. The resulting architecture enables parallel particle and nanoliter liquid manipulation with real-time optical clarity and enables water-to-water ejection, avoiding air–liquid interfaces. This work demonstrates the water-to-water ejection of 0.5–10 µm microparticles using a transparent, low-dead volume SU-8/PDMS micronozzle array and provides a basis for future studies on substrate deposition and cell handling workflows. Full article
Show Figures

Figure 1

18 pages, 4987 KB  
Article
Magnetically Actuated Microstructures with Programmable Degradation for Knee Cartilage Regeneration
by Geonhui Mun, Shirong Zheng and Gwangjun Go
Actuators 2025, 14(5), 232; https://doi.org/10.3390/act14050232 - 6 May 2025
Viewed by 1055
Abstract
Degenerative joint diseases, such as osteoarthritis, are increasingly prevalent in aging populations, yet current treatments like stem cell injections face limitations in targeted delivery and efficacy. In this study, we proposed a biodegradable magnetically actuated microstructure for knee cartilage regeneration. The microstructure is [...] Read more.
Degenerative joint diseases, such as osteoarthritis, are increasingly prevalent in aging populations, yet current treatments like stem cell injections face limitations in targeted delivery and efficacy. In this study, we proposed a biodegradable magnetically actuated microstructure for knee cartilage regeneration. The microstructure is composed of calcium-crosslinked alginate hydrogel embedded with magnetic nanoparticles (MNPs), allowing for precise control using an external magnetic field generated by an electromagnetic actuation (EMA) system. Fabricated via a centrifugal micro-nozzle process, the microstructures exhibited tunable sizes and uniform morphology. The proposed microstructures were characterized for their morphological, chemical, and magnetic properties, and their biodegradability and targeting ability in a phosphate-buffered saline (PBS) environment were experimentally analyzed. Experimental results demonstrated that smaller microstructures degraded more rapidly and that fewer microstructures resulted in improved targeting accuracy. In contrast, microstructures clustered at the lesion site degraded more slowly, supporting sustained therapeutic release. These results suggest that the proposed system can enhance delivery precision, minimize off-target accumulation, and reduce inflammation risks associated with residual materials. The biodegradable magnetically actuated microstructures present a promising platform for minimally invasive and site-specific cartilage therapy. Full article
(This article belongs to the Special Issue Micro- and Nanorobotics for Biomedical Applications)
Show Figures

Figure 1

21 pages, 7912 KB  
Article
Visualization and Parameters Determination of Supersonic Flows in Convergent-Divergent Micro-Nozzles Using Schlieren Z-Type Technique and Fluid Mechanics
by Reyna Judith Mendoza-Anchondo, Cornelio Alvarez-Herrera and José Guadalupe Murillo-Ramírez
Fluids 2025, 10(2), 40; https://doi.org/10.3390/fluids10020040 - 3 Feb 2025
Cited by 1 | Viewed by 4126
Abstract
Small-scale and supersonic convergent-divergent type micro-nozzles with characteristic sizes of around a few centimeters and exit and throat radii of tenths of millimeters were the subjects of this study. Using the schlieren Z-type optical technique, the supersonic airflows established at the exit of [...] Read more.
Small-scale and supersonic convergent-divergent type micro-nozzles with characteristic sizes of around a few centimeters and exit and throat radii of tenths of millimeters were the subjects of this study. Using the schlieren Z-type optical technique, the supersonic airflows established at the exit of seven nozzles were visualized. The dependence of the shock cell characteristics on the nozzle pressure ratio (NPR), defined as the ratio of stagnation pressure to atmospheric pressure, was analyzed. The dependence of the nozzle thrust and the specific impulse on the NPR ratio and the mass flow rate was also studied using a simple device based on concepts of fluid mechanics. The results obtained are in agreement with similar results obtained in recently published research on double-bell nozzles. The thrust of all nozzles depends linearly on the shock-cell spacing, which is one of the most relevant findings of this research. In other words, the output airflow structure determines the performance of the nozzles, such as the thrust or the specific impulse they produce. These small nozzles offer significant advantages over conventional nozzles in low energy consumption and lower manufacturing cost, making them suitable for scientific research in space micro-propulsion and cooling microelectronic systems, among other applications. Full article
Show Figures

Figure 1

20 pages, 5525 KB  
Article
Rarefied Nozzle Flow Computation Using the Viscosity-Based Direct Simulation Monte Carlo Method
by Deepa Raj Mopuru, Nishanth Dongari and Srihari Payyavula
Fluids 2025, 10(1), 2; https://doi.org/10.3390/fluids10010002 - 24 Dec 2024
Viewed by 1635
Abstract
Micro-nozzles are essential for enabling precise satellite attitude control and orbital maneuvers. Accurate prediction of performance parameters, including thrust and specific impulse, is critical, necessitating careful design of these nozzles. Given the high Knudsen numbers associated with micro-nozzle flows, rarefied gas dynamics often [...] Read more.
Micro-nozzles are essential for enabling precise satellite attitude control and orbital maneuvers. Accurate prediction of performance parameters, including thrust and specific impulse, is critical, necessitating careful design of these nozzles. Given the high Knudsen numbers associated with micro-nozzle flows, rarefied gas dynamics often dominate, and conventional computational fluid dynamics (CFD) methods fail to capture accurate flow expansion behavior. The Direct Simulation Monte Carlo (DSMC) method, developed by Bird, is widely used for modeling rarefied flows; however, it has been primarily implemented on platforms like OpenFOAM and FORTRAN, with limited exploration in MATLAB. This study presents the development of a viscosity-based DSMC (μDSMC) simulation framework in MATLAB for analyzing rarefied gas expansion through micro-nozzles. Key boundary conditions, including upstream and downstream pressure conditions and thermal wall treatments with diffuse reflection, are incorporated into the code. The μDSMC results are validated against traditional DSMC outcomes, showing strong agreement. Grid convergence studies indicate that the radial grid size must be less than one-third of the mean free path, with a more relaxed requirement on axial grid size. Flow characteristics within micro-nozzles are evaluated across varying ambient pressures and gas species in terms of the back pressure ratio, effective exit flow ratio, and exit flow velocity. Studies indicated that a minimum back pressure ratio is required, beyond which the effective nozzle flow expansion is achieved. Parametric analysis further suggests that gases with lower molecular weights are preferable for achieving optimal expansion in micro-nozzles under low ambient pressures. Full article
Show Figures

Figure 1

15 pages, 4316 KB  
Article
Numerical Analysis of Knudsen Number of Helium Flow Through Gas-Focused Liquid Sheet Micro-Nozzle
by Krištof Kovačič, Saša Bajt and Božidar Šarler
Fluids 2024, 9(12), 273; https://doi.org/10.3390/fluids9120273 - 22 Nov 2024
Cited by 1 | Viewed by 3127
Abstract
This work aims to verify whether the continuum mechanics assumption holds for the numerical simulation of a typical sample delivery system in serial femtosecond crystallography (SFX). Knudsen numbers were calculated based on the numerical simulation results of helium flow through the gas-focused liquid [...] Read more.
This work aims to verify whether the continuum mechanics assumption holds for the numerical simulation of a typical sample delivery system in serial femtosecond crystallography (SFX). Knudsen numbers were calculated based on the numerical simulation results of helium flow through the gas-focused liquid sheet nozzle into the vacuum chamber, representing the upper limit of Knudsen number for such systems. The analysed flow is considered steady, compressible, and laminar. The numerical results are mesh-independent, with a Grid Convergence Index significantly lower than 1% for global and local analysis. This study is based on an improved definition of the numerical Knudsen number: a combination of the cell Knudsen number and the physical Knudsen number. In the analysis, no-slip boundary and low-pressure boundary slip conditions are compared. No significant differences are observed. This study justifies using computational fluid dynamics (CFD) analysis for SFX sample delivery systems based on the assumption of continuum mechanics. Full article
(This article belongs to the Special Issue Rarefied Gas Flows: From Micro-Nano Scale to Hypersonic Regime)
Show Figures

Figure 1

13 pages, 2406 KB  
Article
Machine Learning-Enhanced Fabrication of Three-Dimensional Co-Pt Microstructures via Localized Electrochemical Deposition
by Yangqianhui Zhang, Zhanyun Zhu, Huayong Yang and Dong Han
Mathematics 2024, 12(21), 3443; https://doi.org/10.3390/math12213443 - 4 Nov 2024
Viewed by 3317
Abstract
This paper presents a novel method for fabricating three-dimensional (3D) microstructures of cobalt–platinum (Co-Pt) permanent magnets using a localized electrochemical deposition (LECD) technique. The method involves the use of an electrolyte and a micro-nozzle to control the deposition process. However, traditional methods face [...] Read more.
This paper presents a novel method for fabricating three-dimensional (3D) microstructures of cobalt–platinum (Co-Pt) permanent magnets using a localized electrochemical deposition (LECD) technique. The method involves the use of an electrolyte and a micro-nozzle to control the deposition process. However, traditional methods face significant challenges in controlling the thickness and uniformity of deposition layers, particularly in the manufacturing of magnetic materials. To address these challenges, this paper proposes a method that integrates machine learning algorithms to optimize the electrochemical deposition parameters, achieving a Co:Pt atomic ratio of 50:50. This optimized ratio is crucial for enhancing the material’s magnetic properties. The Co-Pt microstructures fabricated exhibit high coercivity and remanence magnetization comparable to those of bulk Co-Pt magnets. Our machine learning framework provides a robust approach for optimizing complex material synthesis processes, enhancing control over deposition conditions, and achieving superior material properties. This method opens up new possibilities for the fabrication of 3D microstructures with complex shapes and structures, which could be useful in a variety of applications, including micro-electromechanical systems (MEMSs), micro-robots, and data storage devices. Full article
Show Figures

Figure 1

16 pages, 6490 KB  
Article
Effects of the Wall Temperature on Rarefied Gas Flows and Heat Transfer in a Micro-Nozzle
by Shurui Zhang, Yong Li, Xudong Wang, Songcai Lu, Yusong Yu and Jun Yang
Micromachines 2024, 15(1), 22; https://doi.org/10.3390/mi15010022 - 22 Dec 2023
Viewed by 2118
Abstract
When the satellite is in orbit, the thruster will experience drastic temperature changes (100–1000 K) under solar radiation, which will affect the rarefied gas flow state in the micro-nozzle structure of the cold gas micro-thruster. In this study, the effect of different wall [...] Read more.
When the satellite is in orbit, the thruster will experience drastic temperature changes (100–1000 K) under solar radiation, which will affect the rarefied gas flow state in the micro-nozzle structure of the cold gas micro-thruster. In this study, the effect of different wall temperatures on the rarefied flow and heat transfer in the micro-nozzle is investigated based on the DSMC method. The micro-nozzle structure in this paper has a micro-channel with a large length-to-diameter ratio of 10 and a micro-scale needle valve displacement (maximum needle valve displacement up to 4 μm). This leads to more pronounced multiscale flow characteristics in the micro-nozzle, which is more influenced by the change in wall temperature. At wall temperatures ranging from 100 K to 1000 K, the spatial distribution of local Kn distribution, slip velocity distribution, temperature, and wall heat flux distribution in the micro-nozzle were calculated. The slip flow region is located in the flow channel and transforms into transition flow as the slip velocity reaches approximately 50 m/s. The spatial distribution of the flow pattern is dominated by the wall temperature at small needle valve opening ratios. The higher the wall temperature, the smaller the temperature drop ratio in the low-temperature region inside the micro-nozzle. The results of the study provide a reference for the design of temperature control of micro-nozzles in cold gas micro-thrusters. Full article
(This article belongs to the Topic Micro-Mechatronic Engineering)
Show Figures

Figure 1

15 pages, 3972 KB  
Article
Direct Simulation Monte Carlo Simulation of the Effect of Needle Valve Structures on the Rarefied Flow of Cold Gas Thrusters
by Songcai Lu, Xuhui Liu, Xudong Wang, Shurui Zhang, Yusong Yu and Yong Li
Micromachines 2023, 14(8), 1585; https://doi.org/10.3390/mi14081585 - 11 Aug 2023
Cited by 1 | Viewed by 2048
Abstract
The needle valve, serving as the flow control unit of the thruster system, is a crucial component of the entire thruster. Its performance directly impacts the flow state of the rarefied gas in the micro-nozzle structure of the cold gas micro-thruster, thereby exerting [...] Read more.
The needle valve, serving as the flow control unit of the thruster system, is a crucial component of the entire thruster. Its performance directly impacts the flow state of the rarefied gas in the micro-nozzle structure of the cold gas micro-thruster, thereby exerting a significant influence on the high precision and stability of the propulsion system as a whole. This study examines the impact of different needle valve structures on the flow and thrust in micro-nozzles using the DSMC method. The analysis includes discussions on the spatial distribution, Kn distribution, slip velocity distribution, and pressure distribution of the micro-nozzle’s flow mechanism. Notably, increased curvature of the needle valve enhances the flow velocity in the throat and expansion section. The magnitude of the curvature directly affects the flow velocity, with larger curvatures resulting in higher velocities. Comparing different spool shapes, the conical spool shape minimizes the velocity gradient in the high-speed region at the junction between the spool area and the outlet pipe, particularly with a wide opening. Increasing the curvature of the spool leads to a higher velocity in the expansion section. Consequently, an arc-shaped spool valve maximizes the nitrogen flow at the nozzle during wide openings, thereby enhancing thrust. These research findings serve as a valuable reference for the structural design of the needle valve in the micro-nozzle of the cold gas micro-thruster. Full article
Show Figures

Figure 1

14 pages, 3736 KB  
Article
Numerical Investigation of Transonic Flow-Induced Spontaneous Condensation in Micro-Ejector Nozzles
by Yu Han, Xiaodong Wang, Wei Wang, Yuan Xien Lee and Ao Li
Micromachines 2023, 14(6), 1260; https://doi.org/10.3390/mi14061260 - 16 Jun 2023
Cited by 9 | Viewed by 2146
Abstract
Micro-cooling systems are compact refrigeration systems widely applicable in microchemical analysis, biomedicine, and microelectromechanical systems (MEMS). These systems rely on the use of micro-ejectors to achieve precise, fast, and reliable flow and temperature control. However, the efficiency of micro-cooling systems is hindered by [...] Read more.
Micro-cooling systems are compact refrigeration systems widely applicable in microchemical analysis, biomedicine, and microelectromechanical systems (MEMS). These systems rely on the use of micro-ejectors to achieve precise, fast, and reliable flow and temperature control. However, the efficiency of micro-cooling systems is hindered by spontaneous condensation occurring downstream of the nozzle throat and within the nozzle itself, impacting the performance of the micro-ejector. A micro-scale ejector mathematical model describing wet steam flow was simulated to investigate the steam condensation phenomenon and its influence on flow, incorporating equations for liquid phase mass fraction and droplet number density transfer. The simulation results of wet vapor flow and ideal gas flow were compared and analyzed. The findings revealed that the pressure at the micro-nozzle outlet exceeded predictions based on the ideal gas assumption, while the velocity fell below it. These discrepancies indicated that condensation of the working fluid reduces the pumping capacity and the efficiency of the micro-cooling system. Furthermore, simulations explored the impact of inlet pressure and temperature conditions on spontaneous condensation within the nozzle. The results demonstrated that the properties of the working fluid directly influence transonic flow condensation, underscoring the importance of selecting appropriate working fluid parameters for nozzle design to ensure nozzle stability and optimal micro-ejector operation. Full article
(This article belongs to the Special Issue Fluid Manipulation: From Fundamentals to Applications)
Show Figures

Figure 1

11 pages, 7151 KB  
Article
Structure Design and Characterization of 3D Printing System of Thermal Battery Electrode Ink Film
by Fengli Liu, Jiale Lu, Yongping Hao, Yao Chang, Kuaikuai Yu, Shuangjie Liu and Zhiwei Chu
Micromachines 2023, 14(6), 1147; https://doi.org/10.3390/mi14061147 - 29 May 2023
Cited by 3 | Viewed by 1840
Abstract
In this paper, a 3D printing system for a thermal battery electrode ink film is set up and investigated based on the on-demand microdroplet ejection technology. The optimal structural dimensions of the spray chamber and metal membrane of the micronozzle are determined via [...] Read more.
In this paper, a 3D printing system for a thermal battery electrode ink film is set up and investigated based on the on-demand microdroplet ejection technology. The optimal structural dimensions of the spray chamber and metal membrane of the micronozzle are determined via simulation analysis. The workflow and functional requirements of the printing system are set up. The printing system includes a pretreatment system, piezoelectric micronozzle, motion control system, piezoelectric drive system, sealing system, and liquid conveying system. Different printing parameters are compared to obtain optimized printing parameters, which can be attributed to the optimal pattern of the film. The feasibility and controllability of 3D printing methods are verified by printing tests. The size and output speed of the droplets can be controlled by adjusting the amplitude and frequency of the driving waveform acting on the piezoelectric actuator. So, the required shape and thickness of the film can be achieved. An ink film in terms of nozzle diameter = 0.6 mm, printing height = 8 mm, wiring width = 1 mm, input voltage = 3 V and square wave signal frequency = 35 Hz can be achieved. The electrochemical performance of thin-film electrodes is crucial in thermal batteries. The voltage of the thermal battery reaches its peak and tends to flatten out at around 100 s when using this printed film. The electrical performance of the thermal batteries using the printed thin films is found to be stable. This stabilized voltage makes it applicable to thermal batteries. Full article
(This article belongs to the Special Issue 3D-Printed Microdevices: From Design to Applications)
Show Figures

Figure 1

17 pages, 9069 KB  
Article
DSMC Simulation of the Effect of Needle Valve Opening Ratio on the Rarefied Gas Flows inside a Micronozzle with a Large Length-to-Diameter Ratio
by Xudong Wang, Yong Li, Yong Gao, Chenguang Gao and Weichun Fu
Aerospace 2023, 10(2), 126; https://doi.org/10.3390/aerospace10020126 - 30 Jan 2023
Cited by 7 | Viewed by 3021
Abstract
The cold gas micro-propulsion system can provide low noise and ultra-high accuracy thrust for satellite platforms for space gravitational wave detection, high-precision earth gravity field measurement. In this study, the effect of different needle valve opening ratios on the rarefied flow characteristics of [...] Read more.
The cold gas micro-propulsion system can provide low noise and ultra-high accuracy thrust for satellite platforms for space gravitational wave detection, high-precision earth gravity field measurement. In this study, the effect of different needle valve opening ratios on the rarefied flow characteristics of a micro-nozzle in a cold gas micro-propulsion system was investigated based on DSMC method. The special feature of the currently studied micro-nozzle is that it has a section of micro-channel with a large length–diameter ratio up to 4.5. Due to the extremely small needle valve displacement of the nozzle (minimum needle valve displacement up to 1.7 μm), a finely structured mesh was used. The molecular particle and macro flow characteristics inside the micro-nozzle were calculated for the conditions of a needle valve opening ratio from 5% to 98%. The throttling effect of the throat has a significant effect on the rarefied flow in the micro-nozzle; especially under the tiny opening, this effect is more significant. The spatial distribution of continuous flow, transition flow, and free molecular flow in the micro-nozzle varies at different needle valve opening ratios. As the needle valve opening ratio increases, the continuous flow will gradually fill the microfluidic region. Full article
(This article belongs to the Special Issue Space Propulsion: Advances and Challenges)
Show Figures

Figure 1

22 pages, 5443 KB  
Article
MODELING of Rarefied Gas Flows Inside a Micro-Nozzle Based on the DSMC Method Coupled with a Modified Gas–Surface Interaction Model
by Xuhui Liu, Dong Li, Xinju Fu, Yong Gao and Xudong Wang
Energies 2023, 16(1), 505; https://doi.org/10.3390/en16010505 - 2 Jan 2023
Cited by 6 | Viewed by 3593
Abstract
In this study, we first considered the influence of micro-nozzle wall roughness structure on molecular collision and reflection behavior and established a modified CLL model. The DSMC method was used to simulate and analyze the flow of the micro-nozzle in the cold gas [...] Read more.
In this study, we first considered the influence of micro-nozzle wall roughness structure on molecular collision and reflection behavior and established a modified CLL model. The DSMC method was used to simulate and analyze the flow of the micro-nozzle in the cold gas micro-propulsion system, and the deviation of simulation results before and after the improvement of CLL model were compared. Then, the rarefied flow characteristics under a small needle valve opening (less than 1%) were focused on the research, and the particle position, molecular number density, and spatial distribution of internal energy in the micro-nozzle were calculated. The spatial distributions of the flow mechanism in the micro-nozzle under different needle valve openings were compared and analyzed. It was found that when the needle valve opening is lower than 1%, the slip flow and transition flow regions move significantly upstream of the nozzle, the free molecular flow distribution region expands significantly, and the relationship between thrust force and needle valve opening is obviously different from that of medium and large needle valve openings. The effect of nitrogen temperature on the rarefied flow and thrust force is also discussed in this research. The numerical results showed that as gas temperature increases, the molecular internal energy, momentum, and molecular number density near the nozzle exit are enhanced. The thrust at small needle valve openings was significantly affected by the temperature of the working mass. The results of this study will provide key data for the design and development of cold gas micro-thrusters. Full article
(This article belongs to the Special Issue Recent Advances and Challenges in Space Propulsion Technology)
Show Figures

Figure 1

15 pages, 3586 KB  
Article
Water–Pesticide Integrated Micro-Sprinkler Design and Influence of Key Structural Parameters on Performance
by Xinjian Wang, Junping Liu and Qing Zhang
Agriculture 2022, 12(10), 1532; https://doi.org/10.3390/agriculture12101532 - 23 Sep 2022
Cited by 7 | Viewed by 5060
Abstract
The use of pergola trellis crops has led to a need for irrigation and the spraying of pesticides. Thus, a new integrated micro-nozzle was designed to provide water and pesticides. The structural parameters that affect the irrigation performance were selected based on the [...] Read more.
The use of pergola trellis crops has led to a need for irrigation and the spraying of pesticides. Thus, a new integrated micro-nozzle was designed to provide water and pesticides. The structural parameters that affect the irrigation performance were selected based on the working principle of the sprinkler. They included the outlet diameter, refractive surface angle, and the distance from the outlet plane to the refractive surface (cone hole distance). The structural parameters that affect the performance of spraying pesticide included the number of diversion chutes, nozzle diameter, and nozzle outer cone angle. The structural optimization of the water–pesticide integrated sprinkler was determined by a single-factor and a three-factors four-levels orthogonal tests. The indices used to evaluate the performance of the sprinkler were irrigation flow rate, wetted radius, and uniformity coefficient. Those used to evaluate the performance at spraying pesticides included the flow rate of spraying pesticides, spray cone angle, and relative size range of the droplets. The entropy weight and the extreme difference analytical methods were used to process the test data. The main order of the influence of key structural parameters on the irrigation performance was obtained as follows: outlet diameter, refractive surface angle, and cone hole distance. The primary and secondary order of the influence on the performance of spraying pesticide was as follows: the number of diversion chutes, angle of the outer cone of the nozzle, and nozzle diameter. The optimal combination of parameters for this water–pesticide integrated micro sprinkler was obtained as follows: outlet diameter 2.0 mm, refractive surface angle 30°, cone hole distance 1.0 d, nozzle diameter 3.0 mm, two diversion chutes, and nozzle outer cone angle 90°. The performance indices included the irrigation water flow rate 0.284 m3/h, wetted radius 4.26 m, uniformity coefficient 91.07%, flow rate of pesticides spread 0.097 m3/h, spray cone angle 121.25°, and average relative distribution span of droplets 1.18. The results provide an important theoretical basis for the practical application of sprinklers. Full article
(This article belongs to the Special Issue Water-Saving Irrigation Technology and Strategies for Crop Production)
Show Figures

Figure 1

11 pages, 2862 KB  
Article
Time-Resolved Imaging of Femtosecond Laser-Induced Plasma Expansion in a Nitrogen Microjet
by Anna Gabriella Ciriolo, Rebeca Martínez Vázquez, Gabriele Crippa, Michele Devetta, Aldo Frezzotti, Daniela Comelli, Gianluca Valentini, Roberto Osellame, Caterina Vozzi and Salvatore Stagira
Appl. Sci. 2022, 12(4), 1978; https://doi.org/10.3390/app12041978 - 14 Feb 2022
Cited by 1 | Viewed by 2748
Abstract
We report on the study of ultrafast laser-induced plasma expansion dynamics in a gas microjet. To this purpose, we focused femtosecond laser pulses on a nitrogen jet produced through a homemade De Laval micronozzle. The laser excitation led to plasma generation with a [...] Read more.
We report on the study of ultrafast laser-induced plasma expansion dynamics in a gas microjet. To this purpose, we focused femtosecond laser pulses on a nitrogen jet produced through a homemade De Laval micronozzle. The laser excitation led to plasma generation with a characteristic spectral line emission at 391 nm. By following the emitted signal with a detection system based on an intensified charge-coupled device (ICCD) we captured the two-dimensional spatial evolution of the photo-excited nitrogen ions with a temporal resolution on the nanosecond time scale. We fabricated the micronozzle on a fused silica substrate by femtosecond laser micromachining. This technique enabled high accuracy and three-dimensional capabilities, thus, providing an ideal platform for developing glass-based microfluidic structures for application to plasma physics and ultrafast spectroscopy. Full article
Show Figures

Figure 1

15 pages, 6970 KB  
Article
Numerical Simulation of Non-Spherical Submicron Particle Acceleration and Focusing in a Converging–Diverging Micronozzle
by Yanru Wang, Jiaxin Shen, Zhaoqin Yin and Fubing Bao
Appl. Sci. 2022, 12(1), 343; https://doi.org/10.3390/app12010343 - 30 Dec 2021
Cited by 7 | Viewed by 2842
Abstract
Submicron particles transported by a Laval-type micronozzle are widely used in micro- and nano-electromechanical systems for the aerodynamic scheme of particle acceleration and focusing. In this paper, the Euler–Lagrangian method is utilized to numerically study non-spherical submicron particle diffusion in a converging–diverging micronozzle [...] Read more.
Submicron particles transported by a Laval-type micronozzle are widely used in micro- and nano-electromechanical systems for the aerodynamic scheme of particle acceleration and focusing. In this paper, the Euler–Lagrangian method is utilized to numerically study non-spherical submicron particle diffusion in a converging–diverging micronozzle flow field. The influence of particle density and shape factor on the focusing process is discussed. The numerical simulation shows how submicron particle transporting with varying shape factors and particle density results in different particle velocities, trajectories and focusing in a micronozzle flow field. The particle with a larger shape factor or larger density exhibits a stronger aerodynamic focusing effect in a supersonic flow field through the nozzle. In the intersection process, as the particle size increases, the position of the particle trajectory intersection moves towards the throat at first and then it moves towards the nozzle outlet. Moreover, the influence of the thermophoretic force of the submicron particle on the aerodynamic focusing can be ignored. The results will be beneficial in technological applications, such as micro-thrusters, microfabrication and micro cold spray. Full article
(This article belongs to the Special Issue Multiphase Flows in Microfluidics: Fundamentals and Applications)
Show Figures

Figure 1

Back to TopTop