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Abstract: This paper presents a novel method for fabricating three-dimensional (3D) microstructures
of cobalt—platinum (Co-Pt) permanent magnets using a localized electrochemical deposition (LECD)
technique. The method involves the use of an electrolyte and a micro-nozzle to control the deposition
process. However, traditional methods face significant challenges in controlling the thickness and
uniformity of deposition layers, particularly in the manufacturing of magnetic materials. To address
these challenges, this paper proposes a method that integrates machine learning algorithms to
optimize the electrochemical deposition parameters, achieving a Co:Pt atomic ratio of 50:50. This
optimized ratio is crucial for enhancing the material’s magnetic properties. The Co-Pt microstructures
fabricated exhibit high coercivity and remanence magnetization comparable to those of bulk Co-Pt
magnets. Our machine learning framework provides a robust approach for optimizing complex
material synthesis processes, enhancing control over deposition conditions, and achieving superior
material properties. This method opens up new possibilities for the fabrication of 3D microstructures
with complex shapes and structures, which could be useful in a variety of applications, including
micro-electromechanical systems (MEMSs), micro-robots, and data storage devices.

Keywords: 3D printing of micro-magnets; machine learning; cobalt-platinum (Co-Pt) microstructures;
path planning algorithm
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1. Introduction

The rapid development of micro-electromechanical systems (MEMSs) has driven
the demand for the integration of magnetic materials, particularly in miniaturized, high-
performance components. MEMS technology, which includes micro-sensors, actuators, and
other devices, is now essential in fields such as biomedicine, telecommunications, and data
storage. By incorporating micro-magnets into MEMSs, researchers can leverage the unique
properties of magnetic materials at the microscale to enhance device functionality.

Recent advances in micro-magnet fabrication have introduced various techniques,
including powder-based methods, physical vapor deposition (PVD), and electrochemical
deposition, each offering unique advantages and challenges. Powder-based techniques,
such as bonding, screen printing, and additive manufacturing, can create complex shapes
but often lack the precision required for microscale applications [1-3]. On the other hand,
PVD methods such as sputtering, thermal evaporation, and pulsed laser deposition produce
high-quality magnetic thin films but are limited by high costs and slow processing times [4-6].

Localized electrochemical deposition (LECD), introduced by Madden and Hunter in
1996 [7], has shown great promise for micro-magnet fabrication. LECD employs a sharp-
tipped electrode in an electrolyte solution, where a voltage induces localized deposition.
This technique offers precise control over the material’s shape and size. Additionally,
advancements such as ultrasound-assisted LECD and electrolyte-column LECD have
further improved deposition rates and pattern complexity [8,9]. However, despite these im-
provements, LECD and other traditional methods struggle to efficiently optimize multiple
parameters, which are critical to achieving uniform and high-performance microstructures.
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In recent years, machine learning has proven to be a powerful tool in materials
science, particularly for optimizing complex fabrication processes [10-12]. Researchers
have successfully applied machine learning to electroplating and deposition techniques,
improving accuracy, efficiency, and control. For instance, Li et al. applied the Least
Absolute Shrinkage and Selection Operator (LASSO) regression technique to analyze the
effects of nano-clay content, foaming temperature, and foaming time on the density and
cell size of PVC matrix foam [13]. Katirci and Danaci used NSGA-II and machine learning
algorithms to optimize nickel electroplating, resulting in significant improvements in
coating quality [14]. Frydrych et al. applied LSTM networks to optimize crystal plasticity
parameters in electrodeposited copper, demonstrating accurate prediction and control
under cyclic deformation [15]. Similarly, Katirci et al. used the XGBoost algorithm to
optimize thickness and nickel content in Zn-Ni alloy electroplating [16]. These successes
highlight the potential of machine learning to address complex optimization problems
in deposition processes. However, its application to the electrochemical deposition of
magnetic materials, such as Co-Pt, remains relatively unexplored.

Moreover, machine learning has significantly impacted additive manufacturing by
optimizing 3D printing parameters, leading to improved product quality and process
efficiency [17-19]. Wang et al. employed machine learning to predict surface roughness in
laser additive manufacturing, allowing for real-time adjustments and enhanced surface
quality [20]. Scime and Beuth developed a machine learning framework for real-time
anomaly detection in laser powder bed fusion, improving the reliability of printed compo-
nents [21]. These studies demonstrate the effectiveness of machine learning in overcoming
the intricate challenges associated with additive manufacturing processes.

Current micro-magnet fabrication methods often do not allow for film-free shaping,
with most micro-magnets having thicknesses significantly less than 100 um or greater than
1 mm [22,23]. PVD techniques, while effective for thin films, are costly and slow, with
limited shape control [24,25]. Additionally, electrochemical deposition combined with
photoresist methods cannot produce shapes with different top and bottom cross-sections,
adding to the cost and time of the process [26,27]. The use of liquid electrolytes in many
electrochemical deposition techniques poses further challenges, including difficulty in
control and leakage issues, limiting their application in three-dimensional spaces [28].

Despite the advancements in micro-magnet fabrication, achieving consistent and high-
quality Co-Pt microstructures through electrochemical deposition remains a significant
challenge. Variations in deposition rates, inconsistent layer thickness, and the complex
interplay of parameters such as Co-Pt ion ratio, solution pH, nozzle scanning speed,
and deposition voltage lead to inconsistencies in magnetic properties and performance.
Traditional methods often rely on trial-and-error approaches to optimize these parameters,
which is both time-consuming and inefficient. Additionally, the lack of real-time control
mechanisms for fine-tuning these parameters exacerbates the issue, resulting in nonuniform
deposition and reduced functionality of the final product. To overcome these challenges, a
data-driven, optimized approach is necessary to ensure precise control over the deposition
process, leading to more uniform and high-performance Co-Pt microstructures.

In this work, we propose a novel method that integrates machine learning algo-
rithms with electrochemical deposition to optimize the fabrication of Co-Pt magnetic
alloys. Our approach not only enhances the uniformity of the microstructures but also
improves the magnetic properties, such as coercivity and remanence, by optimizing key
deposition parameters through data-driven methods. This system provides precise con-
trol over the shape and size of micro-magnets, showing significant potential for MEMS
applications. By incorporating machine learning into the LECD process, we aim to create a
versatile and high-performance platform for fabricating Co-Pt microstructures, ultimately
bridging the gap between traditional deposition techniques and modern, data-driven
manufacturing solutions.
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2. Methodology
2.1. Electrochemical Deposition Theory

The electrochemical deposition method described in this paper relies on charge trans-
fer reactions at the electrode-solution interface. A regulated DC power supply, wires,
anodes, cathodes, and electrolytes form a complete circuit. The electrochemical reactions
are governed by thermodynamics and kinetics, which influence the rate and direction
of reactions.

Thermodynamics of Electrochemical Deposition

The thermodynamics of electrochemical reactions are described by the Nernst equation,
which relates the electrode potential to the concentrations of the reactants and products:

OE“

[
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In this equation, E represents the electrode potential, E® is the standard electrode
potential, R is the universal gas constant, T is the temperature in Kelvin, 7 is the number
of electrons transferred, and F is the Faraday constant. The concentrations of the oxidized
and reduced species are represented by [Ox] and [Red], respectively.

For this study, the primary reactions involve the reduction of cobalt and platinum ions:

Pt 427 — Pt 2)

Co*t +2¢~ — Co 3)

The equilibrium potentials for these reactions are approximately E°c, = —0.277 V and
E°pr=12V.

The kinetics of electrochemical reactions are modeled using the Butler—Volmer equation,
which relates the current density j to the overpotential n:
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Here, jy denotes the exchange current density, a; and a. are the anodic and cathodic
transfer coefficients, respectively, and 7 is the overpotential defined as 7 = E — Eeq, where
Eeq is the equilibrium potential.

At high overpotentials, the Butler-Volmer equation simplifies, with either the anodic
or cathodic term dominating.

Mass transport in the electrolyte involves diffusion, convection, and migration. The
Nernst-Planck equation describes the flux J; of species i:

Ji=-D,;VC; + ZiuiCiV(P + Civ (5)

where D; is the diffusion coefficient, C; the concentration, z; the charge number, u; the
mobility, ¢ the electric potential, and v the velocity field. In our setup, convection is
minimized, so diffusion and migration are the primary transport mechanisms.

2.2. Experimental Setup

The experimental setup shown in Figure 1 comprises a desktop electrochemical depo-
sition 3D printer designed with four main components: the work platform, the electrochem-
ical deposition system, the supply device, and the control equipment. The integration of
hardware and software ensures precise control over the deposition process. The hardware
system is further categorized into three integral components: mechanical displacement,
electrochemical deposition, and deposition pressure control. The inter-module communica-
tion is established employing the pyserial serial communication method.
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Figure 1. Schematic diagram.

For the Co-Pt alloy magnetic structures, graphite electrodes and ITO conductive glass
electrodes are used as anodes and cathodes, respectively. The electrolyte solution contains
cobalt and platinum ions, tailored for the deposition process.

Subsequent to meticulous electrolyte composition selection and preparation, along
with comprehensive theoretical derivation of the thermodynamics and kinetics governing
electrochemical deposition, as well as rigorous simulation and experimental validation, the
electromechanical system for 3D printing featuring micro-magnetic structures, alongside its
parameter range, is established. The realization of the micro-magnetic structure 3D-printing
electromechanical system, culminating in the formation of a predetermined magnetic
pattern, necessitates a sequence of pivotal procedures. These procedures encompass graphic
edge recognition, edge path generation, internal path generation, controller recognizable
code generation, and the actual realization of the electromechanical system, among others.

2.3. Simulation of Multiple Physical Fields
2.3.1. Effects of Average Current Density on Electrodeposition

Simulations were performed using COMSOL Multiphysics to study the effects of
average current density on electrodeposition. The initial electrolyte concentration was set
to 0.5 mol/L. Under an applied electric field, changes in ion concentration near the cathode
interface were observed over 5 s, resulting in a deposition thickness of approximately
6.62 nm. The deposition rate was about 1.3 nm/s, indicating a relatively uniform thickness
distribution as illustrated in Figure 2.

2.3.2. Effect of Electrolyte Concentration on Electrodeposition

The influence of electrolyte concentration on deposition thickness was examined
by simulating various concentrations (0.5 mol/L, 1 mol/L, 1.5 mol/L) at a constant cur-
rent density. Higher electrolyte concentrations resulted in slightly decreased deposition
thickness but improved uniformity as observed in Figure 3.
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Figure 2. (a) Electrolyte concentration change. (b) Cathode current density distribution. (c) Variation
in total deposition thickness.
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Figure 3. Deposition thickness changes under the same current density and different reference
concentrations. (a) Concentration at 0.5 M. (b) Concentration at 1.0 M. (c) Concentration at 1.5 M.

2.4. Machine Learning Optimization of Deposition Parameters

To enhance the precision and efficiency of the Co-Pt microstructure fabrication pro-
cess, we incorporated machine learning algorithms to optimize the deposition parameters
(Figure 4). The objective was to identify the optimal Co:Pt ion ratio, solution pH, nozzle
scanning speed, and deposition voltage to achieve a Co-Pt atomic ratio of 50:50.

Data Collection & Model Selection

Preprocessing » fieasticERelResils ’ & Training
Data Standardization Polynomial Features K-Fold CV &
& Cleaning & Interaction Terms Hyperparameter Tuning
Model Evaluati i i
odel Evaluation Model Comparison Best Model Selection

& Metrics

l

Optimal Parameters
Prediction

—> Validation & Experimental ——

& Metrics Analysis (ETR)

l l

Application of
Optimal Parameters

Figure 4. Algorithm processing flow chart.
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The optimization process began with data collection and preprocessing. Experimental
data from previous Co-Pt deposition experiments were compiled, focused on the following
parameters: Co:Pt ion ratio, solution pH, nozzle scanning speed, and deposition voltage.
The target variable was the Co-Pt atomic ratio. The data were preprocessed to handle
missing values and outliers, and then standardized to ensure consistency in the machine
learning models.

Feature engineering was performed to enhance the predictive power of the models.
Additional features were generated through polynomial transformations and interaction
terms, including squared and cubic terms of the original features as well as pairwise
interaction terms.

We evaluated a comprehensive set of regression models, including Linear Regres-
sion (LR), Ridge Regression, Lasso Regression, ElasticNet, Random Forest (RF), Gradient
Boosting Regressor (GBR), Extreme Gradient Boost (XGB), Extra Trees Regressor (ETR),
and AdaBoost Regressor (ADA). Each model was rigorously trained and validated using
leave-one-out cross-validation (LOO CV), a method that minimizes bias by testing each
observation as a single validation set, thereby enhancing model robustness and reducing
the likelihood of overfitting. Additionally, we performed extensive hyperparameter tuning
for each model, employing both grid search and random search methodologies to identify
optimal configurations that maximize predictive accuracy and generalizability. Initially, a
grid search was conducted to systematically explore a predefined set of hyperparameter
combinations for each model. For example, in the Ridge Regression model, we tested alpha
values ranging from 0.01 to 10 in increments of 0.5. This initial search helped us identify
a promising range, after which we refined our focus to the interval of 0.1-0.5, ultimately
selecting an alpha value of 1.0 as optimal.

Upon evaluating the models, the Extra Trees Regressor (ETR) was selected as the final
model due to its superior performance metrics. This model was then used to predict the
optimal deposition parameters. The identified optimal parameters were as follows: Co:Pt
ion ratio (1:10), solution pH (5), nozzle scanning speed (2 mm/min), and deposition voltage
(15V).

The machine learning optimization enabled a data-driven approach to identify the
optimal deposition parameters, significantly reducing the trial-and-error efforts tradition-
ally required in experimental setups and ensuring a more efficient and precise fabrication
process for Co-Pt microstructures. By integrating machine learning into the electrochemical
deposition process, we demonstrated the potential to enhance the fabrication of high-
performance Co-Pt microstructures, facilitating the achievement of the desired Co-Pt atomic
ratio, which is critical for applications in MEMS, micro-robots, and data storage devices.

3. Results and Discussion
3.1. Machine Learning Results

To assess the performance of each machine learning model, we employed a variety
of evaluation metrics, including Mean Squared Error (MSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), correlation coefficient (R), and R-squared (R?).
Table 1 provides a detailed summary of these metrics for each model, allowing for direct
comparison of predictive accuracy and error rates on the test dataset. The performance
metrics indicate that ensemble methods, especially Extra Trees and XGBoost, significantly
outperform Linear Regression models (Linear, Ridge, Lasso, and ElasticNet) in predicting
the target variable. These models exhibit the lowest Mean Squared Error (MSE) and Mean
Absolute Error (MAE), reflecting their ability to make more accurate predictions. They also
achieve the highest R-squared (R?) values, explaining over 80% of the variance in the target,
and maintain a strong correlation with actual values, as shown by their high correlation
coefficient (R) close to 0.90. The Mean Absolute Percentage Error (MAPE) is exceptionally
low for these models, indicating minimal relative error and high predictive reliability. In
contrast, linear models show much higher error rates and lower explanatory power, likely
due to their inability to capture non-linear patterns in the data.
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Table 1. Performance of each model based on MSE, MAE, MAPE, R, and R? metrics.
Model MSE MAE R? R MAPE
Linear Regression 46.10 5.08 0.51 0.71 0.06
Ridge Regression 46.05 5.04 0.51 0.71 0.06
Lasso Regression 46.66 512 0.50 0.71 0.06
ElasticNet 46.06 5.04 0.51 0.71 0.06
Random Forest 19.10 2.61 0.80 0.89 0.03
Gradient Boosting 20.10 2.49 0.79 0.89 0.03
XGBoost 19.01 2.37 0.80 0.90 0.03
Extra Trees 18.10 2.55 0.81 0.90 0.03
AdaBoost 19.68 2.40 0.79 0.89 0.03
Voting Model 2421 2.79 0.74 0.87 0.04

Results in Table 2 showed that the Extra Trees Regressor (ETR) and Extreme Gradient
Boost (XGB) outperformed other models, as evidenced by their lower MSE and higher
R? values. Specifically, the Extra Trees Regressor achieved an MSE of 18.1 and an R? of
0.81, while the XGBoost model yielded an MSE of 19.01 and an R? of 0.80. This level of
performance underscores the suitability of these ensemble models in handling complex
interactions, even within relatively small datasets.

Table 2. Hyperparameters for machine learning models.

Model Hyperparameters Selected Values
Linear Regression N/A N/A
Ridge Regression alpha 1.0
Lasso Regression alpha 1.0

ElasticNet alpha, 11_ratio 0.01,0
Random Forest n_estimators, max_depth 2,2
Gradient Boosting n_estimators, learning_rate, max_depth 25,0.1,2
n_estimators, learning_rate,
XGBoost max_depth, subsample, 30,0.1,2,0.7,0.8
colsample_bytree
Extra Trees n_estimators, max_depth 30,2
AdaBoost n_estimators, learning_rate 20, 0.01

The robustness of the Extra Trees Regressor can be attributed to its ensemble struc-
ture, which reduces variance by utilizing random splits of data at each node. This ap-
proach enables the model to generalize effectively, providing stable and reliable predictions.
In contrast, XGBoost leverages a gradient boosting framework, which iteratively improves
predictions by minimizing residual errors, making it particularly powerful in capturing
complex relationships in the data. Its regularization techniques also help prevent overfitting,
allowing it to perform well on both training and validation sets.

Despite their strengths, these models do present certain trade-offs. The Extra Trees
Regressor, while highly effective, demands considerable computational resources due to
the extensive ensemble of trees it builds. This requirement can lead to longer training
times, particularly in resource-limited environments. Conversely, while XGBoost’s gradient
boosting mechanism improves accuracy, it can require extensive tuning of hyperparameters
to achieve optimal performance. By systematically applying leave-one-out cross-validation
and thorough hyperparameter tuning, we ensured that these models were configured
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to mitigate these limitations, achieving a balance between computational efficiency and
predictive power.

As shown in Figure 5, the red line in the prediction plot represents the ideal fit line
(y = x), where predictions would match the true values perfectly. Points closer to this
line indicate more accurate predictions. Most predictions cluster near the line, showing
that these ensemble models generally perform well. However, there are some deviations,
particularly at certain value ranges, indicating occasional prediction errors.

Linear Regression Ridge Regression Lasso Regression ElasticNet Random Forest
© Linear Regression . © Ridge Regression 5 © Lasso Regression 7 © ElasticNet . © Random Forest 2
95 ,,/ 95 // 95 /,/ 95 ,,/ 95 4
90 . Vs 90 . s %0 L 90 vl 90
° ° o ° ° 4 ° L ° w' /,’ 4
v 85 s o| o8 gl o o8 L - 5 gy 0 85
H , 3 , 3 /, H , 3
= g0 ce > 80 4 > 80 4 > 80 i >80
° & ° 4 k-1 7 ° 4 °
2 v 4 d 2 e 4 'l 2
8751 S$15{e o Ss ° . S1s P S s
B ° B B0 Coemem B 4 g
=70 ° =70 ° =70 g 70 =70
// /l // /,
65 P 65 P 65 P 65 4 65
/ . / .
/ . . /
601 7 601 7 601 7 601 7 60
60 70 80 £ 60 70 80 90 60 70 80 %0 60 70 80 90 60 70 80 90
True Value True Value True Value True Value True Value
Gradient Boosting XGBoost Extra Trees AdaBoost Voting Model
Gradient Boosting : ® XGBoost ¢ Extra Trees g © AdaBoost 2 ©  Voting Model 2
95 " P 95 §a 95 ; 32 95 # 95 Z
L)
7 # -
% ; 9% °l 9w . 9% S0 w0
Vs Pig P s
o 85 b v 85 " Uil 285 ol o 85 . 2 o 85
3 e 2 ° - < 3 7 3 e ° 2
S 80 4 2 8o M £ 80 2 2 80 S 8o
o 4 ° o 4 o o
2 70 g e 2 vod g 3 2
275 4 2751 e 275 7 275 L4 ﬁ ERE
B » B . 2 . 0N R g
70 / 70 2’ 70 / 70 70
l/ // /' l’
65 /,’ 65 ,,' 65 ,,’ 65 /' 65
/ / , ;
601 7 601 7 604 7 601 7 60

60 70 80 90 60 70 80 90 60 70 80 920 60 70 80 90 60 70 80 90
True Value True Value True Value True Value True Value

Figure 5. Predicted versus true values for each regression model.

In conclusion, the Extra Trees Regressor and XGBoost emerged as the most effec-
tive models in this analysis, leveraging their respective strengths to handle intricate data
patterns and providing accurate, generalizable predictions. Future work could explore ad-
ditional ensemble techniques or advanced feature engineering methods to further improve
predictive performance and model robustness.

3.2. Plane Path Planning Results

In this study, we developed a path planning program to generate G-code for printing
complex patterns. The program utilized the Shapely library in Python to perform path
planning. Initially, it converts the input images to grayscale, simplifying the data and
enhancing the efficiency of subsequent edge detection. The Canny algorithm is then
employed to identify and delineate the edges within the image. Following edge detection,
the program transforms the detected edge pixels into coordinate values. These coordinates
are subsequently sorted and used to form closed shapes. The Shapely library’s parallel
function is then utilized to offset the path, generating internal paths that are necessary for
creating intricate patterns. This methodical approach ensures that the generated G-code
accurately represents the complex patterns intended for printing.

Figure 6 shows the deposition process of the “Qiu Shi Eagle” pattern. The printing
process began with the outermost contour, gradually offsetting inward to complete the en-
tire figure. The overall movement path ensured that each layer was deposited sequentially,
minimizing interruptions and ensuring consistent material deposition.

However, some deviations were observed in internal regions due to path overlap
and variations in deposition width. These discrepancies highlighted the need for further
refinement in the path planning algorithm to enhance precision. The printed sample closely
matched the planned path, although certain areas exhibited uneven deposition due to
variations in gel conductivity and viscosity over time. Additionally, the pressure control
system, which employed intermittent pneumatic control, introduced inconsistencies in
extrusion, affecting deposition uniformity.
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Figure 6. Path planning renderings and physical printing.

3.3. Spatial Structure Results

The capability of the 3D printing system to fabricate vertical column structures was
evaluated using a nozzle with a 160 pm inner diameter. The Z-axis movement speed was
set to 10 um/min, while the X and Y axes remained stationary. The deposition voltage was
maintained at 15 V. The resulting columns exhibited diameters of approximately 200 pm
and heights of about 1200 um, achieving a height-to-diameter ratio of 6:1, shown in Figure 7.

(b)

Figure 7. Printing of vertical column structure. (a) Top view. (b) Side view (37° side view).

The printed columns demonstrated the system’s ability to produce high-aspect-ratio
structures, a critical requirement for many MEMS applications. Column diameters slightly
exceeded nozzle diameter due to gel expansion upon extrusion and minor horizontal
system vibrations. The lower sections of the columns (denoted as region A in Figure 7b)
were more uniform in diameter, closely matching the nozzle size, while the upper sections
(region B) showed increased diameters and rougher surfaces.

Several factors contributed to these observations. First, the electrolyte adherence was
more substantial in the lower sections, leading to a lower current density and smoother
surfaces. Second, excess electrolytes at the base could spread out, while the upper sections
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had to build upon the previously deposited layers, resulting in more significant accumula-
tion and unevenness. Third, the system’s internal vibrations, particularly at low speeds,
affected the stability of the deposition process.

Further improvements to system performance require enhancements to stepper motor
stability and overall system structure to reduce internal vibrations. Additionally, controlling
the environmental humidity could minimize the formation of irregular structures like the
observed water droplet shapes, which are more likely to occur at lower humidity levels.
Future iterations of the experimental setup should include humidity control to better
regulate the deposition environment.

3.4. Influence of External Magnetic Field

The influence of external magnetic fields on the thickness and magnetic properties of
the deposited layers was thoroughly investigated using both simulations and experiments.
Simulations were performed using FEMM 4.2 and Maxwell 2021 R1 software to determine
the distribution of magnetic fields generated by permanent magnets. These simulations
assumed a gap of 2-3 mm between the substrate and the deposition container walls, and
a lateral width of 10 mm. To accommodate the experimental setup’s space requirements,
magnets were placed 40 mm apart.

The simulations revealed that using two aligned magnets produced a higher magnetic
field density compared to a single magnet. However, the field exhibited some divergence,
necessitating the use of magnets with a width of 20 mm to ensure a uniform magnetic field
over the central 10 mm region. Comparing N52 and N35 magnets showed that N52 magnets
generated stronger fields, but N35 magnets with dimensions of 20 mm x 10 mm x 20 mm
were deemed sufficient for generating the required field strength of 300 mT.

To experimentally investigate the influence of the external magnetic field on the
deposition process, a setup was created using a graphite electrode as the anode and ITO
glass as the cathode. The deposition voltage was set to 10 V, and the process lasted 4 h.
Two experimental groups were compared: one with an external magnetic field generated
by N35 magnets and one without any external magnetic field. The results demonstrated
that the external magnetic field significantly enhanced the uniformity of the deposited
layers. The thickness distributions of samples deposited with and without the magnetic
field, as illustrated in Figure 8a,b, show that in the presence of the magnetic field, the
maximum thicknesses were 3.49 um and 5.07 pm, compared to 2.90 pm and 3.03 pm
without the field. While the average thicknesses were similar (2543.8 nm with the field and
2459.3 nm without), the magnetic field reduced the variability in thickness, leading to more
uniform deposition.

The magnetic properties of the deposited samples were also evaluated. Figure 8c
compares the M-H curves of samples deposited with and without the magnetic field, mea-
sured both parallel and perpendicular (vertical) to the film surface. The results indicated
that the external magnetic field reduced the magnetic anisotropy of the deposited films.
Without the magnetic field, remanence in the parallel direction was significantly higher
(5.24 kA /m) than in the perpendicular direction (0.74 kA /m). With the 360 mT magnetic
field, the remanence values were closer (1.36 kA /m parallel and 0.69 kA /m perpendicular),
reducing the anisotropy.

Furthermore, the saturation magnetization was highest in the perpendicular direction
with the external magnetic field (13.42 kA /m), compared to 3.48 kA /m without the field.
The parallel saturation magnetization values were 11.68 kA /m without the field and
10.61 kA /m with the field. These results suggest that the external magnetic field enhances
the vertical alignment of magnetic domains, thereby improving the magnetic properties
in the perpendicular direction. These findings are consistent with the theory of magnetic
domain alignment, where an external magnetic field acts as an external force to align the
magnetic domains vertically, thus reducing the anisotropy typically observed in planar
magnetic films. This alignment effect is particularly beneficial for applications requiring
vertically oriented magnetic properties.
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Figure 8. Influence of external magnetic field. (a) Map of deposition thickness distribution with or
without magnetic field. (b) Cross-section thickness with or without external magnetic field. (c) Parallel
and vertical M-H curves of deposited samples with or without applied magnetic field.

Future research will focus on optimizing the fabrication process and seamlessly inte-
grating the external magnetic field with the deposition system. Additionally, the combined
effects of external magnetic fields and various deposition parameters, such as current
density and electrolyte composition, will be systematically studied to refine the deposition
process and enhance the performance of the fabricated microstructures.

In summary, the path planning program successfully generated accurate G-code
for complex patterns, and the experimental setup demonstrated the system’s capability
to produce high-aspect-ratio structures with uniform deposition. The application of an
external magnetic field significantly improved the uniformity and magnetic properties of
the deposited films, highlighting the potential of magnetic field-assisted electrochemical
deposition for advanced material fabrication.

4. Conclusions

This study presents a novel method for fabricating three-dimensional (3D) microstruc-
tures of cobalt—platinum (Co-Pt) permanent magnets using a localized electrochemical
deposition (LECD) technique. The custom-built 3D printer system developed in this re-
search allows for precise control over deposition parameters, enabling the creation of
complex shapes and high-aspect-ratio structures. Our approach demonstrates the potential
to fabricate Co-Pt microstructures with high coercivity and remanence magnetization com-
parable to those of bulk Co-Pt magnets. The integration of machine learning algorithms in
optimizing the deposition parameters significantly enhanced the efficiency and precision of
the fabrication process. By analyzing the experimental data, the optimal parameters identi-
fied were a Co:Pt ion ratio of 1:10, a solution pH of 5, a nozzle scanning speed of 2 mm/min,
and a deposition voltage of 15 V. This data-driven approach reduced the trial-and-error
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efforts typically required in experimental setups, ensuring a more efficient and precise
fabrication process. The application of an external magnetic field during the deposition
process was found to significantly improve the uniformity and magnetic properties of the
deposited films. This resulted in reduced anisotropy and enhanced vertical domain align-
ment, which are critical for the performance of the microstructures in practical applications.
Future work will focus on further optimizing the LECD system, integrating the external
magnetic field more seamlessly, and exploring additional applications for the fabricated
microstructures in MEMS and micro-robotics. The continued development and refinement
of this technique could lead to advancements in various fields, including biomedicine,
telecommunications, and data storage.
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