Transparent SU-8 Micronozzle Array with Minimal Dead Volume for Parallel Liquid-to-Liquid Sample Ejection
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of the Micronozzle Array
2.2. Fabrication of the Micronozzle Array
2.2.1. Microholes and Flow Channels
2.2.2. Pneumatic Channel
2.2.3. PDMS Membrane and Bonding
2.3. Bonding Strength of PDMS and SU-8 3050
2.4. Flow Characterization
2.5. Modified Nodal Analysis (MNA)
3. Results and Discussion
3.1. Fabrication Process and Success Rate
3.2. Dimensional Accuracy and Material Advantages
3.3. Bonding Strength Evaluation Between SU-8 and PDMS
3.4. Device Functionality and Integrity Verification
3.5. Characterization of Flow with Tracer Particles
3.5.1. φ0.5 µm Beads
3.5.2. φ2 µm Beads
3.5.3. φ10 µm Beads
3.6. Theoretical Model Validation and Flow Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berthier, E.; Dostie, A.M.; Lee, U.N.; Berthier, J.; Theberge, A.B. Open Microfluidic Capillary Systems. Anal. Chem. 2019, 91, 8739–8750. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.F.; Simpson, G.J.; Chiu, D.T.; Stromberg, A.; Orwar, O.; Rodriguez, N.; Zare, R.N. Nanoengineered Structures for Holding and Manipulating Liposomes and Cells. Anal. Chem. 2001, 73, 787–791. [Google Scholar] [CrossRef]
- Nagai, M.; Kato, K.; Oohara, K.; Shibata, T. Pick-and-Place Operation of Single Cell Using Optical and Electrical Measurements for Robust Manipulation. Micromachines 2017, 8, 350. [Google Scholar] [CrossRef] [PubMed]
- Han, H.N.; Martinez, V.; Aebersold, M.J.; Luchtefeld, I.; Polesel-Maris, J.; Voros, J.; Zambelli, T. Force Controlled SU-8 Micropipettes Fabricated with a Sideways Process. J. Micromech. Microeng. 2018, 28, 095015. [Google Scholar] [CrossRef]
- Martinez, V.; Forro, C.; Weydert, S.; Aebersold, M.J.; Dermutz, H.; Guillaume-Gentil, O.; Zambelli, T.; Voros, J.; Demko, L. Controlled Single-Cell Deposition and Patterning by Highly Flexible Hollow Cantilevers. Lab Chip 2016, 16, 1663–1674. [Google Scholar] [CrossRef]
- Kim, A.A.; Kustanovich, K.; Baratian, D.; Ainla, A.; Shaali, M.; Jeffries, G.D.M.; Jesorka, A. SU-8 Free-Standing Microfluidic Probes. Biomicrofluidics 2017, 11, 014112. [Google Scholar] [CrossRef]
- Gross, A.; Schondube, J.; Niekrawitz, S.; Streule, W.; Riegger, L.; Zengerle, R.; Koltay, P. Single-Cell Printer: Automated, on Demand, and Label Free. J. Lab. Autom. 2013, 18, 504–518. [Google Scholar] [CrossRef]
- Yusof, A.; Keegan, H.; Spillane, C.D.; Sheils, O.M.; Martin, C.M.; O’Leary, J.J.; Zengerle, R.; Koltay, P. Inkjet-like Printing of Single-Cells. Lab Chip 2011, 11, 2447–2454. [Google Scholar] [CrossRef]
- Xu, T.; Jin, J.; Gregory, C.; Hickman, J.J.; Boland, T. Inkjet Printing of Viable Mammalian Cells. Biomaterials 2005, 26, 93–99. [Google Scholar] [CrossRef]
- Kacarevic, Z.P.; Rider, P.M.; Alkildani, S.; Retnasingh, S.; Smeets, R.; Jung, O.; Ivanisevic, Z.; Barbeck, M. An Introduction to 3D Bioprinting: Possibilities, Challenges and Future Aspects. Materials 2018, 11, 2199. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Pan, T.; Li, B.; Chu, J. Label-Free Single-Cell Isolation Enabled by Microfluidic Impact Printing and Real-Time Cellular Recognition. Lab Chip 2021, 21, 3695–3706. [Google Scholar] [CrossRef]
- Bsoul, A.; Pan, S.; Cretu, E.; Stoeber, B.; Walus, K. Design, Microfabrication, and Characterization of a Moulded PDMS/SU-8 Inkjet Dispenser for a Lab-on-a-Printer Platform Technology with Disposable Microfluidic Chip. Lab Chip 2016, 16, 3351–3361. [Google Scholar] [CrossRef]
- Nagai, M.; Kato, K.; Soga, S.; Santra, T.S.; Shibata, T. Scalable Parallel Manipulation of Single Cells Using Micronozzle Array Integrated with Bidirectional Electrokinetic Pumps. Micromachines 2020, 11, 442. [Google Scholar] [CrossRef]
- Steinert, C.P.; Goutier, I.; Gutmann, O.; Sandmaier, H.; Daub, M.; de Heij, B.; Zengerle, R. A Highly Parallel Picoliter Dispenser with an Integrated, Novel Capillary Channel Structure. Sens. Actuators A Phys. 2004, 116, 171–177. [Google Scholar] [CrossRef]
- Koltay, P.; Steger, R.; Bohl, B.; Zengerle, R. The Dispensing Well Plate: A Novel Nanodispenser for the Multiparallel Delivery of Liquids (DWP Part I). Sens. Actuators A Phys. 2004, 116, 483–491. [Google Scholar] [CrossRef]
- Xu, B.; Lee, Y.-K.; Jin, Q.; Zhao, J.; Ho, C.-M. Multilayer SU-8 Based Microdispenser for Microarray Assay. Sens. Actuators A Phys. 2006, 132, 714–725. [Google Scholar] [CrossRef]
- Xu, B.; Jin, Q.; Zhao, J. Multi-Layer SU-8 Based Micro Dispensing System for Microarray Immunoassay. Sens. Actuators A Phys. 2007, 135, 292–299. [Google Scholar] [CrossRef]
- Demirci, U.; Montesano, G. Single Cell Epitaxy by Acoustic Picolitre Droplets. Lab Chip 2007, 7, 1139–1145. [Google Scholar] [CrossRef]
- Maqbool, M.A.; Okamoto, S.; Shibata, T.; Subhra Santra, T.; Nagai, M. Self-Regulating Pen-Needle-Based Micronozzle for Printing Array of Nanoliter Droplets under Fluorinated Liquid. Instrum. Sci. Technol. 2025, 53, 332–350. [Google Scholar] [CrossRef]
- Nan, L.; Lai, M.Y.A.; Tang, M.Y.H.; Chan, Y.K.; Poon, L.L.M.; Shum, H.C. On-Demand Droplet Collection for Capturing Single Cells. Small 2020, 16, e1902889. [Google Scholar] [CrossRef]
- Cole, R.H.; Tang, S.Y.; Siltanen, C.A.; Shahi, P.; Zhang, J.Q.; Poust, S.; Gartner, Z.J.; Abate, A.R. Printed Droplet Microfluidics for on Demand Dispensing of Picoliter Droplets and Cells. Proc. Natl. Acad. Sci. USA 2017, 114, 8728–8733. [Google Scholar] [CrossRef] [PubMed]
- Hof, L.A.; Abou Ziki, J. Micro-Hole Drilling on Glass Substrates—A Review. Micromachines 2017, 8, 53. [Google Scholar] [CrossRef]
- Chung, C.K.; Lin, S.L. CO2 Laser Micromachined Crackless through Holes of Pyrex 7740 Glass. Int. J. Mach. Tools Manuf. 2010, 50, 961–968. [Google Scholar] [CrossRef]
- Wang, L.; Stevens, R.; Malik, A.; Rockett, P.; Paine, M.; Adkin, P.; Martyn, S.; Smith, K.; Stark, J.; Dobson, P. High-Aspect-Ratio Silica Nozzle Fabrication for Nano-Emitter Electrospray Applications. Microelectron. Eng. 2007, 84, 1190–1193. [Google Scholar] [CrossRef]
- Jae-Duk, L.; Jun-Bo, Y.; Jae-Kwan, K.; Hoon-Ju, C.; Choon-Sup, L.; Hi-Deok, L.; Ho-Jun, L.; Choong-Ki, K.; Chul-Hi, H. A Thermal Inkjet Printhead with a Monolithically Fabricated Nozzle Plate and Self-Aligned Ink Feed Hole. J. Microelectromech. Syst. 1999, 8, 229–236. [Google Scholar] [CrossRef]
- Lehnert, T.; Gijs, M.A.M.; Netzer, R.; Bischoff, U. Realization of Hollow SiO2 Micronozzles for Electrical Measurements on Living Cells. Appl. Phys. Lett. 2002, 81, 5063–5065. [Google Scholar] [CrossRef]
- Demirci, U. Acoustic Picoliter Droplets for Emerging Applications in Semiconductor Industry and Biotechnology. J. Microelectromech. Syst. 2006, 15, 957–966. [Google Scholar] [CrossRef]
- Nagai, M.; Oohara, K.; Kato, K.; Kawashima, T.; Shibata, T. Development and Characterization of Hollow Microprobe Array as a Potential Tool for Versatile and Massively Parallel Manipulation of Single Cells. Biomed. Microdevices 2015, 17, 41. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, X.; Zeng, L.; Huang, Y.; Yin, Z. Fabrication and Evaluation of a Protruding Si-Based Printhead for Electrohydrodynamic Jet Printing. J. Micromech. Microeng. 2017, 27, 125004. [Google Scholar] [CrossRef]
- Phan, H.V.; Coşkun, M.B.; Şeşen, M.; Pandraud, G.; Neild, A.; Alan, T. Vibrating Membrane with Discontinuities for Rapid and Efficient Microfluidic Mixing. Lab Chip 2015, 15, 4206–4216. [Google Scholar] [CrossRef]
- Górzny, M.Ł.; Opara, N.L.; Guzenko, V.A.; Cadarso, V.J.; Schift, H.; Li, X.D.; Padeste, C. Microfabricated Silicon Chip as Lipid Membrane Sample Holder for Serial Protein Crystallography. Micro Nano Eng. 2019, 3, 31–36. [Google Scholar] [CrossRef]
- Rhim, S.H.; Son, Y.K.; Oh, S.I. Punching of Ultra Small Size Hole Array. CIRP Ann. 2005, 54, 261–264. [Google Scholar] [CrossRef]
- Zhao, W.; Shen, X.; Liu, H.; Wang, L.; Jiang, H. Effect of High Repetition Rate on Dimension and Morphology of Micro-Hole Drilled in Metals by Picosecond Ultra-Short Pulse Laser. Opt. Lasers Eng. 2020, 124, 105811. [Google Scholar] [CrossRef]
- Iliescu, C.; Taylor, H.; Avram, M.; Miao, J.; Franssila, S. A Practical Guide for the Fabrication of Microfluidic Devices Using Glass and Silicon. Biomicrofluidics 2012, 6, 016505. [Google Scholar] [CrossRef]
- Fan, J.; Men, Y.; Hao Tseng, K.; Ding, Y.; Ding, Y.; Villarreal, F.; Tan, C.; Li, B.; Pan, T. Dotette: Programmable, High-Precision, Plug-and-Play Droplet Pipetting. Biomicrofluidics 2018, 12, 034107. [Google Scholar] [CrossRef]
- Mansoor, I.; Hafeli, U.O.; Stoeber, B. Hollow Out-of-Plane Polymer Microneedles Made by Solvent Casting for Transdermal Drug Delivery. J. Microelectromech. Syst. 2012, 21, 44–52. [Google Scholar] [CrossRef]
- Zhou, K.; Zhu, X.G.; Li, Y.; Liu, J. Fabrication of PDMS Micro Through-Holes Using Micromolding in Open Capillaries. RSC Adv. 2014, 4, 31988–31993. [Google Scholar] [CrossRef]
- Muluneh, M.; Issadore, D. Hybrid Soft-Lithography/Laser Machined Microchips for the Parallel Generation of Droplets. Lab Chip 2013, 13, 4750–4754. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, I.; Liu, Y.; Häfeli, U.O.; Stoeber, B. Arrays of Hollow Out-of-Plane Microneedles Made by Metal Electrodeposition onto Solvent Cast Conductive Polymer Structures. J. Micromech. Microeng. 2013, 23, 085011. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, D.H.; Lee, E.J.; Lee, S.-H. Study of Cellular Behaviors on Concave and Convex Microstructures Fabricated from Elastic PDMS Membranes. Lab Chip 2009, 9, 2043–2049. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.; Park, S. Effects of Temperature on Mechanical Properties of SU-8 Photoresist Material. J. Mech. Sci. Technol. 2013, 27, 2701–2707. [Google Scholar] [CrossRef]
- Sivakumar, R.; Lee, N.Y. Microfluidic Device Fabrication Mediated by Surface Chemical Bonding. Analyst 2020, 145, 4096–4110. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Gupta, H.; Pandey, G.; Ryu, S.; Shibata, T.; Santra, T.S.; Nagai, M. Single-Cell Manipulation. In Handbook of Single Cell Technologies; Santra, T.S., Tseng, F.-G., Eds.; Springer: Singapore, 2020; pp. 1–26. ISBN 978-981-10-4857-9. [Google Scholar]
- Loudon, C.; McCulloh, K. Application of the Hagen-Poiseuille Equation to Fluid Feeding through Short Tubes. Ann. Entomol. Soc. Am. 1999, 92, 153–158. [Google Scholar] [CrossRef]
- Brambilla, A.; Premoli, A.; Storti-Gajani, G. Recasting Modified Nodal Analysis to Improve Reliability in Numerical Circuit Simulation. IEEE Trans. Circuits Syst. I 2005, 52, 522–534. [Google Scholar] [CrossRef]
- Takken, M.; Wille, R. Accelerated Computational Fluid Dynamics Simulations of Microfluidic Devices by Exploiting Higher Levels of Abstraction. Micromachines 2024, 15, 129. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanagi, K.; Tiwari, A.; Kawaharada, S.; Okamoto, S.; Shibata, T.; Santra, T.S.; Nagai, M. Transparent SU-8 Micronozzle Array with Minimal Dead Volume for Parallel Liquid-to-Liquid Sample Ejection. Micro 2025, 5, 42. https://doi.org/10.3390/micro5030042
Tanagi K, Tiwari A, Kawaharada S, Okamoto S, Shibata T, Santra TS, Nagai M. Transparent SU-8 Micronozzle Array with Minimal Dead Volume for Parallel Liquid-to-Liquid Sample Ejection. Micro. 2025; 5(3):42. https://doi.org/10.3390/micro5030042
Chicago/Turabian StyleTanagi, Kentaro, Anuj Tiwari, Sho Kawaharada, Shunya Okamoto, Takayuki Shibata, Tuhin Subhra Santra, and Moeto Nagai. 2025. "Transparent SU-8 Micronozzle Array with Minimal Dead Volume for Parallel Liquid-to-Liquid Sample Ejection" Micro 5, no. 3: 42. https://doi.org/10.3390/micro5030042
APA StyleTanagi, K., Tiwari, A., Kawaharada, S., Okamoto, S., Shibata, T., Santra, T. S., & Nagai, M. (2025). Transparent SU-8 Micronozzle Array with Minimal Dead Volume for Parallel Liquid-to-Liquid Sample Ejection. Micro, 5(3), 42. https://doi.org/10.3390/micro5030042