Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = microcavity lasers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1937 KB  
Article
Standing Wave Photon Structures in Constraint Spaces
by Donglin Zu
Photonics 2025, 12(9), 841; https://doi.org/10.3390/photonics12090841 - 22 Aug 2025
Viewed by 528
Abstract
Based on the single-photon structure model, the standing wave electric 4-photon (SWE4-P) composite, the standing wave magnetic 4-photon (SWM4-P) composite in one-dimensional longitudinal constraint space, and the standing wave 8-photon (SW8-P) composite structure in a laser microcavity are derived. The electromagnetic field of [...] Read more.
Based on the single-photon structure model, the standing wave electric 4-photon (SWE4-P) composite, the standing wave magnetic 4-photon (SWM4-P) composite in one-dimensional longitudinal constraint space, and the standing wave 8-photon (SW8-P) composite structure in a laser microcavity are derived. The electromagnetic field of the TM010 mode in a microwave cylindrical resonant cavity is studied and analyzed, and the photon structure basic unit of this mode is identified as the standing wave cylindrical 8-photon composite structure. The cylindrical photon is of the same size as the cavity volume, the photon volume being V = πR2L. The standing wave 8-photon composite structure contains an SWE4-P composite and an SWM4-P composite, with a phase difference of 90°. Therefor, the energy unit of the TM010 mode in the cavity is 8ω. Full article
Show Figures

Figure 1

7 pages, 1290 KB  
Communication
Direct Nanoparticle Sensing in Liquids with Free-Space Excited Optical Whispering-Gallery-Mode Microresonators
by Davide D’Ambrosio, Saverio Avino and Gianluca Gagliardi
Sensors 2025, 25(16), 5111; https://doi.org/10.3390/s25165111 - 18 Aug 2025
Viewed by 598
Abstract
Whispering-gallery-mode (WGM) microresonators are amongst the most promising optical sensors for detecting bio-chemical targets. A number of laser interrogation methods have been proposed and demonstrated over the last decade, based on scattering and absorption losses or resonance splitting and shift, harnessing the high-quality [...] Read more.
Whispering-gallery-mode (WGM) microresonators are amongst the most promising optical sensors for detecting bio-chemical targets. A number of laser interrogation methods have been proposed and demonstrated over the last decade, based on scattering and absorption losses or resonance splitting and shift, harnessing the high-quality factor and ultra-small volume of WGMs. Actually, regardless of the sensitivity enhancement, their practical sensing operation may be hampered by the complexity of coupling devices as well as the signalprocessing required to extract the WGM response. Here, we use a silica microsphere immersed in an aqueous environment and efficiently excite optical WGMs with a free-space visible laser, thus collecting the relevant information from the transmitted and back-scattered light without any optical coupler, fiber, or waveguide. We show that a 640-nm diode laser, actively frequency-locked on resonance, provides real-time, fast sensing of dielectric nanoparticles approaching the surface with direct analog readout. Thanks to our illumination scheme, the sensor can be kept in water and operate for days without degradation or loss of sensitivity. Diverse noise contributions are carefully considered and quantified in our system, showing a minimum detectable particle size below 1 nm essentially limited by the residual laser microcavity jitter. Further analysis reveals that the inherent laserfrequency instability in the short, -mid-term operation regime sets an ultimate bound of 0.3 nm. Based on this work, we envisage the possibility to extend our method in view of developing new viable approaches for detection of nanoplastics in natural water without resorting to complex chemical laboratory methods. Full article
(This article belongs to the Section Communications)
Show Figures

Graphical abstract

10 pages, 2570 KB  
Article
Demonstration of Monolithic Integration of InAs Quantum Dot Microdisk Light Emitters and Photodetectors Directly Grown on On-Axis Silicon (001)
by Shuaicheng Liu, Hao Liu, Jihong Ye, Hao Zhai, Weihong Xiong, Yisu Yang, Jun Wang, Qi Wang, Yongqing Huang and Xiaomin Ren
Micromachines 2025, 16(8), 897; https://doi.org/10.3390/mi16080897 - 31 Jul 2025
Viewed by 886
Abstract
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip [...] Read more.
Silicon-based microcavity quantum dot lasers are attractive candidates for on-chip light sources in photonic integrated circuits due to their small size, low power consumption, and compatibility with silicon photonic platforms. However, integrating components like quantum dot lasers and photodetectors on a single chip remains challenging due to material compatibility issues and mode field mismatch problems. In this work, we have demonstrated monolithic integration of an InAs quantum dot microdisk light emitter, waveguide, and photodetector on a silicon platform using a shared epitaxial structure. The photodetector successfully monitored variations in light emitter output power, experimentally proving the feasibility of this integrated scheme. This work represents a key step toward multifunctional integrated photonic systems. Future efforts will focus on enhancing the light emitter output power, improving waveguide efficiency, and scaling up the integration density for advanced applications in optical communication. Full article
(This article belongs to the Special Issue Silicon-Based Photonic Technology and Devices)
Show Figures

Figure 1

16 pages, 9618 KB  
Article
Scattering of Radiation by a Periodic Structure of Circular and Elliptical Microcavities in a Multimode Optical Waveguide
by Alexandra Yu. Petukhova, Anatolii V. Perminov, Mikhail A. Naparin and Victor V. Krishtop
Photonics 2025, 12(7), 727; https://doi.org/10.3390/photonics12070727 - 17 Jul 2025
Viewed by 521
Abstract
We developed a mathematical model to examine the scattering of radiation by a periodic structure of circular and elliptical microcavities formed in a planar optical waveguide. The waveguide simulates the behaviour of a 62.5/125 µm multimode optical fibre. The calculations focused on the [...] Read more.
We developed a mathematical model to examine the scattering of radiation by a periodic structure of circular and elliptical microcavities formed in a planar optical waveguide. The waveguide simulates the behaviour of a 62.5/125 µm multimode optical fibre. The calculations focused on the intensity distribution of scattered light with a wavelength of 1310 nm along the periodic structure, i.e., along the side surface of the waveguide, as a function of the microcavity dimensions and their spatial arrangement within the waveguide core. The optimal geometrical parameters of the microstructure, ensuring the most uniform light scattering, were identified. The model is valid for multimode optical fibres containing strictly periodic structures of microcavities with spherical or elliptical cross-sections that scatter laser radiation in all directions. One potential application of such fibres is as light sources in medical probes for surgical procedures requiring additional illumination and uniform irradiation of affected tissues. Furthermore, the findings of this study offer significant potential for the development of sensing elements for fibre-optic sensors. The findings of this study will facilitate the design of scattering structures with microcavities that ensure a highly uniform scattering pattern. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

11 pages, 4127 KB  
Article
Optimizing Semiconductor Saturable Absorption Mirrors Using Subwavelength Dielectric Gratings for Fiber Lasers
by Chaoqun Wei, Xiansheng Jia, Hongmei Chen, Boyuan Liu, Ziyang Zhang and Cheng Jiang
Photonics 2025, 12(3), 213; https://doi.org/10.3390/photonics12030213 - 28 Feb 2025
Viewed by 873
Abstract
Ultrafast fiber lasers have shown exceptional performance across various domains, including material processing, medical applications, and optoelectronic communication. The semiconductor saturable absorber mirror (SESAM) is a key enabler of ultrafast laser operation. However, the narrow wavelength range and limited modulation depth of conventional [...] Read more.
Ultrafast fiber lasers have shown exceptional performance across various domains, including material processing, medical applications, and optoelectronic communication. The semiconductor saturable absorber mirror (SESAM) is a key enabler of ultrafast laser operation. However, the narrow wavelength range and limited modulation depth of conventional SESAMs pose challenges to further advancing ultrafast fiber laser technology. To address these limitations, we explored the integration of guided mode resonance (GMR) effects to enhance light–matter interaction within the absorption layer. By incorporating subwavelength dielectric film gratings onto the cap layer of SESAMs, we excited GMR and formed a microcavity structure in conjunction with the distributed Bragg mirror (DBR). This design significantly improved the absorption efficiency of InAs quantum dots. The experimental results demonstrate that the modulation depth of the SESAM increased from 6.7% to 17.3%, while the pulse width was reduced by 2.41 times. These improvements facilitated the realization of a high-quality, stable ultrafast fiber laser. This study not only broadens the application potential of ultrafast lasers in diverse fields but also offers a practical pathway for advancing SESAM technology toward industrial-scale deployment. Full article
(This article belongs to the Special Issue Fiber Lasers: Recent Advances and Applications)
Show Figures

Figure 1

10 pages, 3672 KB  
Article
Random Plasmonic Laser Based on Bismuth/Aluminum/Yttria/Silver Co-Doped Silica Fiber with Microcavity Shaped Tip
by José Augusto de la Fuente León, Ma. Alejandrina Martínez Gámez, José Luis Lucio Martinez, Alexander V. Kir’yanov, Karim Gibrán Hernández Chahín and Mukul Chandra Paul
Fibers 2025, 13(2), 17; https://doi.org/10.3390/fib13020017 - 5 Feb 2025
Viewed by 1100
Abstract
In this study, we demonstrate a proof of principle of an all-fiber random laser due to the plasmonic effect. This was achieved with a fiber co-doped with bismuth/aluminum/yttria/silver in which a microsphere (microcavity) at the fiber’s tip was made using a splicing machine. [...] Read more.
In this study, we demonstrate a proof of principle of an all-fiber random laser due to the plasmonic effect. This was achieved with a fiber co-doped with bismuth/aluminum/yttria/silver in which a microsphere (microcavity) at the fiber’s tip was made using a splicing machine. The presence of bismuth and silver nanoparticles in the fiber along with bismuth–aluminum phototropic centers stands behind the observed phenomenon. The effect can be attributed to the in-pair functioning of this unit as an active medium and volumetric plasmonic feedback, resulting in lasing at 807 nm under 532 nm pumping with a notably low (~2 mW) threshold. Full article
Show Figures

Figure 1

11 pages, 2763 KB  
Article
Random Emission and Control of Whispering Gallery Mode Using Flexible Optical Fiber
by Bingyang Cao, Zhen He and Weili Zhang
Photonics 2025, 12(1), 29; https://doi.org/10.3390/photonics12010029 - 1 Jan 2025
Viewed by 1360
Abstract
Axially uniform optical fibers provide a low-cost, scalable platform for the emission of whispering gallery mode (WGM) lasers. This paper proposes a method for generating and controlling WGM lasers based on the design of a flexible optical fiber array structure. By adjusting the [...] Read more.
Axially uniform optical fibers provide a low-cost, scalable platform for the emission of whispering gallery mode (WGM) lasers. This paper proposes a method for generating and controlling WGM lasers based on the design of a flexible optical fiber array structure. By adjusting the spacing between the flexible fibers, the coupling relationship between different WGM modes is modulated, achieving a transition from regular to random WGM (R-WGM) mechanisms. Additionally, the application of this laser in information security encryption is demonstrated and explored. Full article
Show Figures

Figure 1

12 pages, 4728 KB  
Article
A Widely and Continuously Tunable Single-Mode Transmitter Based on a Hybrid Microcavity Laser
by Miao-Qing Wang, Bin Zhang, Zhen-Ning Zhang, You-Zeng Hao, Zun-Hao Hu, Yue-De Yang, Jin-Long Xiao, António L. Teixeira and Yong-Zhen Huang
Photonics 2024, 11(11), 1080; https://doi.org/10.3390/photonics11111080 - 17 Nov 2024
Viewed by 1356
Abstract
A method for achieving the single-mode and efficient unidirectional emission of a whispering gallery mode (WGM) semiconductor laser is presented herein. Hybrid square-rectangular lasers (HSRLs) and hybrid square/rhombus-rectangular lasers (HSRRLs) consisting of a Fabry–Pérot (FP) cavity and a square or rhombus cavity microcavity [...] Read more.
A method for achieving the single-mode and efficient unidirectional emission of a whispering gallery mode (WGM) semiconductor laser is presented herein. Hybrid square-rectangular lasers (HSRLs) and hybrid square/rhombus-rectangular lasers (HSRRLs) consisting of a Fabry–Pérot (FP) cavity and a square or rhombus cavity microcavity are described. In addition, a transmitter optical subassembly (TOSA) based on an HSRRL chip was fabricated, which has a wide and continuous wavelength tuning range. Wavelength channels from 1555.75 nm to 1568.15 nm with a spacing of 50 GHz were demonstrated with a good side mode suppression ratio (SMSR) and good output power. These devices have the potential to meet the typical requirements of optical communication networks. Full article
(This article belongs to the Special Issue Advanced Lasers and Their Applications, 2nd Edition )
Show Figures

Figure 1

12 pages, 2870 KB  
Article
Highly Sensitive Gas Pressure Sensing with Temperature Monitoring Using a Slightly Tapered Fiber with an Inner Micro-Cavity and a Micro-Channel
by Changwei Sun, Fen Yu, Huifang Chen, Dongning Wang and Ben Xu
Sensors 2024, 24(21), 6844; https://doi.org/10.3390/s24216844 - 24 Oct 2024
Cited by 1 | Viewed by 1322
Abstract
A highly sensitive optical fiber gas pressure sensor with temperature monitoring is proposed and demonstrated. It is based on a slightly tapered fiber with an inner micro-cavity forming an in-fiber Mach–Zehnder interferometer (MZI), and a micro-channel is drilled into the lateral wall of [...] Read more.
A highly sensitive optical fiber gas pressure sensor with temperature monitoring is proposed and demonstrated. It is based on a slightly tapered fiber with an inner micro-cavity forming an in-fiber Mach–Zehnder interferometer (MZI), and a micro-channel is drilled into the lateral wall of the in-fiber micro-cavity using a femtosecond laser to allow gas to flow in. Due to the dependence of the refractive index (RI) of air inside the micro-cavity on its gas pressure and the high RI sensitivity of the MZI, the device is extremely sensitive to gas pressure. To prevent fiber breakage, the MZI is housed in a silicate capillary tube with an air inlet. Multiple modes are excited by slightly tapering the inner micro-cavity, and the resonance dips in the sensor’s transmission spectrum feature different linear gas pressure and temperature responses, so a sensitivity matrix algorithm can be used to achieve simultaneous demodulation of two parameters, thus resolving the temperature crosstalk. As expected, the experimental results demonstrated the reliability of the matrix algorithm, with pressure sensitivity reaching up to ~−12.967 nm/MPa and temperature sensitivity of ~89 pm/°C. The features of robust mechanical strength and high air pressure sensitivity with temperature monitoring imply that the proposed sensor has good practical and application prospects. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

11 pages, 3212 KB  
Article
Ultrastable and Low-Threshold Two-Photon-Pumped Amplified Spontaneous Emission from CsPbBr3/Ag Hybrid Microcavity
by Shulei Li, Yatao Zhang, Zhiran Zhao, Shiyi Cheng, Zixin Li, Yuanyuan Liu, Quantong Deng, Jun Dai, Yunbao Zheng and Zhenxu Lin
Nanomaterials 2024, 14(20), 1622; https://doi.org/10.3390/nano14201622 - 10 Oct 2024
Viewed by 1531
Abstract
Halide perovskite materials have garnered significant research attention due to their remarkable performance in both photoharvesting photovoltaics and photoemission applications. Recently, self-assembled CsPbBr3 superstructures (SSs) have been demonstrated to be promising lasing materials. In this study, we report the ultrastable two-photon-pumped amplified [...] Read more.
Halide perovskite materials have garnered significant research attention due to their remarkable performance in both photoharvesting photovoltaics and photoemission applications. Recently, self-assembled CsPbBr3 superstructures (SSs) have been demonstrated to be promising lasing materials. In this study, we report the ultrastable two-photon-pumped amplified stimulated emission from a CsPbBr3 SS/Ag hybrid microcavity with a low threshold of 0.8 mJ/cm2 at room temperature. The experimental results combined with numerical simulations show that the CsPbBr3 SS exhibits a significant enhancement in the electromagnetic properties in the hybrid microcavity on Ag film, leading to the uniform spatial temperature distribution under the irradiation of a pulsed laser, which is conducive to facilitate the recrystallization process of the QDs and improve their structural integrity and optical properties. This study provides a new idea for the application of CsPbBr3/Ag hybrid microcavity in photonic devices, demonstrating its potential in efficient optical amplification and upconversion lasers. Full article
(This article belongs to the Special Issue Nanostructured Materials for Photonic and Plasmonic Applications)
Show Figures

Figure 1

9 pages, 1712 KB  
Article
An Organic Microcavity Laser Amplifier Integrated on the End Facet of an Optical Fiber
by Meng Wang, Zhuangzhuang Xu, Yaqi Ren, Xiaolei Bai and Xinping Zhang
Nanomaterials 2024, 14(15), 1314; https://doi.org/10.3390/nano14151314 - 4 Aug 2024
Viewed by 1889
Abstract
We report a thin-film optical amplifier integrated on a fiber facet based on polymer-coated distributed feedback (DFB) microcavities, which are fabricated on a planar substrate and then transferred onto fiber tips by means of a flexible transfer technique. The amplified light directly couples [...] Read more.
We report a thin-film optical amplifier integrated on a fiber facet based on polymer-coated distributed feedback (DFB) microcavities, which are fabricated on a planar substrate and then transferred onto fiber tips by means of a flexible transfer technique. The amplified light directly couples into the fiber and is detected when coupled out at the other end after propagating along the fiber for about 20 cm. A prominently amplification factor of about 4.33 at 578.57 nm is achieved by sending supercontinuum pulses into the hundreds of micrometers’ DFB microcavities along the normal direction, which is also the axis direction of the fiber. The random distortions of grating lines generated during the transfer process result in a larger amplification spectral range and a less strict polarization dependence for injected light. Benefitting from the device size of hundreds of micrometers and the ease of integration, polymer amplifiers based on DFB microcavities demonstrate significant application potentials in optical communication systems and miniaturized optical devices. Full article
Show Figures

Figure 1

9 pages, 5634 KB  
Article
Suppression of Secondary Electron Emission by Vertical Graphene Coating on Ni Microcavity Substrate
by Xiaoning Zhang, Bin Tang, Jialong He, Hui Zhao, Ronghua Wang, Hao Gui, Xinlu Li, Kefu Liu, Jinshui Shi and Guomei Chang
Nanomaterials 2024, 14(15), 1268; https://doi.org/10.3390/nano14151268 - 29 Jul 2024
Cited by 1 | Viewed by 1566
Abstract
Suppression of secondary electron emission (SEE) from metal surfaces is crucial for enhancing the performance of particle accelerators, spacecraft, and vacuum electronic devices. Earlier research has demonstrated that either etching the metal surface to create undulating structures or coating it with materials having [...] Read more.
Suppression of secondary electron emission (SEE) from metal surfaces is crucial for enhancing the performance of particle accelerators, spacecraft, and vacuum electronic devices. Earlier research has demonstrated that either etching the metal surface to create undulating structures or coating it with materials having low secondary electron yield (SEY) can markedly decrease SEE. However, the effectiveness of growing vertical graphene (VG) on laser-etched metal surfaces in suppressing SEE remains uncertain. This study examined the collective impact of these methods by applying nanoscale arrays of VG coating using plasma-enhanced chemical vapor deposition on Ni substrates, along with the formation of micrometer-sized microcavity array through laser etching. Comparative tests conducted revealed that the SEY of the samples subjected to VG coating on a microcavity array was lower compared to samples with either only a microcavity array or VG coating alone. Additionally, the crystallinity of VG grown on substrates of varying shapes exhibited variations. This study presents a new method for investigating the suppression of SEE on metal surfaces, contributing to the existing body of knowledge in this field. Full article
Show Figures

Figure 1

12 pages, 5941 KB  
Article
Boundary Feedback Fiber Random Microcavity Laser Based on Disordered Cladding Structures
by Hongyang Zhu, Bingquan Zhao, Zhi Liu, Zhen He, Lihong Dong, Hongyu Gao and Xiaoming Zhao
Photonics 2024, 11(5), 467; https://doi.org/10.3390/photonics11050467 - 16 May 2024
Cited by 1 | Viewed by 2182
Abstract
The cavity form of complex microcavity lasers predominantly relies on disordered structures, whether found in nature or artificially prepared. These structures, characterized by disorder, facilitate random lasing through the feedback effect of the cavity boundary and the internal scattering medium via various mechanisms. [...] Read more.
The cavity form of complex microcavity lasers predominantly relies on disordered structures, whether found in nature or artificially prepared. These structures, characterized by disorder, facilitate random lasing through the feedback effect of the cavity boundary and the internal scattering medium via various mechanisms. In this paper, we report on a random fiber laser employing a disordered scattering cladding medium affixed to the inner cladding of a hollow-core fiber. The internal flowing liquid gain establishes a stable liquid-core waveguide environment, enabling long-term directional coupling output for random laser emission. Through theoretical analysis and experimental validation, we demonstrate that controlling the disorder at the cavity boundary allows liquid-core fiber random microcavities to exhibit random lasing output with different mechanisms. This provides a broad platform for in-depth research into the generation and control of complex microcavity lasers, as well as the detection of scattered matter within micro- and nanostructures. Full article
(This article belongs to the Special Issue Advancements in Fiber Lasers and Their Applications)
Show Figures

Figure 1

20 pages, 6868 KB  
Article
Aluminum Micropillar Surfaces with Hierarchical Micro- and Nanoscale Features for Enhancement of Boiling Heat Transfer Coefficient and Critical Heat Flux
by Armin Hadžić, Matic Može, Matevž Zupančič and Iztok Golobič
Nanomaterials 2024, 14(8), 667; https://doi.org/10.3390/nano14080667 - 11 Apr 2024
Cited by 6 | Viewed by 2572
Abstract
The rapid progress of electronic devices has necessitated efficient heat dissipation within boiling cooling systems, underscoring the need for improvements in boiling heat transfer coefficient (HTC) and critical heat flux (CHF). While different approaches for micropillar fabrication on copper or silicon substrates have [...] Read more.
The rapid progress of electronic devices has necessitated efficient heat dissipation within boiling cooling systems, underscoring the need for improvements in boiling heat transfer coefficient (HTC) and critical heat flux (CHF). While different approaches for micropillar fabrication on copper or silicon substrates have been developed and have shown significant boiling performance improvements, such enhancement approaches on aluminum surfaces are not broadly investigated, despite their industrial applicability. This study introduces a scalable approach to engineering hierarchical micro-nano structures on aluminum surfaces, aiming to simultaneously increase HTC and CHF. One set of samples was produced using a combination of nanosecond laser texturing and chemical etching in hydrochloric acid, while another set underwent an additional laser texturing step. Three distinct micropillar patterns were tested under saturated pool boiling conditions using water at atmospheric pressure. Our findings reveal that microcavities created atop pillars successfully facilitate nucleation and micropillars representing nucleation site areas on a microscale, leading to an enhanced HTC up to 242 kW m−2 K−1. At the same time, the combination of the surrounding hydrophilic porous area enables increased wicking and pillar patterning, defining the vapor–liquid pathways on a macroscale, which leads to an increase in CHF of up to 2609 kW m−2. Full article
Show Figures

Figure 1

14 pages, 3109 KB  
Article
1/f Noise Mitigation in an Opto-Mechanical Sensor with a Fabry–Pérot Interferometer
by Andrea M. Nelson, Jose Sanjuan and Felipe Guzmán
Sensors 2024, 24(6), 1969; https://doi.org/10.3390/s24061969 - 20 Mar 2024
Cited by 1 | Viewed by 2676
Abstract
Low-frequency and 1/f noise are common measurement limitations that arise in a variety of physical processes. Mitigation methods for these noises are dependent on their source. Here, we present a method for removing 1/f noise of optical origin using a [...] Read more.
Low-frequency and 1/f noise are common measurement limitations that arise in a variety of physical processes. Mitigation methods for these noises are dependent on their source. Here, we present a method for removing 1/f noise of optical origin using a micro-cavity Fabry–Pérot (FP) interferometer. A mechanical modulation of the FP cavity length was applied to a previously studied opto-mechanical sensor. It effectively mimics an up-conversion of the laser frequency, shifting signals to a region where lower white-noise sources dominate and 1/f noise is not present. Demodulation of this signal shifts the results back to the desired frequency range of observation with the reduced noise floor of the higher frequencies. This method was found to improve sensitivities by nearly two orders of magnitude at 1 Hz and eliminated 1/f noise in the range from 1 Hz to 4 kHz. A mathematical model for low-finesse FP cavities is presented to support these results. This study suggests a relatively simple and efficient method for 1/f noise suppression and improving the device sensitivity of systems with an FP interferometer readout. Full article
(This article belongs to the Special Issue Sensors Based on Optical and Photonic Devices)
Show Figures

Figure 1

Back to TopTop