Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = micro-perforation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9390 KiB  
Article
An Integrated SEA–Deep Learning Approach for the Optimal Geometry Performance of Noise Barrier
by Hao Wu, Lingshan He, Ziyu Tao, Duo Zhang and Yunke Luo
Machines 2025, 13(8), 670; https://doi.org/10.3390/machines13080670 (registering DOI) - 31 Jul 2025
Abstract
The escalating environmental noise pollution along urban rail transit corridors, exacerbated by rapid urbanization, necessitates innovative and efficient noise control measures. A comprehensive investigation was conducted that utilized field measurements of train passing-by noise to establish a statistical energy analysis model for evaluating [...] Read more.
The escalating environmental noise pollution along urban rail transit corridors, exacerbated by rapid urbanization, necessitates innovative and efficient noise control measures. A comprehensive investigation was conducted that utilized field measurements of train passing-by noise to establish a statistical energy analysis model for evaluating the acoustic performance of both vertical (VB) and fully enclosed (FB) barrier configurations. The study incorporated Maa’s theory of micro-perforated plate (MPP) parameter optimization and developed a neural network surrogate model focused on insertion loss maximization for barrier geometric design. Key findings revealed significant barrier-induced near-track noise amplification, with peak effects observed at the point located 1 m from the barrier and 2 m above the rail. Frequency-dependent analysis demonstrated a characteristic rise-and-fall reflection pattern, showing maximum amplifications of 1.47 dB for VB and 4.13 dB for FB within the 400–2000 Hz range. The implementation of optimized MPPs was found to effectively eliminate the near-field noise amplification effects, achieving sound pressure level reductions of 4–8 dB at acoustically sensitive locations. Furthermore, the high-precision surrogate model (R2 = 0.9094, MSE = 0.8711) facilitated optimal geometric design solutions. The synergistic combination of MPP absorption characteristics and geometric optimization resulted in substantially enhanced barrier performance, offering practical solutions for urban rail noise mitigation strategies. Full article
(This article belongs to the Special Issue Advances in Noises and Vibrations for Machines)
Show Figures

Figure 1

8 pages, 187 KiB  
Article
Ultrasound as a First-Line Modality for Acute Colonic Diverticulitis: A Prospective Comparison with CT
by Gil N. Bachar, Eli Atar, Moran Dahan, Haim Neiman, Tamar Gurvitz, Issa Nidal and Selma Gabrieli
J. Clin. Med. 2025, 14(7), 2510; https://doi.org/10.3390/jcm14072510 - 7 Apr 2025
Viewed by 752
Abstract
Objectives: We aimed to compare the accuracy of ultrasound and computed tomography (CT) for the diagnosis of patients with suspected acute diverticulitis and to determine if ultrasound might serve as the primary tool for this purpose in the emergency department. Methods: A double-blind [...] Read more.
Objectives: We aimed to compare the accuracy of ultrasound and computed tomography (CT) for the diagnosis of patients with suspected acute diverticulitis and to determine if ultrasound might serve as the primary tool for this purpose in the emergency department. Methods: A double-blind prospective study design was used. The study group included 142 consecutive patients with clinically suspected diverticulitis admitted to the emergency department of a tertiary medical center in 2016–2019. All underwent first ultrasound examination followed by abdominal CT. The final diagnosis was interpreted independently by an expert radiologist in a blinded fashion. Imaging data were compared with final diagnosis and we analyzed the findings against the medical, clinical, and laboratory data. Results: The final diagnosis was colonic diverticulitis in 98 patients. Sensitivity was 93.8% for ultrasound and 100% for CT; corresponding specificity rates were 86.7% and 100%. Agreement between the modalities was excellent (kappa = 0.81). CT demonstrated complicated diverticulosis in 18 patients: 8 pericolic abscesses, 9 micro-perforations, and 1 fistula. Ultrasound missed one abscess and five micro-perforations; however, all were small and were treated conservatively. Twenty-three patients were found to have an acute abdominal condition other than diverticulitis; sensitivity in these cases was 60.8% for ultrasound and 91.3% for CT. In 21 patients, the diagnosis was unknown. Conclusions: Ultrasound has similar sensitivity and specificity to CT for the diagnosis of acute colonic diverticulitis. We believe ultrasound may serve as the initial imaging modality in the emergency department, with CT reserved for large abscesses or inconclusive ultrasound findings. Full article
(This article belongs to the Special Issue Diagnosis and Surgical Treatment for Colorectal Cancer)
19 pages, 3483 KiB  
Article
Simulation, Measurement, and Optimization of Sound Absorption in Nanofiber Membrane Composite with a Nonwoven Material
by Xiaofei Shao and Xiong Yan
Polymers 2025, 17(7), 874; https://doi.org/10.3390/polym17070874 - 25 Mar 2025
Viewed by 667
Abstract
To address the increasingly complex demands of noise control, this study investigated the integration of a micro-perforated nanofiber membrane (MPNM) with nonwoven fiber felt (NFF), exploiting their synergistic effects to achieve efficient low-frequency broadband sound absorption. Through theoretical analysis, numerical simulations, and experimental [...] Read more.
To address the increasingly complex demands of noise control, this study investigated the integration of a micro-perforated nanofiber membrane (MPNM) with nonwoven fiber felt (NFF), exploiting their synergistic effects to achieve efficient low-frequency broadband sound absorption. Through theoretical analysis, numerical simulations, and experimental validation, the relationship between the sound absorption performance of the composite structure and factors such as the lamination sequence, bonding area, perforation parameters, thickness of the MPNM, and thickness of the NFF were elucidated. These findings provided new insights for the design of high-performance, tunable, sound-absorbing materials. The results demonstrated that the MPNM-NFF effectively combined two distinct sound absorption mechanisms, thereby expanding the effective absorption bandwidth, with particularly enhanced low-frequency sound absorption. Moreover, through algorithmic optimization of the structural parameters, targeted absorption of noise across different frequency bands was achieved, with the optimal average sound absorption coefficients reaching 0.70 in the low-frequency range, 0.91 in the mid-frequency range, and 0.82 in the full-frequency range. This research offered both theoretical foundations and practical guidance for the development of composite materials with high efficiency and broadband sound absorption characteristics, paving the way for innovative applications in noise control materials. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

14 pages, 2292 KiB  
Article
An Experimental Study of the Pull-In Voltage in RF MEMS Switches Fabricated by Au Electroplating and Standard Wet Release: Considering the Bridge Geometry
by Loukas Michalas, George Stavrinidis, Katerina Tsagaraki, Antonis Stavrinidis and George Konstantinidis
Sensors 2025, 25(6), 1877; https://doi.org/10.3390/s25061877 - 18 Mar 2025
Viewed by 2434
Abstract
Radio Frequency Micro Electro Mechanical Systems (RF MEMS) are devices showing exceptional potential to satisfy the demands of emerging RF electronic technologies, including those considered for high-power applications, such as for long distance communication systems. Operation in this regime requires an alternative way [...] Read more.
Radio Frequency Micro Electro Mechanical Systems (RF MEMS) are devices showing exceptional potential to satisfy the demands of emerging RF electronic technologies, including those considered for high-power applications, such as for long distance communication systems. Operation in this regime requires an alternative way of thinking for these devices and, for example, a more accurate control of the pull-in voltage is of major importance due to the self-actuation effect. Therefore, the studies focusing on the features of the moving bridges are of great importance. This work presents the fabrication of a full family of RF MEMS switches suitable for high-power implementations having bridges deposited by Au electroplating and released using purely standard wet processes, as well as a carefully designed experimental study of their pull-in voltage. Depositing the bridge of the high-power RF MEMS by using only a single electroplating step makes the device fabrication easier, whilst the utilization of a purely wet release process is an asset. This method relies on low temperature processes, applicable simultaneously in bridges with various geometrical and perforation details without the need of any specialised infrastructure. The experimentally obtained results suggest that for this technology the bridge thickness is a critical factor for controlling the pull-in characteristics between devices fabricated in the same run. Moreover, it is revealed that for thicker bridges, geometry and hole perforation effects are more pronounced. This technology is therefore suitable for developing RF MEMS where the bridge thickness could be potentially utilized for enabling optimization engineering between devices that should be fabricated in the same run but need to satisfy diverse specifications during their operation. Full article
(This article belongs to the Special Issue High-Power and High-Frequency RF MEMS and Their Applications)
Show Figures

Figure 1

22 pages, 5343 KiB  
Article
Mechanisms and Management Strategies for Satsuma Mandarin Fruit Cracking
by Yongjie Li, Guoqiang Jin, Mingxia Wen, Xiaoting Zhu and Yongqiang Zheng
Agronomy 2025, 15(3), 698; https://doi.org/10.3390/agronomy15030698 - 13 Mar 2025
Cited by 1 | Viewed by 885
Abstract
The Satsuma mandarin, a prominent fresh citrus variety cultivated in Asia, is susceptible to fruit cracking, a physiological disorder that significantly impacts yield and economic efficiency. This phenomenon occurs during the fruit expansion phase. The present study sought to further elucidate the correlation [...] Read more.
The Satsuma mandarin, a prominent fresh citrus variety cultivated in Asia, is susceptible to fruit cracking, a physiological disorder that significantly impacts yield and economic efficiency. This phenomenon occurs during the fruit expansion phase. The present study sought to further elucidate the correlation between citrus fruit cracking and fruit peel development or mineral elements, as well as to propose efficacious management measures. The present experiment was conducted on Citrus unshiu Marc. cv. ‘Miyagawa Wase’ over two successive seasons—2022 and 2023. The dynamic changes in fruit morphology were recorded using calipers, and the peel strength was assessed via a Plus Texture Analyzer. Paraffin sectioning technology was used to observe the morphological structure of peel cells. At 10 days after full bloom (DAFB), the peel cells exhibited vigorous proliferation, and the fruit and peel thicknesses underwent rapid expansion. At 50–60 d after full bloom, the longitudinal and transverse diameters of the fruit exhibited a marked increase in the growth rate of the former over the latter. At 80 d after full bloom, both the peel thickness change and the fruit growth rate exhibited a marked deceleration, and the albedo layer cells began to show signs of perforation. The following two time points were preliminarily proposed as the key points for the control of citrus fruit cracking: key point one was 50–60 days after full bloom; and key point two was 80–90 days after full bloom. The nitrogen (N), phosphorus (P), and potassium (K) contents in the different orchards were measured via the semi-micro Kjeldahl nitrogen method, the molybdenum–antimony colorimetric method, and flame photometry, respectively. The determination of other mineral elements was conducted by means of inductively coupled plasma spectroscopy. Principal component analysis was employed to analyze the 21-parameter indices of mineral elements in soil and leaf samples from the three orchards with different levels of fruit cracking. The study found that high concentrations of leaf Fe, P, and soil Cu, as well as organic matter content, contributed negatively to the extent of fruit cracking. The impact of diverse control measures on the incidence of fruit cracking was subsequently observed, following the implementation of tree crown spray treatments. The application of 0.5% calcium superphosphate and 0.006% EDTA-Fe, in combination with 10 ppm GA3 sprayed during two critical periods, significantly reduced fruit cracking and did not adversely affect the internal or external quality of the fruits. The study emphasises the necessity of customising management measures according to the developmental characteristics of citrus fruits, given the observed varietal and regional distinctions in susceptibility to cracking. These findings are pivotal for advancing research in the field of fruit cracking and promoting the healthy development of the industry. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

18 pages, 1852 KiB  
Article
Impact of Advanced Impregnation Technologies on the Bioactivity, Bioaccessibility, and Quality of a Hydrolyzed Collagen-Enriched Apple Snack
by Helena Nuñez, Rodrigo Retamal, Aldonza Jaques, Marlene Pinto, Pedro Valencia, Mónika Valdenegro, Cristian Ramirez, Sergio Almonacid and Andrés Córdova
Foods 2025, 14(5), 817; https://doi.org/10.3390/foods14050817 - 27 Feb 2025
Viewed by 931
Abstract
The increasing demand for functional foods with added health benefits has driven the development of innovative food products. This study aimed to develop a functional snack made from Granny Smith apples enriched with hydrolyzed collagen using impregnation technologies, including vacuum impregnation (VI), ultrasound [...] Read more.
The increasing demand for functional foods with added health benefits has driven the development of innovative food products. This study aimed to develop a functional snack made from Granny Smith apples enriched with hydrolyzed collagen using impregnation technologies, including vacuum impregnation (VI), ultrasound (US), and moderate electric field (MEF), and pretreatment with CO2 laser microperforations (MPs) combined with drying methods, including conventional drying (CD) and refractance window drying (RW). The collagen content increased significantly across treatments, with MP-I achieving the highest retention (79.86 g/100 g db). Compared with VI-CD (3.8 mg GAE/g db), MP-RW drying resulted in more total polyphenols (up to 7.2 mg GAE/g db), which was attributed to its shorter drying time (55 min vs. 160 min). The RW treatments also better-preserved color quality, with higher a* (red tones) and b* (yellow tones) values, especially in the MP-RW and US-RW treatments, highlighting their advantages in maintaining visual appeal. Texture analysis revealed that RW drying produced slices with reduced hardness and increased crispness, with MP-RW resulting in the highest sensory crispness score (8.3). In vitro digestion demonstrated that the (VI) treatment resulted in the highest degree of collagen bioaccessibility (~90%), underscoring the effectiveness of this method in improving nutrient delivery compared with the 65% MP, ~70% US, and ~74% methods. The ~90% bioaccessibility is particularly noteworthy, as it indicates that a significant portion of the impregnated collagen remains available for absorption, reinforcing the potential of VI as a strategy for developing functional foods with enhanced nutritional benefits. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

10 pages, 2792 KiB  
Article
The Pilot Study on Detecting Perforation with Abdominal Ultrasound During Gastric Endoscopic Submucosal Dissection
by Ji Eun Kim, Jeayoun Kim, Tae Se Kim, Yang Won Min, Hyuk Lee, Byung-Hoon Min, Jun Haeng Lee, Poong-Lyul Rhee and Jae J. Kim
Diagnostics 2025, 15(3), 335; https://doi.org/10.3390/diagnostics15030335 - 31 Jan 2025
Cited by 1 | Viewed by 779
Abstract
Objectives: The indications for endoscopic submucosal dissection (ESD) for gastric adenoma and gastric cancer have expanded, leading to an increase in the number of patients with high procedural complexity. Post-ESD perforations prolong hospital stays and increase costs. However, no studies have focused on [...] Read more.
Objectives: The indications for endoscopic submucosal dissection (ESD) for gastric adenoma and gastric cancer have expanded, leading to an increase in the number of patients with high procedural complexity. Post-ESD perforations prolong hospital stays and increase costs. However, no studies have focused on detecting micro-perforations during ESD. This study aimed to identify signs of perforation using abdominal ultrasound during gastric ESD. Materials and methods: This pilot study analyzed 50 patients who underwent abdominal ultrasound (VScan Air™, GE Healthcare) during ESD at Samsung Medical Center (March 2023–July 2024). Perforation was assessed via ultrasound, and post-procedure X-rays were performed for three days to detect free air. Results: Among 50 patients (median age 60, 76.1% male), the median procedure time was 60 min. Lesions were most common in the antrum (30.4%) and lesser curvature (17.4%). Pathology revealed 32.6% well-differentiated and 10.9% moderately differentiated adenomas, with 15.2% showing high-grade dysplasia. Free air was detected in three patients after procedures involving the body wall of the stomach. Abdominal US showed indirect signs of perforation, including an abnormal peritoneal line, hyperechoic shadowing, and an absence of normal gas patterns, confirmed by X-ray. Conclusions: Abdominal US is a simple, useful tool for rapid detection of perforation during ESD, enabling timely intervention. Further multicenter studies are needed to confirm these findings. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

17 pages, 8383 KiB  
Article
Development on Light and Thin Broadband Sound Absorption Structure Based on Unequal-Cross-Section Microperforated Plate Series Connection
by Xin Jv, Jinwu Wu, Qibo Mao, Qi Li and Tianhang Zhang
Materials 2024, 17(24), 6282; https://doi.org/10.3390/ma17246282 - 22 Dec 2024
Viewed by 872
Abstract
The sound absorption structure of a microperforated plate has many advantages and has great potential in the field of noise control. In order to solve the problem of broadband sound absorption of microperforated plates, a series acoustic structure of microperforated plates of unequal [...] Read more.
The sound absorption structure of a microperforated plate has many advantages and has great potential in the field of noise control. In order to solve the problem of broadband sound absorption of microperforated plates, a series acoustic structure of microperforated plates of unequal cross-section was designed based on the traditional microperforated plate series acoustic structure. Compared with the traditional series structure, the sudden change of cross-section increases the sound energy dissipation and greatly improves the sound absorption performance. Through the analysis of its parameters, when the overall thickness of the structure is 20 mm, its sound absorption coefficient is above 0.5 in the frequency range of 1000–3450 Hz; there are three formants, and the sound absorption coefficients corresponding to the three formants reach 1. This study provides new ideas and methods for the design of broadband acoustic structures. Full article
Show Figures

Graphical abstract

26 pages, 13142 KiB  
Article
Introducing Silencers on Micro Turboshafts Powering Unmanned Aerial Vehicles
by Andrei-George Totu, Cristian Olariu, Marius Deaconu, Laurențiu Cristea, Luminița Drăgășanu and Constantin Sandu
Acoustics 2024, 6(4), 1154-1179; https://doi.org/10.3390/acoustics6040063 - 16 Dec 2024
Viewed by 1327
Abstract
The transition to alternative electrical energy solutions for drone propulsion systems presents several challenges, particularly in managing noise. This noise, compounded by that from the propellers, can produce spectra that are either unpleasant to humans or detrimental to mission objectives. This study explores [...] Read more.
The transition to alternative electrical energy solutions for drone propulsion systems presents several challenges, particularly in managing noise. This noise, compounded by that from the propellers, can produce spectra that are either unpleasant to humans or detrimental to mission objectives. This study explores potential solutions to mitigate noise produced by a micro turboshaft engine, focusing on the solutions’ impact on weight, power output, and acoustic level. We propose two modular, scalable designs—one for the intake and one for the exhaust—based on well-known applications in cold and hot flows. These designs aim to operate effectively across the audible frequency spectrum and incorporate various Helmholtz resonator geometries, including combinations of different lengths, perforated metal sheet parameters, and cavity-filling materials, to enhance bandwidth and noise reduction. Experimental results indicate that these designs can achieve tonal noise reductions of up to 40 dB. While the results are promising, further analysis is required to evaluate the practical applicability and comprehensive impact of these solutions on drone performance. Full article
(This article belongs to the Special Issue Machinery Noise: Emission, Modelling and Control)
Show Figures

Figure 1

19 pages, 7044 KiB  
Article
Analysis of Tensile Failure Behavior of Metal Fiber Laminates Under Different Temperature Environments
by Hongbin Lu, Dongfa Sheng, Yuting Fang, Hongquan Yu and Fan Yang
Polymers 2024, 16(23), 3319; https://doi.org/10.3390/polym16233319 - 27 Nov 2024
Cited by 2 | Viewed by 1010
Abstract
The tensile properties of fiber metal laminates were examined at temperatures ranging from 30 °C to 180 °C in this paper through the integration of numerical simulation techniques, experimental measurements, and digital image correlation techniques. The laminates were initially modeled using finite elements, [...] Read more.
The tensile properties of fiber metal laminates were examined at temperatures ranging from 30 °C to 180 °C in this paper through the integration of numerical simulation techniques, experimental measurements, and digital image correlation techniques. The laminates were initially modeled using finite elements, and the failure behavior of porous basalt-fiber-reinforced aluminum alloy plates was numerically simulated. Consequently, metal fiber laminate stress–strain responses were varied by numerous tensile experiments conducted at varying temperatures. Simultaneously, a scanning electron microscope was used to scan a porous basalt-fiber-reinforced aluminum alloy laminate at different temperatures to determine the tensile mechanical behavior and micro-damage morphology. Lastly, the laminate’s dynamic response to the tensile process was observed through digital image correlation technology. The stress distribution was determined to be concentrated around circular openings through analysis. The strain distribution graph exhibited a “band” shape as the number of perforations increased. The findings indicate that fiber metal laminates lose tensile strength as temperatures increase. The ultimate tensile strength of the laminate decreases as the number of perforations increases at the same temperature. Complex damage mechanisms, including matrix debonding, fiber withdrawal, and matrix fracture, can be captured through scanning electron microscopy at varying temperatures. The tensile behavior and damage mechanisms of laminates with hole-containing structures under thermal conditions are examined, and the results can be used to inform the design and utilization of laminate structures. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

20 pages, 17929 KiB  
Article
Experimental Identification of a New Secondary Wave Pattern in Transonic Cascades with Porous Walls
by Valeriu Drăgan, Oana Dumitrescu, Mihnea Gall, Emilia Georgiana Prisăcariu and Bogdan Gherman
Aerospace 2024, 11(11), 946; https://doi.org/10.3390/aerospace11110946 - 16 Nov 2024
Cited by 1 | Viewed by 852
Abstract
Turbomachinery shock wave patterns occur as a natural result of operating at off-design points and are accountable for some of the loss in performance. In some cases, shock wave–boundary layer (SW-BLIs) interactions may even lead to map restrictions. The current paper refers to [...] Read more.
Turbomachinery shock wave patterns occur as a natural result of operating at off-design points and are accountable for some of the loss in performance. In some cases, shock wave–boundary layer (SW-BLIs) interactions may even lead to map restrictions. The current paper refers to experimental findings on a transonic linear cascade specifically designed to mitigate shock waves using porous walls on the blades. Schlieren visualization reveals two phenomena: Firstly, the shock waves were dissipated in all bladed passages, as predicted by the CFD studies. Secondly, a lower-pressure wave pattern was observed upstream of the blades. It is this phenomenon that the paper reports and attempts to describe. Attempts to replicate this pattern using Reynolds-averaged Navier–Stokes (RANS) calculations indicate that the numerical method may be too dissipative to accurately capture it. The experimental campaign demonstrated a 4% increase in flow rate, accompanied by minimal variations in pressure and temperature, highlighting the potential of this approach for enhancing turbomachinery performance. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

26 pages, 14150 KiB  
Article
New Insights on the Formation of the Mitral Valve Chordae Tendineae in Fetal Life
by Meghan Martin, Kate Gillett, Parker Whittick and Sarah Melissa Wells
J. Cardiovasc. Dev. Dis. 2024, 11(11), 367; https://doi.org/10.3390/jcdd11110367 - 15 Nov 2024
Cited by 1 | Viewed by 1345
Abstract
There is an increasing understanding that some mitral valve pathologies have developmental origins. The time course of valvulogenesis varies by animal model; in cattle, the branched chordae tendineae architecture becomes fully developed at full term. The mechanism by which chordae tendineae bifurcate during [...] Read more.
There is an increasing understanding that some mitral valve pathologies have developmental origins. The time course of valvulogenesis varies by animal model; in cattle, the branched chordae tendineae architecture becomes fully developed at full term. The mechanism by which chordae tendineae bifurcate during fetal development remains unknown. The current study presents a detailed description of bovine chordae tendineae formation and bifurcation during fetal development. Analysis of Movat Pentachrome-stained histological sections of the developing mitral valve apparatus was accompanied by micro-CT imaging. TEM imaging of chordae branches and common trunks allowed the measurement of collagen fibril diameter distributions. We observed a proteoglycan-rich “transition zone” at the junction between the fetal mitral valve anterior leaflet and chordae tendineae with “perforations” lined by MMP1/2 and Ki-67 expressing endothelial cells. This region also contained clusters of proliferating endothelial cells within the bulk of the tissue. We hypothesize this zone marks a region where chordae tendineae bifurcate during fetal development. In particular, perforations created by localized MMP activity serve as a site for the initiation of a “split” of a single chordae attachment into two. This is supported by TEM results that suggest a similar population of collagen fibrils runs from the branches into a common trunk. A clear understanding of normal mitral valvulogenesis and its signaling mechanisms will be crucial in developing therapeutics and/or tissue-engineered valve replacements. Full article
Show Figures

Figure 1

14 pages, 2909 KiB  
Article
Laser-Induced Decomposition and Mechanical Degradation of Carbon Fiber-Reinforced Polymer Subjected to a High-Energy Laser with Continuous Wave Power up to 120 kW
by Sebastian Schäffer, Stefan Reich, Dominic Heunoske, Martin Lueck, Johannes Wolfrum and Jens Osterholz
J. Compos. Sci. 2024, 8(11), 471; https://doi.org/10.3390/jcs8110471 - 13 Nov 2024
Cited by 1 | Viewed by 1629
Abstract
Carbon fiber-reinforced polymer (CFRP), noted for its outstanding properties including high specific strength and superior fatigue resistance, is increasingly employed in aerospace and other demanding applications. This study investigates the interactions between CFRP composites and high-energy lasers (HEL), with continuous wave laser powers [...] Read more.
Carbon fiber-reinforced polymer (CFRP), noted for its outstanding properties including high specific strength and superior fatigue resistance, is increasingly employed in aerospace and other demanding applications. This study investigates the interactions between CFRP composites and high-energy lasers (HEL), with continuous wave laser powers reaching up to 120 kW. A novel automated sample exchange system, operated by a robotic arm, minimizes human exposure while enabling a sequence of targeted laser tests. High-speed imaging captures the rapid expansion of a plume consisting of hot gases and dust particles during the experiment. The research significantly advances empirical models by systematically examining the relationship between laser power, perforation times, and ablation rates. It demonstrates scalable predictions for the effects of high-energy laser radiation. A detailed examination of the damaged samples, both visually and via micro-focused computed X-ray tomography, offers insights into heat distribution and ablation dynamics, highlighting the anisotropic thermal properties of CFRP. Compression after impact (CAI) tests further assess the residual strength of the irradiated samples, enhancing the understanding of CFRP’s structural integrity post-irradiation. Collectively, these tests improve the knowledge of the thermal and mechanical behavior of CFRP under extreme irradiation conditions. The findings not only contribute to predictive modeling of CFRP’s response to laser irradiation but enhance the scalability of these models to higher laser powers, providing robust tools for predicting material behavior in high-performance settings. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, Volume III)
Show Figures

Figure 1

11 pages, 4855 KiB  
Article
Novel Subperiosteal Device Geometry and Investigation of Efficacy on Surrounding Bone Formation and Bone-Bonding Strength
by Yoshiya Kaisaka, Masayoshi Uezono, Masaki Inoue, Kazuo Takakuda and Keiji Moriyama
Bioengineering 2024, 11(11), 1122; https://doi.org/10.3390/bioengineering11111122 - 7 Nov 2024
Viewed by 1072
Abstract
To develop a safer bone-bonding device that promotes early osseointegration with cortical bone perforation, novel subperiosteal device geometries were proposed and evaluated for their ability to facilitate surrounding bone formation and enhance bone-bonding strength. This study used animal experiments and mechanical testing to [...] Read more.
To develop a safer bone-bonding device that promotes early osseointegration with cortical bone perforation, novel subperiosteal device geometries were proposed and evaluated for their ability to facilitate surrounding bone formation and enhance bone-bonding strength. This study used animal experiments and mechanical testing to assess the performance of these designs. The experimental device consisted of two main components: a rounded rectangular plate and a centrally positioned cylinder. To promote the recruitment of bone-marrow-derived factors, slits were incorporated into the cylinder, and a center hole was created directly above it. Four device variations, differing by the presence or absence of the slits and center hole, were fabricated and then subjected to tensile tests for mechanical property evaluation. In the animal experiments, the devices were bilaterally placed on rat tibiae, and after four weeks, bone-bonding strength tests were performed. Additionally, micro-computed tomography and histological analysis of undecalcified sections were conducted. All devices demonstrated early osseointegration, and geometric design differences, specifically the presence or absence of the slits and center hole, significantly affected the mechanical properties and bone induction. However, no significant differences in bone-bonding strength were detected. These findings suggest that the newly formed bone inside the slits and center hole contributes to the reinforcement of the device. Full article
(This article belongs to the Special Issue Medical Devices and Implants, 2nd Edition)
Show Figures

Graphical abstract

21 pages, 5988 KiB  
Article
Developing an Active Biodegradable Bio-Based Equilibrium Modified Atmosphere Packaging Containing a Carvacrol-Emitting Sachet for Cherry Tomatoes
by Anastasia E. Kapetanakou, Antonis Mistriotis, Dimitra C. Bozinaki, Philippos Tserotas, Ioanna-Georgia Athanasoulia, Demetrios Briassoulis and Panagiotis N. Skandamis
Foods 2024, 13(21), 3371; https://doi.org/10.3390/foods13213371 - 23 Oct 2024
Viewed by 1876
Abstract
This study aimed to develop an active biodegradable bio-based (polylactic acid/PLA) equilibrium modified atmosphere packaging (EMAP) containing a carvacrol-emitting sachet (created by poly-hydroxybutyrate) (PLA-PHB-CARV) to extend the shelf-life of cherry tomatoes at 15 °C and 25 °C. Cherry tomatoes in macro-perforated polypropylene (PP) [...] Read more.
This study aimed to develop an active biodegradable bio-based (polylactic acid/PLA) equilibrium modified atmosphere packaging (EMAP) containing a carvacrol-emitting sachet (created by poly-hydroxybutyrate) (PLA-PHB-CARV) to extend the shelf-life of cherry tomatoes at 15 °C and 25 °C. Cherry tomatoes in macro-perforated polypropylene (PP) films (mimicking the commercial packaging) or in PLA-based micro-perforated film without the carvacrol sachet (PLA) were also tested. Weight loss, decay, headspace gases, pH, titratable acidity (TA), total suspended solids (TSS), ripening index, color, texture, total viable counts (TVC), and sensory analysis were performed. Decay was 40% in PLA-PHB-CARV, and 97% in PP after 20 days at 25 °C. PLA-PHB-CARV showed lower weight loss (p < 0.05) and stable firmness compared to PP and PLA at both temperatures. TSS and TA were not affected by the packaging at 15 °C, while at 25 °C, the TSS accumulation was inhibited in PLA-PHB-CARV compared to in PLA and PP (p < 0.05), indicating a notable delay in the ripening process. PLA-PHB-CARV retained their red color during storage compared to PP and PLA. Carvacrol addition inhibited TVC compared to PP and PLA by ca. 2.0 log CFU/g during storage at 25 °C, while at 15 °C, the packaging did not reveal a significant effect. Overall, the results indicated that the developed active EMAP may be adequately used as an advanced and alternative packaging for tomatoes or potentially other fruits with a similar respiration rate versus their conventional packaging, showing several advantages, e.g., a reduction in petrochemical-based plastics use, shelf-life extension of the packaged food, and consequently, the perspective of limiting food waste during distribution and retail or domestic storage. Full article
Show Figures

Figure 1

Back to TopTop