Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,023)

Search Parameters:
Keywords = micro-grid systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2098 KiB  
Article
Experimental Testing of Amplified Inertia Response from Synchronous Machines Compared with Frequency Derivative-Based Synthetic Inertia
by Martin Fregelius, Vinicius M. de Albuquerque, Per Norrlund and Urban Lundin
Energies 2025, 18(14), 3776; https://doi.org/10.3390/en18143776 (registering DOI) - 16 Jul 2025
Abstract
A rather novel approach for delivery of inertia-like grid services through energy storage devices is described and validated by physical experiments and on-site measurements. In this approach, denoted “amplified inertia response”, an actual inertial response from a grid-connected synchronous machine is amplified. This [...] Read more.
A rather novel approach for delivery of inertia-like grid services through energy storage devices is described and validated by physical experiments and on-site measurements. In this approach, denoted “amplified inertia response”, an actual inertial response from a grid-connected synchronous machine is amplified. This inertia emulation approach is contrasted by what is called synthetic inertia, which uses a frequency-locked loop in order to extract the grid frequency. The synthetic inertia faces the usual input signal filtering challenges if the signal-to-noise ratio is low. The amplified inertia controller avoids the input filtering since it only amplifies the natural inertial response from a synchronous machine. However, rotor angle oscillations lead to filtering requirements of the amplified version as well, but on the output signal of the controller. Experimental comparisons are conducted both on the measurement output from the physical experiments in a microgrid and on analysis based on input from on-site measurements from a 55 MVA hydropower generator connected to the Nordic grid. In the specific cases compared, we observe that the amplified inertia version is the better method for smaller power systems, with large frequency fluctuations. On the other hand, the synthetic inertia method is the better in larger power systems as compared to the amplification of the inertial response from a real production unit. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

20 pages, 2632 KiB  
Article
Data-Driven Attack Detection Mechanism Against False Data Injection Attacks in DC Microgrids Using CNN-LSTM-Attention
by Chunxiu Li, Xinyu Wang, Xiaotao Chen, Aiming Han and Xingye Zhang
Symmetry 2025, 17(7), 1140; https://doi.org/10.3390/sym17071140 - 16 Jul 2025
Abstract
This study presents a novel spatio-temporal detection framework for identifying False Data Injection (FDI) attacks in DC microgrid systems from the perspective of cyber–physical symmetry. While modern DC microgrids benefit from increasingly sophisticated cyber–physical symmetry network integration, this interconnected architecture simultaneously introduces significant [...] Read more.
This study presents a novel spatio-temporal detection framework for identifying False Data Injection (FDI) attacks in DC microgrid systems from the perspective of cyber–physical symmetry. While modern DC microgrids benefit from increasingly sophisticated cyber–physical symmetry network integration, this interconnected architecture simultaneously introduces significant cybersecurity vulnerabilities. Notably, FDI attacks can effectively bypass conventional Chi-square detector-based protection mechanisms through malicious manipulation of communication layer data. To address this critical security challenge, we propose a hybrid deep learning framework that synergistically combines: Convolutional Neural Networks (CNN) for robust spatial feature extraction from power system measurements; Long Short-Term Memory (LSTM) networks for capturing complex temporal dependencies; and an attention mechanism that dynamically weights the most discriminative features. The framework operates through a hierarchical feature extraction process: First-level spatial analysis identifies local measurement patterns; second-level temporal analysis detects sequential anomalies; attention-based feature refinement focuses on the most attack-relevant signatures. Comprehensive simulation studies demonstrate the superior performance of our CNN-LSTM-Attention framework compared to conventional detection approaches (CNN-SVM and MLP), with significant improvements across all key metrics. Namely, the accuracy, precision, F1-score, and recall could be improved by at least 7.17%, 6.59%, 2.72% and 6.55%. Full article
Show Figures

Figure 1

18 pages, 4058 KiB  
Article
A Transferable DRL-Based Intelligent Secondary Frequency Control for Islanded Microgrids
by Sijia Li, Frede Blaabjerg and Amjad Anvari-Moghaddam
Electronics 2025, 14(14), 2826; https://doi.org/10.3390/electronics14142826 - 14 Jul 2025
Viewed by 129
Abstract
Frequency instability poses a significant challenge to the overall stability of islanded microgrid systems. Deep reinforcement learning (DRL)-based intelligent control strategies are drawing considerable attention for their ability to operate without the need for previous system dynamics information and the capacity for autonomous [...] Read more.
Frequency instability poses a significant challenge to the overall stability of islanded microgrid systems. Deep reinforcement learning (DRL)-based intelligent control strategies are drawing considerable attention for their ability to operate without the need for previous system dynamics information and the capacity for autonomous learning. This paper proposes an intelligent frequency secondary compensation solution that divides the traditional secondary frequency control into two layers. The first layer is based on a PID controller and the second layer is an intelligent controller based on DRL. To address the typically extensive training durations associated with DRL controllers, this paper integrates transfer learning, which significantly expedites the training process. This scheme improves control accuracy and reduces computational redundancy. Simulation tests are executed on an islanded microgrid with four distributed generators and an IEEE 13-bus system is utilized for further validation. Finally, the proposed method is validated on the OPAL-RT real-time test platform. The results demonstrate the superior performance of the proposed method. Full article
(This article belongs to the Special Issue Recent Advances in Control and Optimization in Microgrids)
Show Figures

Figure 1

28 pages, 1051 KiB  
Article
Probabilistic Load-Shedding Strategy for Frequency Regulation in Microgrids Under Uncertainties
by Wesley Peres, Raphael Paulo Braga Poubel and Rafael Alipio
Symmetry 2025, 17(7), 1125; https://doi.org/10.3390/sym17071125 - 14 Jul 2025
Viewed by 145
Abstract
This paper proposes a novel integer-mixed probabilistic optimal power flow (IM-POPF) strategy for frequency regulation in islanded microgrids under uncertain operating conditions. Existing load-shedding approaches face critical limitations: continuous frameworks fail to reflect the discrete nature of actual load disconnections, while deterministic models [...] Read more.
This paper proposes a novel integer-mixed probabilistic optimal power flow (IM-POPF) strategy for frequency regulation in islanded microgrids under uncertain operating conditions. Existing load-shedding approaches face critical limitations: continuous frameworks fail to reflect the discrete nature of actual load disconnections, while deterministic models inadequately capture the stochastic behavior of renewable generation and load variations. The proposed approach formulates load shedding as an integer optimization problem where variables are categorized as integer (load disconnection decisions at specific nodes) and continuous (voltages, power generation, and steady-state frequency), better reflecting practical power system operations. The key innovation combines integer load-shedding optimization with efficient uncertainty propagation through Unscented Transformation, eliminating the computational burden of Monte Carlo simulations while maintaining accuracy. Load and renewable uncertainties are modeled as normally distributed variables, and probabilistic constraints ensure operational limits compliance with predefined confidence levels. The methodology integrates Differential Evolution metaheuristics with Unscented Transformation for uncertainty propagation, requiring only 137 deterministic evaluations compared to 5000 for Monte Carlo methods. Validation on an IEEE 33-bus radial distribution system configured as an islanded microgrid demonstrates significant advantages over conventional approaches. Results show 36.5-fold computational efficiency improvement while achieving 95.28% confidence level compliance for frequency limits, compared to only 50% for deterministic methods. The integer formulation requires minimal additional load shedding (21.265%) compared to continuous approaches (20.682%), while better aligning with the discrete nature of real-world operational decisions. The proposed IM-POPF framework successfully minimizes total load shedding while maintaining frequency stability under uncertain conditions, providing a computationally efficient solution for real-time microgrid operation. Full article
(This article belongs to the Special Issue Symmetry and Distributed Power System)
Show Figures

Figure 1

26 pages, 736 KiB  
Review
Review of Advances in Renewable Energy-Based Microgrid Systems: Control Strategies, Emerging Trends, and Future Possibilities
by Kayode Ebenezer Ojo, Akshay Kumar Saha and Viranjay Mohan Srivastava
Energies 2025, 18(14), 3704; https://doi.org/10.3390/en18143704 - 14 Jul 2025
Viewed by 155
Abstract
This paper gives a thorough overview of the technological advancements in microgrid systems, focusing on the Internet of Things (IoT), predictive analytics, real-time monitoring, architectures, control strategies, benefits, and drawbacks. It highlights their importance in boosting system security, guaranteeing real-time control, and increasing [...] Read more.
This paper gives a thorough overview of the technological advancements in microgrid systems, focusing on the Internet of Things (IoT), predictive analytics, real-time monitoring, architectures, control strategies, benefits, and drawbacks. It highlights their importance in boosting system security, guaranteeing real-time control, and increasing energy efficiency. Accordingly, researchers have embraced the involvement of many control capacities through voltage and frequency stability, optimal power sharing, and system optimization in response to the progressively complex and expanding power systems in recent years. Advanced control techniques have garnered significant interest among these management strategies because of their high accuracy and efficiency, flexibility and adaptability, scalability, and real-time predictive skills to manage non-linear systems. This study provides insight into various facets of microgrids (MGs), literature review, and research gaps, particularly concerning their control layers. Additionally, the study discusses new developments like Supervisory Control and Data Acquisition (SCADA), blockchain-based cybersecurity, smart monitoring systems, and AI-driven control for MGs optimization. The study concludes with recommendations for future research, emphasizing the necessity of stronger control systems, cutting-edge storage systems, and improved cybersecurity to guarantee that MGs continue to be essential to the shift to a decentralized, low-carbon energy future. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

19 pages, 3865 KiB  
Article
The Voltage Regulation of Boost Converters via a Hybrid DQN-PI Control Strategy Under Large-Signal Disturbances
by Pengqiang Nie, Yanxia Wu, Zhenlin Wang, Song Xu, Seiji Hashimoto and Takahiro Kawaguchi
Processes 2025, 13(7), 2229; https://doi.org/10.3390/pr13072229 - 12 Jul 2025
Viewed by 249
Abstract
The DC-DC boost converter plays a crucial role in interfacing low-voltage sources with high-voltage DC buses in DC microgrid systems. To enhance the dynamic response and robustness of the system under large-signal disturbances and time-varying system parameters, this paper proposes a hybrid control [...] Read more.
The DC-DC boost converter plays a crucial role in interfacing low-voltage sources with high-voltage DC buses in DC microgrid systems. To enhance the dynamic response and robustness of the system under large-signal disturbances and time-varying system parameters, this paper proposes a hybrid control strategy that integrates proportional–integral (PI) control with a deep Q-network (DQN). The proposed framework leverages the advantages of PI control in terms of steady-state regulation and a fast transient response, while also exploiting the capabilities of the DQN agent to learn optimal control policies in dynamic and uncertain environments. To validate the effectiveness and robustness of the proposed hybrid control framework, a detailed boost converter model was developed in the MATLAB 2024/Simulink environment. The simulation results demonstrate that the proposed framework exhibits a significantly faster transient response and enhanced robustness against nonlinear disturbances compared to the conventional PI and fuzzy controllers. Moreover, by incorporating PI-based fine-tuning in the steady-state phase, the framework effectively compensates for the control precision limitations caused by the discrete action space of the DQN algorithm, thereby achieving high-accuracy voltage regulation without relying on an explicit system model. Full article
(This article belongs to the Special Issue Challenges and Advances of Process Control Systems)
Show Figures

Figure 1

34 pages, 924 KiB  
Systematic Review
Smart Microgrid Management and Optimization: A Systematic Review Towards the Proposal of Smart Management Models
by Paul Arévalo, Dario Benavides, Danny Ochoa-Correa, Alberto Ríos, David Torres and Carlos W. Villanueva-Machado
Algorithms 2025, 18(7), 429; https://doi.org/10.3390/a18070429 - 11 Jul 2025
Viewed by 273
Abstract
The increasing integration of renewable energy sources (RES) in power systems presents challenges related to variability, stability, and efficiency, particularly in smart microgrids. This systematic review, following the PRISMA 2020 methodology, analyzed 66 studies focused on advanced energy storage systems, intelligent control strategies, [...] Read more.
The increasing integration of renewable energy sources (RES) in power systems presents challenges related to variability, stability, and efficiency, particularly in smart microgrids. This systematic review, following the PRISMA 2020 methodology, analyzed 66 studies focused on advanced energy storage systems, intelligent control strategies, and optimization techniques. Hybrid storage solutions combining battery systems, hydrogen technologies, and pumped hydro storage were identified as effective approaches to mitigate RES intermittency and balance short- and long-term energy demands. The transition from centralized to distributed control architectures, supported by predictive analytics, digital twins, and AI-based forecasting, has improved operational planning and system monitoring. However, challenges remain regarding interoperability, data privacy, cybersecurity, and the limited availability of high-quality data for AI model training. Economic analyses show that while initial investments are high, long-term operational savings and improved resilience justify the adoption of advanced microgrid solutions when supported by appropriate policies and financial mechanisms. Future research should address the standardization of communication protocols, development of explainable AI models, and creation of sustainable business models to enhance resilience, efficiency, and scalability. These efforts are necessary to accelerate the deployment of decentralized, low-carbon energy systems capable of meeting future energy demands under increasingly complex operational conditions. Full article
(This article belongs to the Special Issue Algorithms for Smart Cities (2nd Edition))
Show Figures

Figure 1

22 pages, 2892 KiB  
Article
Optimization of Photovoltaic and Battery Storage Sizing in a DC Microgrid Using LSTM Networks Based on Load Forecasting
by Süleyman Emre Eyimaya, Necmi Altin and Adel Nasiri
Energies 2025, 18(14), 3676; https://doi.org/10.3390/en18143676 - 11 Jul 2025
Viewed by 203
Abstract
This study presents an optimization approach for sizing photovoltaic (PV) and battery energy storage systems (BESSs) within a DC microgrid, aiming to enhance cost-effectiveness, energy reliability, and environmental sustainability. PV generation is modeled based on environmental parameters such as solar irradiance and ambient [...] Read more.
This study presents an optimization approach for sizing photovoltaic (PV) and battery energy storage systems (BESSs) within a DC microgrid, aiming to enhance cost-effectiveness, energy reliability, and environmental sustainability. PV generation is modeled based on environmental parameters such as solar irradiance and ambient temperature, while battery charging and discharging operations are managed according to real-time demand. A simulation framework is developed in MATLAB 2021b to analyze PV output, battery state of charge (SOC), and grid energy exchange. For demand-side management, the Long Short-Term Memory (LSTM) deep learning model is employed to forecast future load profiles using historical consumption data. Moreover, a Multi-Layer Perceptron (MLP) neural network is designed for comparison purposes. The dynamic load prediction, provided by LSTM in particular, improves system responsiveness and efficiency compared to MLP. Simulation results indicate that optimal sizing of PV and storage units significantly reduces energy costs and dependency on the main grid for both forecasting methods; however, the LSTM-based approach consistently achieves higher annual savings, self-sufficiency, and Net Present Value (NPV) than the MLP-based approach. The proposed method supports the design of more resilient and sustainable DC microgrids through data-driven forecasting and system-level optimization, with LSTM-based forecasting offering the greatest benefits. Full article
Show Figures

Figure 1

37 pages, 4004 KiB  
Article
MCDM Optimization-Based Development of a Plus-Energy Microgrid Architecture for University Buildings and Smart Parking
by Mahmoud Ouria, Alexandre F. M. Correia, Pedro Moura, Paulo Coimbra and Aníbal T. de Almeida
Energies 2025, 18(14), 3641; https://doi.org/10.3390/en18143641 - 9 Jul 2025
Viewed by 271
Abstract
This paper presents a multi-criteria decision-making (MCDM) approach for optimizing a microgrid system to achieve Plus-Energy Building (PEB) performance at the University of Coimbra’s Electrical Engineering Department. Using Python 3.12.8, Rhino 7, and PVsyst 8.0.1, simulations considered architectural and visual constraints, with economic [...] Read more.
This paper presents a multi-criteria decision-making (MCDM) approach for optimizing a microgrid system to achieve Plus-Energy Building (PEB) performance at the University of Coimbra’s Electrical Engineering Department. Using Python 3.12.8, Rhino 7, and PVsyst 8.0.1, simulations considered architectural and visual constraints, with economic feasibility assessed through a TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) analysis. The system is projected to generate approximately 1 GWh annually, with a 98% probability of exceeding 1076 MWh based on Gaussian estimation. Consumption is estimated at 460 MWh, while a 3.8 MWh battery ensures up to 72 h of autonomy. Rooftop panels and green parking arrays, fixed at 13.5° and 59°, minimize visual impact while contributing a surplus of +160% energy injection (or a net surplus of +60% energy after self-consumption). Assuming a battery cost of EUR 200/kWh, each hour of energy storage for the building requires 61 kWh of extra capacity with a cost of 12,200 (EUR/hr.storage). Recognizing environmental variability, these figures represent cross-validated probabilistic estimates derived from both PVsyst and Monte Carlo simulation using Python, reinforcing confidence in system feasibility. A holistic photovoltaic optimization strategy balances technical, economic, and architectural factors, demonstrating the potential of PEBs as a sustainable energy solution for academic institutions. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

36 pages, 5532 KiB  
Article
Supporting Sustainable Development Goals with Second-Life Electric Vehicle Battery: A Case Study
by Muhammad Nadeem Akram and Walid Abdul-Kader
Sustainability 2025, 17(14), 6307; https://doi.org/10.3390/su17146307 - 9 Jul 2025
Viewed by 281
Abstract
To alleviate the impact of economic and environmental detriments caused by the increased demands of electric vehicle battery production and disposal, the use of spent batteries in second-life stationary applications such as energy storage for renewable sources or backup power systems, offers many [...] Read more.
To alleviate the impact of economic and environmental detriments caused by the increased demands of electric vehicle battery production and disposal, the use of spent batteries in second-life stationary applications such as energy storage for renewable sources or backup power systems, offers many benefits. This paper focuses on reducing the energy consumption cost and greenhouse gas emissions of Internet-of-Things-enabled campus microgrids by installing solar photovoltaic panels on rooftops alongside energy storage systems that leverage second-life batteries, a gas-fired campus power plant, and a wind turbine while considering the potential loads of a prosumer microgrid. A linear optimization problem is derived from the system by scheduling energy exchanges with the Ontario grid through net metering and solved by using Python 3.11. The aim of this work is to support Sustainable Development Goals, namely 7 (Affordable and Clean Energy), 11 (Sustainable Cities and Communities), 12 (Responsible Consumption and Production), and 13 (Climate Action). A comparison between a base case scenario and the results achieved with the proposed scenarios shows a significant reduction in electricity cost and greenhouse gas emissions and an increase in self-consumption rate and renewable fraction. This research work provides valuable insights and guidelines to policymakers. Full article
Show Figures

Figure 1

23 pages, 8106 KiB  
Article
Study on the Flexible Scheduling Strategy of Water–Electricity–Hydrogen Systems in Oceanic Island Groups Enabled by Hydrogen-Powered Ships
by Qiang Wang, Binbin Long and An Zhang
Energies 2025, 18(14), 3627; https://doi.org/10.3390/en18143627 - 9 Jul 2025
Viewed by 247
Abstract
In order to improve energy utilization efficiency and the flexibility of resource transfer in oceanic-island-group microgrids, a water–electricity–hydrogen flexible scheduling strategy based on a multi-rate hydrogen-powered ship is proposed. First, the characteristics of the seawater desalination unit (SDU), proton exchange membrane electrolyzer (PEMEL), [...] Read more.
In order to improve energy utilization efficiency and the flexibility of resource transfer in oceanic-island-group microgrids, a water–electricity–hydrogen flexible scheduling strategy based on a multi-rate hydrogen-powered ship is proposed. First, the characteristics of the seawater desalination unit (SDU), proton exchange membrane electrolyzer (PEMEL), and battery system (BS) in consuming surplus renewable energy on resource islands are analyzed. The variable-efficiency operation characteristics of the SDU and PEMEL are established, and the effect of battery life loss is also taken into account. Second, a spatio-temporal model for the multi-rate hydrogen-powered ship is proposed to incorporate speed adjustment into the system optimization framework for flexible resource transfer among islands. Finally, with the goal of minimizing the total cost of the system, a flexible water–electricity–hydrogen hybrid resource transfer model is constructed, and a certain island group in the South China Sea is used as an example for simulation and analysis. The results show that the proposed scheduling strategy can effectively reduce energy loss, promote renewable energy absorption, and improve the flexibility of resource transfer. Full article
(This article belongs to the Special Issue Hybrid-Renewable Energy Systems in Microgrids)
Show Figures

Figure 1

17 pages, 1601 KiB  
Article
Short-Term Wind Power Prediction Based on Improved SAO-Optimized LSTM
by Zuoquan Liu, Xinyu Liu and Haocheng Zhang
Processes 2025, 13(7), 2192; https://doi.org/10.3390/pr13072192 - 9 Jul 2025
Viewed by 201
Abstract
To enhance the accuracy of short-term wind power forecasting, this study proposes a hybrid model combining Northern Goshawk Optimization (NGO)-optimized Variational Mode Decomposition (VMD) and an Improved Snow Ablation Optimizer (ISAO)-optimized Long Short-Term Memory (LSTM) network. Initially, NGO is applied to determine the [...] Read more.
To enhance the accuracy of short-term wind power forecasting, this study proposes a hybrid model combining Northern Goshawk Optimization (NGO)-optimized Variational Mode Decomposition (VMD) and an Improved Snow Ablation Optimizer (ISAO)-optimized Long Short-Term Memory (LSTM) network. Initially, NGO is applied to determine the optimal parameters for VMD, decomposing the original wind power series into multiple frequency-based subsequences. Subsequently, ISAO is employed to fine-tune the hyperparameters of the LSTM, resulting in an ISAO-LSTM prediction model. The final forecast is obtained by reconstructing the subsequences through superposition. Experiments conducted on real data from a wind farm in Ningxia, China demonstrate that the proposed approach significantly outperforms traditional single and combined models, yielding predictions that closely align with actual measurements. This validates the method’s effectiveness for short-term wind power prediction and offers valuable data support for optimizing microgrid scheduling and capacity planning in wind-integrated energy systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

24 pages, 3447 KiB  
Article
Vehicle-to-Grid Services in University Campuses: A Case Study at the University of Rome Tor Vergata
by Antonio Comi and Elsiddig Elnour
Future Transp. 2025, 5(3), 89; https://doi.org/10.3390/futuretransp5030089 - 8 Jul 2025
Viewed by 210
Abstract
As electric vehicles (EVs) become increasingly integrated into urban mobility, the load on electrical grids increases, prompting innovative energy management strategies. This paper investigates the deployment of vehicle-to-grid (V2G) services at the University of Rome Tor Vergata, leveraging high-resolution floating car data (FCD) [...] Read more.
As electric vehicles (EVs) become increasingly integrated into urban mobility, the load on electrical grids increases, prompting innovative energy management strategies. This paper investigates the deployment of vehicle-to-grid (V2G) services at the University of Rome Tor Vergata, leveraging high-resolution floating car data (FCD) to forecast and schedule energy transfers from EVs to the grid. The methodology follows a four-step process: (1) vehicle trip detection, (2) the spatial identification of V2G in the campus, (3) a real-time scheduling algorithm for V2G services, which accommodates EV user mobility requirements and adheres to charging infrastructure constraints, and finally, (4) the predictive modelling of transferred energy using ARIMA and LSTM models. The results demonstrate that substantial energy can be fed back to the campus grid during peak hours, with predictive models, particularly LSTM, offering high accuracy in anticipating transfer volumes. The system aligns energy discharge with campus load profiles while preserving user mobility requirements. The proposed approach shows how campuses can function as microgrids, transforming idle EV capacity into dynamic, decentralised energy storage. This framework offers a scalable model for urban energy optimisation, supporting broader goals of grid resilience and sustainable development. Full article
(This article belongs to the Special Issue Innovation in Last-Mile and Long-Distance Transportation)
Show Figures

Figure 1

34 pages, 1569 KiB  
Review
Microgrids’ Control Strategies and Real-Time Monitoring Systems: A Comprehensive Review
by Kayode Ebenezer Ojo, Akshay Kumar Saha and Viranjay Mohan Srivastava
Energies 2025, 18(13), 3576; https://doi.org/10.3390/en18133576 - 7 Jul 2025
Cited by 1 | Viewed by 577
Abstract
Microgrids (MGs) technologies, with their advanced control techniques and real-time monitoring systems, provide users with attractive benefits including enhanced power quality, stability, sustainability, and environmentally friendly energy. As a result of continuous technological development, Internet of Things (IoT) architectures and technologies are becoming [...] Read more.
Microgrids (MGs) technologies, with their advanced control techniques and real-time monitoring systems, provide users with attractive benefits including enhanced power quality, stability, sustainability, and environmentally friendly energy. As a result of continuous technological development, Internet of Things (IoT) architectures and technologies are becoming more and more important to the future smart grid’s creation, control, monitoring, and protection of microgrids. Since microgrids are made up of several components that can function in network distribution mode using AC, DC, and hybrid systems, an appropriate control strategy and monitoring system is necessary to ensure that the power from microgrids is delivered to sensitive loads and the main grid effectively. As a result, this article thoroughly assesses MGs’ control systems and groups them based on their degree of protection, energy conversion, integration, advantages, and disadvantages. The functions of IoT and monitoring systems for MGs’ data analytics, energy transactions, and security threats are also demonstrated in this article. This study also identifies several factors, challenges, and concerns about the long-term advancement of MGs’ control technology. This work can serve as a guide for all upcoming energy management and microgrid monitoring systems. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

16 pages, 2761 KiB  
Article
Evaluating the Stacked Economic Value of Load Shifting and Microgrid Control
by Arnel Garcesa, Nathan G. Johnson and James Nelson
Buildings 2025, 15(13), 2378; https://doi.org/10.3390/buildings15132378 - 7 Jul 2025
Viewed by 259
Abstract
Microgrids and load shifting can improve resilience and lower costs for electricity customers. The costs to deploy each have decreased and helped accelerate their deployment in the U.S. and globally. However, previous research has focused minimally on the combined benefit or “stacked economic [...] Read more.
Microgrids and load shifting can improve resilience and lower costs for electricity customers. The costs to deploy each have decreased and helped accelerate their deployment in the U.S. and globally. However, previous research has focused minimally on the combined benefit or “stacked economic value” that these assets could provide jointly. This article evaluates the financial value when those assets are combined and optimized jointly. The methods are demonstrated for a U.S. government facility with an existing microgrid and building automation system, with optimizations that vary the percentage load shifted and the duration of time the load can be shifted. The economic benefits of load shifting are greater when combined with a microgrid and coordinated dispatch of loads and microgrid assets. The methods and case study results illustrate “stacked economic value” showing energy charge reductions are 56–252% greater and demand charge reductions are 96–226% greater when load shifting is combined with a microgrid as compared to load shifting without a microgrid. Increasing the amount and duration of load shifting improves the stacked economic value as more loads are scheduled coincident with on-site generation to offset or completely avoid utility purchases during peak pricing periods, an underlying behavior that enables stacked economic value and increased financial savings. The percentage reduction in demand charges is greater than energy charges—a generalizable finding—but the relative impact on utility expenditures is dependent on the utility tariff structure and composition of demand charges and energy charges in the utility bill. In this case study, demand charge reductions were four times greater than energy charge reductions, but the financial savings of demand charges are less due to their smaller proportion of utility charges. This suggests that the stacked economic value of microgrids and load control may be even more significant in locations with electricity tariffs that more heavily weight billing towards demand charges than energy charges. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop