Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (65)

Search Parameters:
Keywords = micro bioreactors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2230 KiB  
Article
Three-Dimensional-Printed Biomimetic Scaffolds for Investigating Osteoblast-Like Cell Interactions in Simulated Microgravity: An In Vitro Platform for Bone Tissue Engineering Research
by Eleonora Zenobi, Giulia Gramigna, Elisa Scatena, Luca Panizza, Carlotta Achille, Raffaella Pecci, Annalisa Convertino, Costantino Del Gaudio, Antonella Lisi and Mario Ledda
J. Funct. Biomater. 2025, 16(8), 271; https://doi.org/10.3390/jfb16080271 - 24 Jul 2025
Viewed by 543
Abstract
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to [...] Read more.
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to assess the effects of scaffold architecture and dynamic culture conditions on cell adhesion, proliferation, and metabolic activity, with implications for osteoporosis research. Polylactic acid scaffolds with physiological (P) and osteoporotic-like (O) trabecular architectures were 3D-printed by means of fused deposition modeling technology. Morphometric characterization was performed using micro-computed tomography. Human osteoblast-like SAOS-2 and U2OS cells were cultured on the scaffolds under static and dynamic simulated microgravity conditions using a rotary cell culture system (RCCS). Scaffold biocompatibility, cell viability, adhesion, and metabolic activity were evaluated through Bromodeoxyuridine incorporation assays, a water-soluble tetrazolium salt assay, and an enzyme-linked immunosorbent assay of tumor necrosis factor-α secretion. Both scaffold models supported osteoblast-like cell adhesion and growth, with an approximately threefold increase in colonization observed on the high-porosity O scaffolds under dynamic conditions. The dynamic environment facilitated increased surface interaction, amplifying the effects of scaffold architecture on cell behavior. Overall, sustained cell growth and metabolic activity, together with the absence of detectable inflammatory responses, confirmed the biocompatibility of the system. Scaffold microstructure and dynamic culture conditions significantly influence osteoblast-like cell behavior. The combination of 3D-printed scaffolds and a RCCS bioreactor provides a promising platform for studying bone remodeling in osteoporosis and microgravity-induced bone loss. These findings may contribute to the development of advanced in vitro models for biomedical research and potential countermeasures for bone degeneration. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Graphical abstract

34 pages, 1949 KiB  
Review
Remediation of Micro- and Nanoplastics by Membrane Technologies
by Michał Bodzek and Piotr Bodzek
Membranes 2025, 15(3), 82; https://doi.org/10.3390/membranes15030082 - 5 Mar 2025
Cited by 1 | Viewed by 3631
Abstract
Micro- and nanoplastics (NPs) cannot be completely removed from water/wastewater in conventional wastewater treatment plants (WWTPs) and drinking water treatment plants (DWTPs). According to the literature analysis, membrane processes, one of the advanced treatment technologies, are the most effective and promising technologies for [...] Read more.
Micro- and nanoplastics (NPs) cannot be completely removed from water/wastewater in conventional wastewater treatment plants (WWTPs) and drinking water treatment plants (DWTPs). According to the literature analysis, membrane processes, one of the advanced treatment technologies, are the most effective and promising technologies for the removal of microplastics (MPs) from water and wastewater. In this article, firstly, the properties of MPs commonly found in water and wastewater treatment and their removal efficiencies are briefly reviewed. In addition, research on the use of microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), and membrane bioreactors (MBR) for the remediation of MPs and NPs from water/wastewater is reviewed, and the advantages/disadvantages of each removal method are discussed. Membrane filtration is also compared with other methods used to remove MPs. Furthermore, the problem of membrane fouling by MPs during filtration and the potential for MPs to be released from the polymeric membrane structure are discussed. Finally, based on the literature survey, the current status and gaps in research on MPs removal by membrane technologies are identified, and recommendations for further research are made. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

16 pages, 9618 KiB  
Article
Copper Hexacyanoferrates Obtained via Flavocytochrome b2 Assistance: Characterization and Application
by Galina Gayda, Olha Demkiv, Nataliya Stasyuk, Halyna Klepach, Roman Serkiz, Faina Nakonechny, Mykhailo Gonchar and Marina Nisnevitch
Biosensors 2025, 15(3), 157; https://doi.org/10.3390/bios15030157 - 2 Mar 2025
Cited by 1 | Viewed by 902
Abstract
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in [...] Read more.
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in NZs is likely to continue as their potential applications expand. In our previous studies, we reported the “green” synthesis of copper hexacyanoferrate (gCuHCF) using the oxidoreductase flavocytochrome b2 (Fcb2). Organic–inorganic micro-nanoparticles were characterized in detail, including their structure, composition, catalytic activity, and electron-mediator properties. An SEM analysis revealed that gCuHCF possesses a flower-like structure well-suited for concentrating and stabilizing Fcb2. As an effective peroxidase (PO) mimic, gCuHCF has been successfully employed for H2O2 detection in amperometric sensors and in several oxidase-based biosensors. In the current study, we demonstrated the uniqueness of gCuHCF that lies in its multifunctionality, serving as a PO mimic, a chemosensor for ammonium ions, a biosensor for L-lactate, and exhibiting perovskite-like properties. This exceptional ability of gCuHCF to enhance fluorescence under blue light irradiation is being reported for the first time. Using gCuHCF as a PO-like NZ, novel oxidase-based sensors were developed, including an optical biosensor for L-arginine analysis and electrochemical biosensors for methanol and glycerol determination. Thus, gCuHCF, synthesized via Fcb2, presents a promising platform for the development of amperometric and optical biosensors, bioreactors, biofuel cells, solar cells, and other advanced devices. The innovative approach of utilizing biocatalysts for nanoparticle synthesis highlights a groundbreaking direction in materials science and biotechnology. Full article
Show Figures

Figure 1

22 pages, 5876 KiB  
Article
Bioreactor-Based Liquid Culture and Production of Konjac Micro-Corm
by Yuqi Sun, Xian Sun, Yufan Pan, Changbin Liu, Lingye Su and Zongshen Zhang
Horticulturae 2025, 11(3), 235; https://doi.org/10.3390/horticulturae11030235 - 22 Feb 2025
Viewed by 830
Abstract
Konjac (Amorphophallus konjac K. Koch) has numerous health benefits, but traditional propagation is hindered by long growth periods and soil-borne diseases. This study developed a novel cell liquid culture system to directly produce micro-corms of konjac for large-scale production. The results demonstrated [...] Read more.
Konjac (Amorphophallus konjac K. Koch) has numerous health benefits, but traditional propagation is hindered by long growth periods and soil-borne diseases. This study developed a novel cell liquid culture system to directly produce micro-corms of konjac for large-scale production. The results demonstrated significant improvements in bud induction and rooting compared to solid culture. Under MS + 1.0 mg/L 6-BA + 0.5 mg/L NAA, the induced buds per culture vessel and final fresh weight were 24.87 ± 0.06 and 6.64 ± 0.12 g, respectively, 1.95 and 1.67 times higher than those in solid culture. Rooting experiments showed that 1/2 MS + 0.5 mg/L IBA + 1.0 mg/L NAA resulted in a root length of 25.23 ± 0.04 cm and 18.12 ± 0.01 roots per vessel. Using a 5 L bioreactor for micro-corm induction led to a 2.51-fold increase in fresh weight (52.67 ± 0.01 g) after 31 days, with glucomannan production reaching 0.48 g/g (fresh weight). The optimized culture system also significantly reduced the propagation time and increased the yield of healthy micro-corms. Bioreactor-based cultivation effectively enhances konjac induction efficiency and shortens breeding time, making it a promising approach for commercial production of konjac micro-corms and potentially improving the economic viability of konjac farming. Full article
(This article belongs to the Special Issue Tissue Culture and Micropropagation Techniques of Horticultural Crops)
Show Figures

Figure 1

16 pages, 14127 KiB  
Article
2PP-Hydrogel Covered Electrodes to Compensate for Media Effects in the Determination of Biomass in a Capillary Wave Micro Bioreactor
by Sven Meinen, Steffen Brinkmann, Kevin Viebrock, Bassant Elbardisy, Henning Menzel, Rainer Krull and Andreas Dietzel
Biosensors 2024, 14(9), 438; https://doi.org/10.3390/bios14090438 - 9 Sep 2024
Viewed by 1510
Abstract
Microbioreactors increase information output in biopharmaceutical screening applications because they can be operated in parallel without consuming large quantities of the pharmaceutical formulations being tested. A capillary wave microbioreactor (cwMBR) has recently been reported, allowing cost-efficient parallelization in an array that can be [...] Read more.
Microbioreactors increase information output in biopharmaceutical screening applications because they can be operated in parallel without consuming large quantities of the pharmaceutical formulations being tested. A capillary wave microbioreactor (cwMBR) has recently been reported, allowing cost-efficient parallelization in an array that can be activated for mixing as a whole. Although impedance spectroscopy can directly distinguish between dead and viable cells, the monitoring of cells in suspension within bioreactors is challenging because the signal is influenced by the potentially varying properties of the culture medium. In order to address this challenge, an impedance sensor consisting of two sets of microelectrodes in a cwMBR is presented. Only one set of electrodes was covered by a two-photon cross-linked hydrogel to become insensitive to the influence of cells while remaining sensitive to the culture medium. With this impedance sensor, the biomass of Saccharomyces cerevisiae could be measured in a range from 1 to 20 g L−1. In addition, the sensor can compensate for a change in the conductivity of the suspension of 5 to 15 mS cm−1. Moreover, the two-photon cross-linking of hydroxyethyl starch methacrylate hydrogel, which has been studied in detail, recommends itself for even much broader sensing applications in miniaturized bioreactors and biosensors. Full article
(This article belongs to the Special Issue MEMS Based Biosensors and Its Applications)
Show Figures

Graphical abstract

13 pages, 1246 KiB  
Article
The Production of Water Kefir Drink with the Addition of Dried Figs in the Horizontal Rotating Tubular Bioreactor
by Mladen Pavlečić, Mario Novak, Antonija Trontel, Nenad Marđetko, Vlatka Petravić Tominac, Ana Dobrinčić, Monika Kralj and Božidar Šantek
Foods 2024, 13(17), 2834; https://doi.org/10.3390/foods13172834 - 6 Sep 2024
Cited by 1 | Viewed by 2545
Abstract
Water kefir is a product obtained through the fermentation of sucrose solution, usually with some kind of dried fruit addition, by a combined culture of micro-organisms which are contained within kefir grains. Its popularity is rising because of the simplicity of its preparation [...] Read more.
Water kefir is a product obtained through the fermentation of sucrose solution, usually with some kind of dried fruit addition, by a combined culture of micro-organisms which are contained within kefir grains. Its popularity is rising because of the simplicity of its preparation and its anti-inflammatory, antioxidant, probiotic, and antibacterial effects. In this research, the water kefir production was studied in 250 mL jars, as well as in a horizontal rotating tubular bioreactor (HRTB). The first part of the research was conducted in smaller-scale (jars), wherein the optimal fruit and fruit portions were determined. These experiments included the addition of dried plums, apricots, raisins, dates, cranberries, papaya, and figs into 150 mL of initial sugar solution. Also, the optimal ratio between dried fruit and sucrose solution (0.2) at the beginning of the bioprocess was determined. The second part of this research was conducted using HRTB. The experiments in the HRTB were carried out by using different operational modes (constant or interval bioreactor rotation). A total of six different bioreactor setups were used, and in all experiments, figs were added at the beginning of the bioprocess (0.2 ratio between dried figs and sucrose solution). On the basis of the obtained results, the interval bioreactor rotation mode proved to be the better HRTB mode for the production of the water kefir, as the yield of the main fermentation products was higher, and their ratios were the most adequate for the quality of water kefir drink. The optimal results were obtained via HRTB setup 3/57 (3 min rotation, 57 min pause within 1 h) and rotation speed of 3 rpm. Furthermore, it is clear that HRTB has great potential for water kefir production due to the fact that HRTB experiments showed shorter fermentation times (at least five times) than water kefir production in jars. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

15 pages, 9246 KiB  
Article
Fibronectin Functionalization: A Way to Enhance Dynamic Cell Culture on Alginate/Hydroxyapatite Scaffolds
by Bianca Zumbo, Benedetta Guagnini, Barbara Medagli, Davide Porrelli and Gianluca Turco
J. Funct. Biomater. 2024, 15(8), 222; https://doi.org/10.3390/jfb15080222 - 10 Aug 2024
Cited by 1 | Viewed by 2322
Abstract
Bone defects are a global health concern; bone tissue engineering (BTE) is the most promising alternative to reduce patient morbidity and overcome the inherent drawbacks of autograft and allograft bone. Three-dimensional scaffolds are pivotal in this field due to their potential to provide [...] Read more.
Bone defects are a global health concern; bone tissue engineering (BTE) is the most promising alternative to reduce patient morbidity and overcome the inherent drawbacks of autograft and allograft bone. Three-dimensional scaffolds are pivotal in this field due to their potential to provide structural support and mimic the natural bone microenvironment. Following an already published protocol, a 3D porous structure consisting of alginate and hydroxyapatite was prepared after a gelation step and a freezing-drying step. Despite the frequent use of alginate in tissue regeneration, the biological inertness of this polysaccharide hampers proper cell colonization and proliferation. Therefore, the purpose of this work was to enhance the biological properties by promoting the interaction and adhesion between cells and biomaterial with the use of Fibronectin. This extracellular matrix protein was physically adsorbed on the scaffold, and its presence was evaluated with environmental scanning electron microscopy (eSEM) and the Micro-Bicinchoninic Acid (μBCA) protein assay. The MG-63 cell line was used for both static and dynamic (i.e., in bioreactor) 3D cell culturing on the scaffolds. The use of the bioreactor allowed for a better exchange of nutrients and oxygen and a better removal of cell catabolites from the inner portion of the construct, mimicking the physiological environment. The functionalized scaffolds showed an improvement in cell proliferation and colonization compared to non-functionalized ones; the effect of the addition of Fibronectin was more evident in the dynamic culturing conditions, where the cells clearly adhered on the surface of functionalized scaffolds. Full article
(This article belongs to the Special Issue Functional Scaffolds for Bone and Joint Surgery)
Show Figures

Figure 1

20 pages, 4099 KiB  
Article
Treatment of Synthetic Wastewater Containing Polystyrene (PS) Nanoplastics by Membrane Bioreactor (MBR): Study of the Effects on Microbial Community and Membrane Fouling
by Anamary Pompa-Pernía, Serena Molina, Laura Cherta, Lorena Martínez-García and Junkal Landaburu-Aguirre
Membranes 2024, 14(8), 174; https://doi.org/10.3390/membranes14080174 - 9 Aug 2024
Cited by 3 | Viewed by 2757
Abstract
The persistent presence of micro- and nanoplastics (MNPs) in aquatic environments, particularly via effluents from wastewater treatment plants (WWTPs), poses significant ecological risks. This study investigated the removal efficiency of polystyrene nanoplastics (PS-NPs) using a lab-scale aerobic membrane bioreactor (aMBR) equipped with different [...] Read more.
The persistent presence of micro- and nanoplastics (MNPs) in aquatic environments, particularly via effluents from wastewater treatment plants (WWTPs), poses significant ecological risks. This study investigated the removal efficiency of polystyrene nanoplastics (PS-NPs) using a lab-scale aerobic membrane bioreactor (aMBR) equipped with different membrane types: microfiltration (MF), commercial ultrafiltration (c-UF), and recycled ultrafiltration (r-UF) membranes. Performance was assessed using synthetic urban wastewater spiked with PS-NPs, focusing on membrane efficiency, fouling behavior, and microbial community shifts. All aMBR systems achieved high organic matter removal, exceeding a 97% COD reduction in both the control and PS-exposed reactors. While low concentrations of PS-NPs did not significantly impact the sludge settleability or soluble microbial products initially, a higher accumulation increased the carbohydrate concentrations, indicating a protective bacterial response. The microbial community composition also adapted over time under polystyrene stress. All membrane types exhibited substantial NP removal; however, the presence of nano-sized PS particles negatively affected the membrane performance, enhancing the fouling phenomena and increasing transmembrane pressure. Despite this, the r-UF membrane demonstrated comparable efficiency to c-UF, suggesting its potential for sustainable applications. Advanced characterization techniques including pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) were employed for NP detection and quantification. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

15 pages, 1877 KiB  
Article
Microflow Injection System for Efficient Cu(II) Detection across a Broad Range
by David Ricart, Antonio David Dorado, Conxita Lao-Luque and Mireia Baeza
Chemosensors 2024, 12(7), 119; https://doi.org/10.3390/chemosensors12070119 - 29 Jun 2024
Viewed by 1530
Abstract
In this study, a modular, multi-step, photometric microflow injection analysis (micro-FIA) system for the automatic determination of Cu(II) in a bioreactor was developed. The system incorporates diverse 3D-printed modules, including a platform formed by a mixer module to mix Cu(II) with hydroxylamine, which [...] Read more.
In this study, a modular, multi-step, photometric microflow injection analysis (micro-FIA) system for the automatic determination of Cu(II) in a bioreactor was developed. The system incorporates diverse 3D-printed modules, including a platform formed by a mixer module to mix Cu(II) with hydroxylamine, which reduces Cu(II) to Cu(I) linked to a diluter module via a Tesla valve, a chelation mixer module, a disperser module, and a detector module provided by an LED light source at λ = 455 nm and a light dependence resistor (LDR) as a light intensity detector. The system measures the color intensity resulting from the chelation between Cu(I) and neocuproine. The micro-FIA system demonstrated good capability for automatic and continuous Cu(II) determination, in a wide range of Cu concentrations, from 34 to 2000 mg L−1. The device exhibits a good repeatability (coefficient of variation below 2% across the measured concentration range), good reproducibility, and has an accuracy of around 100% between 600 and 1900 mg L−1. Real samples were analyzed using both the micro-FIA system and an atomic absorption spectroscopy method, revealing no statistically significant differences. Additionally, a Tesla valve located before the detector substituted a 3-way solenoid valve, eliminating the need for moving parts. Full article
(This article belongs to the Special Issue Microfluidic Device Based Chemical and Biochemical Sensors)
Show Figures

Figure 1

16 pages, 3640 KiB  
Article
Integration of Full-Size Graywater Membrane-Aerated Biological Reactor with Reverse Osmosis System for Space-Based Wastewater Treatment
by Ghaem Hooshyari, Arpita Bose and W. Andrew Jackson
Membranes 2024, 14(6), 127; https://doi.org/10.3390/membranes14060127 - 30 May 2024
Cited by 3 | Viewed by 1678
Abstract
To date, life support systems on the International Space Center (ISS) or those planned for upcoming moon/Mars missions have not included biological reactors for wastewater treatment, despite their ubiquitous use for the treatment of terrestrial wastewaters. However, the new focus on partial gravity [...] Read more.
To date, life support systems on the International Space Center (ISS) or those planned for upcoming moon/Mars missions have not included biological reactors for wastewater treatment, despite their ubiquitous use for the treatment of terrestrial wastewaters. However, the new focus on partial gravity habitats reduces the required complexity of treatment systems compared with those operating in micro-gravity, and the likely addition of large-volume wastewaters with surfactant loads (e.g., laundry and shower) makes the current ISS wastewater treatment system inappropriate due to the foaming potential from surfactants, increased consumable requirements due to the use of non-regenerative systems (e.g., mixed adsorbent beds), the complexity of the system, and sensitivity to failures from precipitation and/or biological fouling. Hybrid systems that combine simple biological reactors with desalination (e.g., Reverse Osmosis (RO)) could reduce system and consumable mass and complexity. Our objective was to evaluate a system composed of a membrane-aerated bioreactor (MABR) coupled to a low-pressure commercial RO system to process partial gravity habitat wastewater. The MABR was able to serve as the only wastewater collection tank (variable volume), receiving all wastewaters as they were produced. The MABR treated more than 20,750 L of graywater and was able to remove more than 90% of dissolved organic carbon (DOC), producing an effluent with DOC < 14 mg/L and BOD < 12 mg/L and oxidizing >90% of the ammoniacal nitrogen into NOx. A single RO membrane (260 g) was able to process >3000 L of MABR effluent and produced a RO permeate with DOC < 5 mg/L, TN < 2 mg/L, and TDS < 10 mg/L, which would essentially meet ISS potable water standards after disinfection. The system has an un-optimized mass and volume of 128.5 kg. Consumables include oxygen (~4 g/crew-day), RO membranes, and a prefilter (1.7 g/crew-day). For a one-year mission with four crew, the total system + consumable mass are ~141 kg, which would produce ~15,150 kg of treated water, resulting in a pay-back period of 13.4 days (3.35 days for a crew of four). Given that the MABR in this study operated for 500 days, while in previous studies, similar systems operated for more than 3 years, the total system costs would be exceedingly low. These results highlight the potential application of hybrid treatment systems for space habitats, which may also have a direct application to terrestrial applications where source-separated systems are employed. Full article
(This article belongs to the Special Issue Developing Membrane Bioreactors for Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 2306 KiB  
Article
An Advanced Human Bone Tissue Culture Model for the Assessment of Implant Osteointegration In Vitro
by Melania Maglio, Milena Fini, Maria Sartori, Giorgia Codispoti, Veronica Borsari, Dante Dallari, Simone Ambretti, Martina Rocchi and Matilde Tschon
Int. J. Mol. Sci. 2024, 25(10), 5322; https://doi.org/10.3390/ijms25105322 - 13 May 2024
Viewed by 3594
Abstract
In the field of biomaterials for prosthetic reconstructive surgery, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials before in vivo tests. Despite the complex osteointegration process being difficult to recreate in vitro, this study proposes an [...] Read more.
In the field of biomaterials for prosthetic reconstructive surgery, there is the lack of advanced innovative methods to investigate the potentialities of smart biomaterials before in vivo tests. Despite the complex osteointegration process being difficult to recreate in vitro, this study proposes an advanced in vitro tissue culture model of osteointegration using human bone. Cubic samples of trabecular bone were harvested, as waste material, from hip arthroplasty; inner cylindrical defects were created and assigned to the following groups: (1) empty defects (CTRneg); (2) defects implanted with a cytotoxic copper pin (CTRpos); (3) defects implanted with standard titanium pins (Ti). Tissues were dynamically cultured in mini rotating bioreactors and assessed weekly for viability and sterility. After 8 weeks, immunoenzymatic, microtomographic, histological, and histomorphometric analyses were performed. The model was able to simulate the effects of implantation of the materials, showing a drop in viability in CTR+, while Ti appears to have a trophic effect on bone. MicroCT and a histological analysis supported the results, with signs of matrix and bone deposition at the Ti implant site. Data suggest the reliability of the tested model in recreating the osteointegration process in vitro with the aim of reducing and refining in vivo preclinical models. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

13 pages, 3141 KiB  
Communication
Generation of Artificial Blastoids Combining miR-200-Mediated Reprogramming and Mechanical Cues
by Georgia Pennarossa, Sharon Arcuri, Fulvio Gandolfi and Tiziana A. L. Brevini
Cells 2024, 13(7), 628; https://doi.org/10.3390/cells13070628 - 4 Apr 2024
Cited by 3 | Viewed by 3166
Abstract
In vitro-generated blastocyst-like structures are of great importance since they recapitulate specific features or processes of early embryogenesis, thus avoiding ethical concerns as well as increasing scalability and accessibility compared to the use of natural embryos. Here, we combine cell reprogramming and mechanical [...] Read more.
In vitro-generated blastocyst-like structures are of great importance since they recapitulate specific features or processes of early embryogenesis, thus avoiding ethical concerns as well as increasing scalability and accessibility compared to the use of natural embryos. Here, we combine cell reprogramming and mechanical stimuli to create 3D spherical aggregates that are phenotypically similar to those of natural embryos. Specifically, dermal fibroblasts are reprogrammed, exploiting the miR-200 family property to induce a high plasticity state in somatic cells. Subsequently, miR-200-reprogrammed cells are either driven towards the trophectoderm (TR) lineage using an ad hoc induction protocol or encapsulated into polytetrafluoroethylene micro-bioreactors to maintain and promote pluripotency, generating inner cell mass (ICM)-like spheroids. The obtained TR-like cells and ICM-like spheroids are then co-cultured in the same micro-bioreactor and, subsequently, transferred to microwells to encourage blastoid formation. Notably, the above protocol was applied to fibroblasts obtained from young as well as aged donors, with results that highlighted miR-200′s ability to successfully reprogram young and aged cells with comparable blastoid rates, regardless of the donor’s cell age. Overall, the approach here described represents a novel strategy for the creation of artificial blastoids to be used in the field of assisted reproduction technologies for the study of peri- and early post-implantation mechanisms. Full article
(This article belongs to the Section Reproductive Cells and Development)
Show Figures

Figure 1

18 pages, 5693 KiB  
Article
A Comparison of In Vivo Bone Tissue Generation Using Calcium Phosphate Bone Substitutes in a Novel 3D Printed Four-Chamber Periosteal Bioreactor
by D. S. Abdullah Al Maruf, Kai Cheng, Hai Xin, Veronica K. Y. Cheung, Matthew Foley, Innes K. Wise, Will Lewin, Catriona Froggatt, James Wykes, Krishnan Parthasarathi, David Leinkram, Dale Howes, Natalka Suchowerska, David R. McKenzie, Ruta Gupta, Jeremy M. Crook and Jonathan R. Clark
Bioengineering 2023, 10(10), 1233; https://doi.org/10.3390/bioengineering10101233 - 21 Oct 2023
Cited by 3 | Viewed by 2684
Abstract
Autologous bone replacement remains the preferred treatment for segmental defects of the mandible; however, it cannot replicate complex facial geometry and causes donor site morbidity. Bone tissue engineering has the potential to overcome these limitations. Various commercially available calcium phosphate-based bone substitutes (Novabone [...] Read more.
Autologous bone replacement remains the preferred treatment for segmental defects of the mandible; however, it cannot replicate complex facial geometry and causes donor site morbidity. Bone tissue engineering has the potential to overcome these limitations. Various commercially available calcium phosphate-based bone substitutes (Novabone®, BioOss®, and Zengro®) are commonly used in dentistry for small bone defects around teeth and implants. However, their role in ectopic bone formation, which can later be applied as vascularized graft in a bone defect, is yet to be explored. Here, we compare the above-mentioned bone substitutes with autologous bone with the aim of selecting one for future studies of segmental mandibular repair. Six female sheep, aged 7–8 years, were implanted with 40 mm long four-chambered polyether ether ketone (PEEK) bioreactors prepared using additive manufacturing followed by plasma immersion ion implantation (PIII) to improve hydrophilicity and bioactivity. Each bioreactor was wrapped with vascularized scapular periosteum and the chambers were filled with autologous bone graft, Novabone®, BioOss®, and Zengro®, respectively. The bioreactors were implanted within a subscapular muscle pocket for either 8 weeks (two sheep), 10 weeks (two sheep), or 12 weeks (two sheep), after which they were removed and assessed by microCT and routine histology. Moderate bone formation was observed in autologous bone grafts, while low bone formation was observed in the BioOss® and Zengro® chambers. No bone formation was observed in the Novabone® chambers. Although the BioOss® and Zengro® chambers contained relatively small amounts of bone, endochondral ossification and retained hydroxyapatite suggest their potential in new bone formation in an ectopic site if a consistent supply of progenitor cells and/or growth factors can be ensured over a longer duration. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Graphical abstract

17 pages, 9177 KiB  
Article
Influence of Temperature-Controlled Fermentation on the Quality of Mild Coffee (Coffea arabica L.) Cultivated at Different Elevations
by Aida Esther Peñuela-Martínez, Sandra Moreno-Riascos and Rubén Medina-Rivera
Agriculture 2023, 13(6), 1132; https://doi.org/10.3390/agriculture13061132 - 27 May 2023
Cited by 18 | Viewed by 5837
Abstract
Controlled fermentation processes have high potential for improving coffee quality. The effect of fermentation temperature on beverage quality was investigated with coffee cultivated at elevations between 1166 and 1928 m. A completely randomized design was carried out at five elevation ranges at 200 [...] Read more.
Controlled fermentation processes have high potential for improving coffee quality. The effect of fermentation temperature on beverage quality was investigated with coffee cultivated at elevations between 1166 and 1928 m. A completely randomized design was carried out at five elevation ranges at 200 m intervals in five farms per elevation range, and two temperatures (15 °C and 30 °C), which were maintained in a temperature-controlled bioreactor. Each temperature-controlled fermentation batch had a spontaneous fermentation batch (control treatment). Microbial identification of LAB and yeast was performed using a Biolog™ MicroStation™ ID System, and cup quality tests were performed following the SCA protocol. Tests conducted at 15 °C showed higher microbial community activity on the substrates used, indicating greater transformation potential than those conducted at 30 °C or those of spontaneous fermentation. According to Wilcoxon and Kruskal–Wallis tests, temperature-controlled fermentation resulted in high-quality coffee for all elevation ranges, with coffee from higher elevations and processed at controlled temperatures of 15 °C receiving the highest cup scores compared to coffee that was subjected to 30 °C. These results suggest that controlled temperature can be used to design standardized fermentation processes in order to enhance coffee quality through differentiated sensory profiles. Full article
(This article belongs to the Special Issue Coffee (Coffea sp.) Production: From Seed to Cup)
Show Figures

Graphical abstract

17 pages, 4648 KiB  
Article
Microbial Enhancement of Selenium Removal in Chemically Modified Zeolite Columns
by Herath Mudiyanselage Ishani P. Kulasekara, Yanyan Zhang and Charalambos Papelis
Water 2023, 15(10), 1837; https://doi.org/10.3390/w15101837 - 11 May 2023
Cited by 5 | Viewed by 2733
Abstract
Selenium (Se) is an essential micro-nutrient for living organisms, but elevated concentrations in water can adversely affect health. In this research, we investigate the removal of selenium oxyanions (selenate and selenite) in aqueous systems by integration of adsorption on modified zeolites and microbial [...] Read more.
Selenium (Se) is an essential micro-nutrient for living organisms, but elevated concentrations in water can adversely affect health. In this research, we investigate the removal of selenium oxyanions (selenate and selenite) in aqueous systems by integration of adsorption on modified zeolites and microbial reduction. Dynamic sorption-reduction experiments were conducted using two sets of zeolite columns for the removal of selenite and selenate oxyanions, respectively. In each case, one column was fully packed with natural, unmodified zeolites, while the other column was composed of 80% natural and 20% iron-coated zeolites, by mass. The initial selenium concentration, selenite (SeIV) or selenate (SeVI), was 790 μg/L, the pH was 7.5, and the flow rate was 3 mL/min. Initially, as expected, the higher selenate removal (34%) was observed with coated zeolite, twice as high compared to the results with unmodified zeolite. Maximum selenite removal was 89% in the column with modified zeolite. Within approximately 14 days, as the biofilm developed inside the columns, selenium reduction in all four columns reached approximately 99%. Biofilm microbial community composition, assessed by 16S rRNA sequencing, is consistent with the presence of mainly selenium-reducing bacteria (Veillonella, Bacteroides, and Escherichia). Selenium oxyanions were reduced to elemental selenium, visible within the bioreactors as red-color aggregates. Full article
Show Figures

Figure 1

Back to TopTop