Influence of Temperature-Controlled Fermentation on the Quality of Mild Coffee (Coffea arabica L.) Cultivated at Different Elevations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coffee Sampling and Experimental Design
2.2. Coffee Fermentation Processes
2.3. Microorganism Identification and Physiological Profiles of Microbial Communities
2.4. Sensory Analysis of Coffee Beverage
2.5. Statistical Analysis
3. Results
3.1. Description of Coffee Fermentation Processes
3.2. Microorganism Identification and Physiological Profiles of Microbial Communities
3.3. Coffee Beverage Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Coffee Organization. Coffee Market Report—Diciembre 2022. Available online: https://www.ico.org/documents/cy2022-23/cmr-1222-e.pdf (accessed on 21 March 2023).
- Bunn, C.; Läderach, P.; Pérez Jimenez, J.G.; Montagnon, C.; Schilling, T. Multiclass Classification of Agro-Ecological Zones for Arabica Coffee: An Improved Understanding of the Impacts of Climate Change. PLoS ONE 2015, 10, e0140490. [Google Scholar] [CrossRef] [PubMed]
- Girma, B.; Gure, A.; Wedajo, F. Influence of Altitude on Caffeine, 5-Caffeoylquinic Acid, and Nicotinic Acid Contents of Arabica Coffee Varieties. J. Chem. 2020, 2020, 3904761. [Google Scholar] [CrossRef]
- Joët, T.; Laffargue, A.; Descroix, F.; Doulbeau, S.; Bertrand, B.; de Kochko, A.; Dussert, S. Influence of Environmental Factors, Wet Processing and Their Interactions on the Biochemical Composition of Green Arabica Coffee Beans. Food Chem. 2010, 118, 693–701. [Google Scholar] [CrossRef]
- Kassaye, T.; Desalegn, A.; Derbew, B.; Pascal, B. Biochemical Composition of Ethiopian Coffees (Coffea Arabica L.) as Influenced by Variety and Postharvest Processing Methods. Afr. J. Food Sci. 2019, 13, 48–56. [Google Scholar] [CrossRef]
- Bastian, F.; Hutabarat, O.S.; Dirpan, A.; Nainu, F.; Harapan, H.; Emran, T.B.; Simal-Gandara, J. From Plantation to Cup: Changes in Bioactive Compounds during Coffee Processing. Foods 2021, 10, 2827. [Google Scholar] [CrossRef]
- Amalia, F.; Aditiawati, P.; Yusianto; Putri, S.P.; Fukusaki, E. Gas Chromatography/Mass Spectrometry-Based Metabolite Profiling of Coffee Beans Obtained from Different Altitudes and Origins with Various Postharvest Processing. Metabolomics 2021, 17, 69. [Google Scholar] [CrossRef]
- Bodner, M.; Morozova, K.; Kruathongsri, P.; Thakeow, P.; Scampicchio, M. Effect of Harvesting Altitude, Fermentation Time and Roasting Degree on the Aroma Released by Coffee Powder Monitored by Proton Transfer Reaction Mass Spectrometry. Eur. Food Res. Technol. 2019, 245, 1499–1506. [Google Scholar] [CrossRef]
- da Silva Oliveira, E.C.; da Luz, J.M.R.; de Castro, M.G.; Filgueiras, P.R.; Guarçoni, R.C.; de Castro, E.V.R.; da Silva, M.d.C.S.; Pereira, L.L. Chemical and Sensory Discrimination of Coffee: Impacts of the Planting Altitude and Fermentation. Eur. Food Res. Technol. 2022, 248, 659–669. [Google Scholar] [CrossRef]
- Martins, P.M.M.; Batista, N.N.; Miguel, M.G.d.C.P.; Simão, J.B.P.; Soares, J.R.; Schwan, R.F. Coffee Growing Altitude Influences the Microbiota, Chemical Compounds and the Quality of Fermented Coffees. Food Res. Int. 2020, 129, 108872. [Google Scholar] [CrossRef]
- Bressani, A.P.P.; Martinez, S.J.; Batista, N.N.; Simão, J.B.P.; Dias, D.R.; Schwan, R.F. Co-Inoculation of Yeasts Starters: A Strategy to Improve Quality of Low Altitude Arabica Coffee. Food Chem. 2021, 361, 130133. [Google Scholar] [CrossRef]
- Soares Ferreira, D.; Eduardo da Silva Oliveira, M.; Rodrigues Ribeiro, W.; Altoé Filete, C.; Toledo Castanheira, D.; Cesar Pereira Rocha, B.; Polonini Moreli, A.; Catarina da Silva Oliveira, E.; Carvalho Guarçoni, R.; Partelli, F.L.; et al. Association of Altitude and Solar Radiation to Understand Coffee Quality. Agronomy 2022, 12, 1885. [Google Scholar] [CrossRef]
- Zhang, S.J.; De Bruyn, F.; Pothakos, V.; Contreras, G.F.; Cai, Z.; Moccand, C.; Weckx, S.; De Vuyst, L. Influence of Various Processing Parameters on the Microbial Community Dynamics, Metabolomic Profiles, and Cup Quality During Wet Coffee Processing. Front. Microbiol. 2019, 10, 2621. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Macías, E.T.; López, C.F.; Gentile, P.; Girón-Hernández, J.; López, A.F. Impact of Post-Harvest Treatments on Physicochemical and Sensory Characteristics of Coffee Beans in Huila, Colombia. Postharvest Biol. Technol. 2022, 187, 111852. [Google Scholar] [CrossRef]
- Louzada Pereira, L.; Carvalho Guarçoni, R.; Soares Cardoso, W.; Côrrea Taques, R.; Rizzo Moreira, T.; da Silva, S.F.; Schwengber ten Caten, C. Influence of Solar Radiation and Wet Processing on the Final Quality of Arabica Coffee. J. Food Qual. 2018, 2018, 6408571. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Zhao, J. Coffee Fermentation: Expedition from Traditional to Controlled Process and Perspectives for Industrialization. Appl. Food Res. 2023, 3, 100253. [Google Scholar] [CrossRef]
- Girma, B.; Sualeh, A. A Review of Coffee Processing Methods and Their Influence on Aroma. Int. J. Food Eng. Technol. 2022, 6, 7. [Google Scholar] [CrossRef]
- Haile, M.; Kang, W.H. The Role of Microbes in Coffee Fermentation and Their Impact on Coffee Quality. J. Food Qual. 2019, 2019, 4836709. [Google Scholar] [CrossRef]
- Pinheiro, P.F.; Pinheiro, C.A.; Osório, V.M.; Pereira, L.L. Chemical Constituents of Coffee. In Quality Determinants in Coffee Production; Louzada Pereira, L., Rizzo Moreira, T., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 209–254. ISBN 978-3-030-54437-9. [Google Scholar]
- Barbosa, M.d.S.G.; Scholz, M.B.d.S.; Kitzberger, C.S.G.; Benassi, M.d.T. Correlation between the Composition of Green Arabica Coffee Beans and the Sensory Quality of Coffee Brews. Food Chem. 2019, 292, 275–280. [Google Scholar] [CrossRef]
- Barbosa, I.d.P.; de Oliveira, A.C.B.; Rosado, R.D.S.; Sakiyama, N.S.; Cruz, C.D.; Pereira, A.A. Sensory Quality of Coffea Arabica L. Genotypes Influenced by Postharvest Processing. Crop Breed. Appl. Biotechnol. 2019, 19, 428–435. [Google Scholar] [CrossRef]
- Peñuela Martínez, A.E.; Romero-Tabarez, M.; Zapata-Zapata, A.D. Functional Diversity of Microbial Communities Associated with Fermentation Processes in Coffee (Coffea Arabica L.). Coffee Sci. 2021, 16, e161825. [Google Scholar] [CrossRef]
- De Bruyn, F.; Zhang, S.J.; Pothakos, V.; Torres, J.; Lambot, C.; Moroni, A.V.; Callanan, M.; Sybesma, W.; Weckx, S.; De Vuyst, L. Exploring the Impacts of Postharvest Processing on the Microbiota and Metabolite Profiles during Green Coffee Bean Production. Appl. Environ. Microbiol. 2017, 83, e02398-16. [Google Scholar] [CrossRef] [PubMed]
- Toci, A.T.; Farah, A. Volatile Fingerprint of Brazilian Defective Coffee Seeds: Corroboration of Potential Marker Compounds and Identification of New Low Quality Indicators. Food Chem. 2014, 153, 298–314. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.P.; Franca, A.S.; Oliveira, L.S.; Irudayaraj, J.; Ileleji, K. Fourier Transform Infrared Spectroscopy and near Infrared Spectroscopy for the Quantification of Defects in Roasted Coffees. Talanta 2015, 134, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Tolessa, K.; Rademaker, M.; Baets, B.D.; Boeckx, P. Prediction of Specialty Coffee Cup Quality Based on near Infrared Spectra of Green Coffee Beans. Talanta 2016, 150, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Poltronieri, P.; Rossi, F. Challenges in Specialty Coffee Processing and Quality Assurance. Challenges 2016, 7, 19. [Google Scholar] [CrossRef]
- Velmourougane, K. Impact of Natural Fermentation on Physicochemical, Microbiological and Cup Quality Characteristics of Arabica and Robusta Coffee. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2013, 83, 233–239. [Google Scholar] [CrossRef]
- Correa, E.C.; Jiménez-Ariza, T.; Díaz-Barcos, V.; Barreiro, P.; Diezma, B.; Oteros, R.; Echeverri, C.; Arranz, F.J.; Ruiz-Altisent, M. Advanced Characterisation of a Coffee Fermenting Tank by Multi-Distributed Wireless Sensors: Spatial Interpolation and Phase Space Graphs. Food Bioprocess Technol. 2014, 7, 3166–3174. [Google Scholar] [CrossRef]
- Vera Pacheco, K.; Valdivieso Quintero, W.; Mantilla-Paredes, A.J.; Jaimes, W.; Torrado, J.; Zafra, G. Functional Metagenomic Analysis of the Coffee (Coffea Arabica) Fermentation. Chem. Eng. Trans. 2018, 64, 355–360. [Google Scholar] [CrossRef]
- Peñuela-Martínez, A.E.; Zapata-Zapata, A.D.; Durango-Restrepo, D.L. Performance of Different Fermentation Methods and the Effect on Coffee Quality (Coffea arabica L.). Coffee Sci. 2018, 13, 465–476. [Google Scholar] [CrossRef]
- Silveira, A.d.S.; Pinheiro, A.C.T.; Ferreira, W.P.M.; da Silva, L.J.; Rufino, J.L.d.S.; Sakiyama, N.S. Sensory Analysis of Specialty Coffee from Different Environmental Conditions in the Region of Matas de Minas, Minas Gerais, Brazil. Rev. Ceres 2016, 63, 436–443. [Google Scholar] [CrossRef]
- Juan Carlos García, L.; Posada-Suárez, H.; Läderach, P. Recommendations for the Regionalizing of Coffee Cultivation in Colombia: A Methodological Proposal Based on Agro-Climatic Indices. PLoS ONE 2014, 9, e113510. [Google Scholar] [CrossRef]
- Plataforma Agroclimática Cafetera—Agroclima. Available online: https://agroclima.cenicafe.org/caracterizacion-agroclimatica (accessed on 29 March 2023).
- Paisaje Cultural Cafetero de Colombia (PCC). Available online: https://paisajeculturalcafetero.org.co/departamento-del-quindio/ (accessed on 29 March 2023).
- Peñuela-Martínez, A.E.; Guerrero, A.; Sanz-Uribe, J.R. Cromacafé® Herramienta Para Identificar Los Estados de Madurez de Las Variedades de Café de Fruto Rojo. Avances Técnicos Cenicafé 2022, 535, 1–8. [Google Scholar] [CrossRef]
- Oliveros-Tascón, C.-E.; Rodriguez-Valencia, N.; Ramírez, C.A.; Velásquez-Henao, J. Método de Las Dos Canecas: Para Separar Flotes En Pequeños Lotes de Frutos de Café. Av. Técnicos Cenicafé 2020, 519, 1–8. [Google Scholar] [CrossRef]
- Peñuela-Martínez, A.E.; Pabón, J.; Sanz-Uribe, J.R. Método Fermaestro: Para Determinar La Finalización de La Fermentación Del Mucílago de Café. Av. Técnicos Cenicafé 2013, 431, 1–8. [Google Scholar] [CrossRef]
- Biolog, Inc. Anaerobe Identification Test Panel. Available online: https://www.biolog.com/wp-content/uploads/2020/04/00A-006rB-AN-Sell-Sheet-Jul07.pdf (accessed on 10 January 2023).
- Biolog, Inc. Yeast Identification Test Panel. Available online: https://www.biolog.com/wp-content/uploads/2020/05/00A-009-YT_sell-sheet.pdf (accessed on 15 January 2023).
- Specialty Coffee Association (SCA). Available online: https://www.scaa.org/PDF/resources/cupping-protocols.pdf (accessed on 30 March 2023).
- Seninde, D.R.; Chambers, E. Coffee Flavor: A Review. Beverages 2020, 6, 44. [Google Scholar] [CrossRef]
- Coffee Quality Institute. Available online: https://www.coffeeinstitute.org/ (accessed on 15 March 2023).
- SAS Institute Inc SAS/STAT 2016. Available online: https://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_91/stat_ug_7313.pdf (accessed on 25 March 2023).
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Frank, E.; Hall, M.; Witten, I. The Weka Workbench. In Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2016; p. 128. ISBN 0-12-804291-5. [Google Scholar]
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 27 March 2023).
- Warnes, G.R.; Bolker, B.M.; Bonebakker, L.; Gentleman, R.; Huber, W.; Liaw, A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; et al. Various R Programming Tools for Plotting Data [R Package Gplots Version 3.1.1.]; R Foundation for Statistical Computing: Viena, Austria, 2021. [Google Scholar]
- Oliveros, C.E.; Gunasekaran, S. Rheological Characterization of Coffee Mucilage. J. Food Process Eng. 1996, 19, 331–342. [Google Scholar] [CrossRef]
- Osorio Pérez, V.; Álvarez-Barreto, C.I.; Matallana, L.G.; Acuña, J.R.; Echeverri, L.F.; Imbachí, L.C. Effect of Prolonged Fermentations of Coffee Mucilage with Different Stages of Maturity on the Quality and Chemical Composition of the Bean. Fermentation 2022, 8, 519. [Google Scholar] [CrossRef]
- Sanz-Uribe, J.R.; Velásquez-Henao, J. Producción de Café Con Fermentaciones Incompletas y Fermentaciones Prolongadas Utilizando El Fermaestro®. Rev. Cenicafé 2022, 73, e73105. [Google Scholar] [CrossRef]
- Martinez, S.J.; Bressani, A.P.P.; Simão, J.B.P.; Pylro, V.S.; Dias, D.R.; Schwan, R.F. Dominant Microbial Communities and Biochemical Profile of Pulped Natural Fermented Coffees Growing in Different Altitudes. Food Res. Int. 2022, 159, 111605. [Google Scholar] [CrossRef]
- Lee, L.W.; Cheong, M.W.; Curran, P.; Yu, B.; Liu, S.Q. Coffee Fermentation and Flavor—An Intricate and Delicate Relationship. Food Chem. 2015, 185, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Peñuela-Martínez, A.E.; Velasquez-Emiliani, A.V.; Angel, C.A. Microbial Diversity Using a Metataxonomic Approach, Associated with Coffee Fermentation Processes in the Department of Quindío, Colombia. Fermentation 2023, 9, 343. [Google Scholar] [CrossRef]
- Jackels, S.C.; Jackels, C.F. Characterization of the Coffee Mucilage Fermentation Process Using Chemical Indicators: A Field Study in Nicaragua. J. Food Sci. 2005, 70, C321–C325. [Google Scholar] [CrossRef]
- de Oliveira Junqueira, A.C.; de Melo Pereira, G.V.; Coral Medina, J.D.; Alvear, M.C.R.; Rosero, R.; de Carvalho Neto, D.P.; Enríquez, H.G.; Soccol, C.R. First Description of Bacterial and Fungal Communities in Colombian Coffee Beans Fermentation Analysed Using Illumina-Based Amplicon Sequencing. Sci. Rep. 2019, 9, 8794. [Google Scholar] [CrossRef]
- Pothakos, V.; De Vuyst, L.; Zhang, S.J.; De Bruyn, F.; Verce, M.; Torres, J.; Callanan, M.; Moccand, C.; Weckx, S. Temporal Shotgun Metagenomics of an Ecuadorian Coffee Fermentation Process Highlights the Predominance of Lactic Acid Bacteria. Curr. Res. Biotechnol. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- De Carvalho Neto, D.; de Melo Pereira, G.; Tanobe, V.; Thomaz Soccol, V.; da Silva, B.G.; Rodrigues, C.; Soccol, C. Yeast Diversity and Physicochemical Characteristics Associated with Coffee Bean Fermentation from the Brazilian Cerrado Mineiro Region. Fermentation 2017, 3, 11. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Zhao, J. Ecological Diversity, Evolution and Metabolism of Microbial Communities in the Wet Fermentation of Australian Coffee Beans. Int. J. Food Microbiol. 2020, 321, 108544. [Google Scholar] [CrossRef] [PubMed]
- Elhalis, H.; Cox, J.; Frank, D.; Zhao, J. The Crucial Role of Yeasts in the Wet Fermentation of Coffee Beans and Quality. Int. J. Food Microbiol. 2020, 333, 108796. [Google Scholar] [CrossRef]
- Martinez, S.J.; Rabelo, M.H.S.; Bressani, A.P.P.; Da Mota, M.C.B.; Borém, F.M.; Schwan, R.F. Novel Stainless Steel Tanks Enhances Coffee Fermentation Quality. Food Res. Int. 2021, 139, 109921. [Google Scholar] [CrossRef]
- Cruz-O’Byrne, R.; Piraneque-Gambasica, N.; Aguirre-Forero, S. Microbial Diversity Associated with Spontaneous Coffee Bean Fermentation Process and Specialty Coffee Production in Northern Colombia. Int. J. Food Microbiol. 2021, 354, 109282. [Google Scholar] [CrossRef]
- Pereira, T.S.; Batista, N.N.; Pimenta, L.P.S.; Martinez, S.J.; Ribeiro, L.S.; Naves, J.A.O.; Schwan, R.F. Self-Induced Anaerobiosis Coffee Fermentation: Impact on Microbial Communities, Chemical Composition and Sensory Quality of Coffee. Food Microbiol. 2022, 103, 103962. [Google Scholar] [CrossRef] [PubMed]
- Martinez, S.J.; Simão, J.B.P.; Pylro, V.S.; Schwan, R.F. The Altitude of Coffee Cultivation Causes Shifts in the Microbial Community Assembly and Biochemical Compounds in Natural Induced Anaerobic Fermentations. Front. Microbiol. 2021, 12, 671395. [Google Scholar] [CrossRef] [PubMed]
- Brysch-Herzberg, M.; Jia, G.-S.; Seidel, M.; Assali, I.; Du, L.-L. Insights into the Ecology of Schizosaccharomyces Species in Natural and Artificial Habitats. Antonie Van Leeuwenhoek 2022, 115, 661–695. [Google Scholar] [CrossRef] [PubMed]
- Mariyam, S.; Kistanti, A.; Karyadi, J.N.W.; Widiyastuti, R.J. Improving Coffee Quality through Yeast Addition in the Fermentation Process to Support Sustainable Coffee Production. IOP Conf. Ser. Earth Environ. Sci. 2022, 1005, 012012. [Google Scholar] [CrossRef]
- Cassimiro, D.M.D.J.; Batista, N.N.; Fonseca, H.C.; Naves, J.A.O.; Dias, D.R.; Schwan, R.F. Coinoculation of Lactic Acid Bacteria and Yeasts Increases the Quality of Wet Fermented Arabica Coffee. Int. J. Food Microbiol. 2022, 369, 109627. [Google Scholar] [CrossRef]
- Magalhães Júnior, A.I.; de Carvalho Neto, D.P.; de Melo Pereira, G.V.; da Silva Vale, A.; Medina, J.D.C.; de Carvalho, J.C.; Soccol, C.R. A Critical Techno-Economic Analysis of Coffee Processing Utilizing a Modern Fermentation System: Implications for Specialty Coffee Production. Food Bioprod. Process. 2021, 125, 14–21. [Google Scholar] [CrossRef]
Treatment | Fermentation Temperature (°C) | Elevation Range (m) |
---|---|---|
1 | 15 | <1200 |
2 | 15 | 1201–1400 |
3 | 15 | 1401–1600 |
4 | 15 | 1601–1800 |
5 | 15 | >1800 |
6 | 30 | <1200 |
7 | 30 | 1201–1400 |
8 | 30 | 1401–1600 |
9 | 30 | 1601–1800 |
10 | 30 | >1800 |
Microbial Group | Incubation Time (h) | SIM Value | DIS Value | Outcome ID |
---|---|---|---|---|
Yeast | 72 | 0.601 | 1.000 | Candida sorboxylosa SF,4 |
Yeast | 72 | 0.939 | 0.416 | Cryptococcus laurenti TC,2 |
Yeast | 72 | 0.917 0.790 0.780 0.819 | 0.000 2.000 2.000 1.000 | Hanseniaspora guilliermondii/uvarum/valb TC,1−5 |
Yeast | 72 | 0.611 | 5.210 | Pichia guilliermondii B SF,4 |
Yeast | 72 | 0.718 | 0.138 | Pichia ohmeri A TC,2 |
Yeast | 72 | 0.811 | 2.510 | Pichia sydowiorum SF,2 |
Yeast | 72 | 0.522 | 2.547 | Schizosaccharomyces pombe var malidevora TC,2,3 |
Yeast | 72 | 0.524 | 7.351 | Wickerhamiella domercqiae TC,2 |
LAB | 24 | 0.518 | 3.707 | Leuconostoc mesenteroides ssp cremoris SF,5 |
LAB | 24 | 0.563 0.523 | - | Lactobacillu 2,5 |
LAB | 24 | 0.742 | 1.805 | Lactobacillus plantarum SF,3 |
LAB | 24 | 0.656 | 5.282 | Weisella paramesenteroides TC,3 |
LAB | 24 | 0.577 | 6.434 | Lactobacillus pentosus TC,3 |
LAB | 24 | 0.522 | 7.009 | Lactobacillus delbrueckii ssp lactis TC,5 |
Statistics | Treatment | Elevation Range (masl) | ||||
---|---|---|---|---|---|---|
<1200 | 1201–1400 | 1401–1600 | 1601–1800 | >1800 | ||
Mean | SF | 78.6 | 73.0 | 79.2 | 75.8 | 82.0 |
15 °C | 68.0 | 82.7 | 82.4 | 81.7 | 83.0 | |
30 °C | 74.2 | 70.5 | 82.2 | 75.1 | 82.5 | |
Standard deviation | SF | 9.5 | 13.1 | 8.7 | 12.3 | 1.3 |
15 °C | 16.0 | 1.7 | 1.2 | 1.7 | 1.7 | |
30 °C | 13.9 | 15.1 | 0.7 | 13.9 | 1.6 | |
Median | SF | 81.8 | 80.5 | 82.0 | 81.4 | 82.2 |
15 °C | 67.7 | 83.2 | 82.6 | 81.4 | 82.6 | |
30 °C | 80.8 | 80.1 | 82.2 | 81.6 | 83.0 | |
Minimum | SF | 53.3 | 53.7 | 54.6 | 53.9 | 79.9 |
15 °C | 53.8 | 80.0 | 80.7 | 80.2 | 81.2 | |
30 °C | 53.3 | 53.7 | 81.0 | 54.3 | 79.9 | |
Maximum | SF | 82.9 | 82.5 | 83.2 | 83.1 | 84.1 |
15 °C | 82.7 | 84.2 | 83.8 | 84.0 | 85.8 | |
30 °C | 81.8 | 82.5 | 83.0 | 83.0 | 84.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñuela-Martínez, A.E.; Moreno-Riascos, S.; Medina-Rivera, R. Influence of Temperature-Controlled Fermentation on the Quality of Mild Coffee (Coffea arabica L.) Cultivated at Different Elevations. Agriculture 2023, 13, 1132. https://doi.org/10.3390/agriculture13061132
Peñuela-Martínez AE, Moreno-Riascos S, Medina-Rivera R. Influence of Temperature-Controlled Fermentation on the Quality of Mild Coffee (Coffea arabica L.) Cultivated at Different Elevations. Agriculture. 2023; 13(6):1132. https://doi.org/10.3390/agriculture13061132
Chicago/Turabian StylePeñuela-Martínez, Aida Esther, Sandra Moreno-Riascos, and Rubén Medina-Rivera. 2023. "Influence of Temperature-Controlled Fermentation on the Quality of Mild Coffee (Coffea arabica L.) Cultivated at Different Elevations" Agriculture 13, no. 6: 1132. https://doi.org/10.3390/agriculture13061132