Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (669)

Search Parameters:
Keywords = micro additive manufacturing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1481 KB  
Article
Sustainable Frugal Innovation in Cultural Heritage for the Production of Decorative Items by Adopting Digital Twin
by Josip Stjepandić, Andrej Bašić, Martin Bilušić and Tomislava Majić
World 2025, 6(4), 137; https://doi.org/10.3390/world6040137 - 11 Oct 2025
Viewed by 25
Abstract
Throughout history, cultural heritage has accumulated, and is often embodied in monuments, structures, and notable figures. Cultural heritage preservation and management also include digitalization, allowing tangible monuments to be managed as digital inventory with “digital twins”. This provides innovative ways to experience and [...] Read more.
Throughout history, cultural heritage has accumulated, and is often embodied in monuments, structures, and notable figures. Cultural heritage preservation and management also include digitalization, allowing tangible monuments to be managed as digital inventory with “digital twins”. This provides innovative ways to experience and interact with the real world, in particular by using modern mobile devices. The digitalization of monuments opens new ways to produce decorative items based on the shape of the monuments. Usually, decorative items are produced by craft businesses, family-run for generations, with specialized skills in metal and stone processing. We developed and tested a methodological proposal for frugal innovation: how to produce decorative items with minimal costs based on digital twins, which are particularly in demand in tourism-driven countries like Croatia. A micro-business with three employees, specializing in “metal art,” aims to innovate and expand by producing small-scale replicas of cultural heritage objects, such as busts, statues, monuments, or profiles. A method has been developed to create replicas in the desired material and at a desired scale, faithfully reproducing the original—whether based on a physical object, 3D model, or photograph. The results demonstrate that this sustainable frugal innovation can be successfully implemented using affordable tools and licenses. Full article
Show Figures

Figure 1

34 pages, 18226 KB  
Article
The Vanadium Micro-Alloying Effect on the Microstructure of HSLA Steel Welded Joints by GMAW
by Giulia Stornelli, Bryan Ramiro Rodríguez-Vargas, Anastasiya Tselikova, Rolf Schimdt, Michelangelo Mortello and Andrea Di Schino
Metals 2025, 15(10), 1127; https://doi.org/10.3390/met15101127 - 10 Oct 2025
Viewed by 208
Abstract
Structural applications that use High-Strength Low-Alloy (HSLA) steels require detailed microstructural analysis to manufacture welded components that combine strength and weldability. The balance of these properties depends on both the chemical composition and the welding parameters. Moreover, in multi-pass welds, thermal cycling results [...] Read more.
Structural applications that use High-Strength Low-Alloy (HSLA) steels require detailed microstructural analysis to manufacture welded components that combine strength and weldability. The balance of these properties depends on both the chemical composition and the welding parameters. Moreover, in multi-pass welds, thermal cycling results in a complex Heat-Affected Zone (HAZ), characterized by sub-regions with a multitude of microstructural constituents, including brittle phases. This study investigates the influence of Vanadium addition on the microstructure and performance of the HAZ. Multi-pass welded joints were manufactured on 15 mm thick S355 steels with different Vanadium contents using a robotic GMAW process. A steel variant containing both Vanadium and Niobium was also considered, and the results were compared to those of standard S355 steel. Moving through the different sub-regions of the welded joints, the results show a heterogeneous microstructure characterized by ferrite, bainite and martensite/austenite (M/A) islands. The presence of Vanadium reduces carbon solubility during the phase transformations involved in the welding process. This results in the formation of very fine (average size 11 ± 4 nm) and dispersed precipitates, as well as a lower percentage of the brittle M/A phase, in the variant with a high Vanadium content (0.1 wt.%), compared to the standard S355 steel. Despite the presence of the brittle phase, the micro-alloyed variants exhibit strengthening without loss of ductility. The combined presence of both hard and soft phases in the HAZ provides stress-damping behavior, which, together with the very fine precipitates, promises improved resistance to crack propagation under different loading conditions. Full article
Show Figures

Figure 1

42 pages, 6823 KB  
Review
Biomimetic Daytime Radiative Cooling Technology: Prospects and Challenges for Practical Application
by Jiale Wang, Haiyang Chen, Xiaxiao Tian, Dongxiao Hu, Yufan Liu, Jiayue Li, Ke Zhang, Hongliang Huang, Jie Yan and Bin Li
Materials 2025, 18(19), 4556; https://doi.org/10.3390/ma18194556 - 30 Sep 2025
Viewed by 522
Abstract
Biomimetic structures inspired by evolutionary optimized biological systems offer promising solutions to overcome current limitations in passive daytime radiative cooling (PDRC) technology, which efficiently scatters solar radiation through atmospheric windows and radiates surface heat into space without additional energy consumption. While structural biomimicry [...] Read more.
Biomimetic structures inspired by evolutionary optimized biological systems offer promising solutions to overcome current limitations in passive daytime radiative cooling (PDRC) technology, which efficiently scatters solar radiation through atmospheric windows and radiates surface heat into space without additional energy consumption. While structural biomimicry provides excellent optical performance and feasibility, its complex manufacturing and high costs limit scalability due to micro–nano fabrication constraints. Material-based biomimicry, utilizing environmentally friendly and abundant raw materials, offers greater scalability but requires improvements in mechanical durability. Adaptive biomimicry enables intelligent regulation with high responsiveness but faces challenges in system complexity, stability, and large-scale integration. These biologically derived strategies provide valuable insights for advancing radiative cooling devices. This review systematically summarizes recent progress, elucidates mechanisms of key biological structures for photothermal regulation, and explores their application potential across various fields. It also discusses current challenges and future research directions, aiming to promote deeper investigation and breakthroughs in biomimetic radiative cooling technologies. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

18 pages, 10487 KB  
Article
Design and Characterization of Durable Glass Fibre (GF)-Reinforced PLA and PEEK Biomaterials
by Asit Kumar Gain and Liangchi Zhang
Polymers 2025, 17(18), 2536; https://doi.org/10.3390/polym17182536 - 19 Sep 2025
Viewed by 399
Abstract
Poly(lactic acid) (PLA) and poly(ether-ether ketone) (PEEK) are widely recognized for their biocompatibility and processability in orthopaedic applications. However, PLA suffers from brittleness and limited thermal and mechanical stability, while PEEK, despite its better strength, does not fully replicate the mechanical and tribological [...] Read more.
Poly(lactic acid) (PLA) and poly(ether-ether ketone) (PEEK) are widely recognized for their biocompatibility and processability in orthopaedic applications. However, PLA suffers from brittleness and limited thermal and mechanical stability, while PEEK, despite its better strength, does not fully replicate the mechanical and tribological performance of natural bone. This study explores the enhancement of structural and tribological properties in PLA- and PEEK-based composites reinforced with short glass fibres (S-GF) via additive manufacturing. Microstructural analysis confirms uniform GF dispersion within both polymer matrices, with no evidence of agglomeration, fibre pull-out, or interfacial debonding, suggesting strong fibre–matrix adhesion. The incorporation of GF significantly improved mechanical performance: microhardness increased by 38.3% in PLA and 36.3% in PEEK composites, while tensile strength increased by 25.1% and 13.4%, respectively, compared to plain polymers. These enhancements are attributed to effective stress transfer enabled by uniform fibre distribution and strong interfacial bonding. Tribological tests further demonstrate enhanced wear resistance, reduce damage propagation, and improved surface integrity under micro-scratching. These findings highlight the potential of GF-reinforced PLA and PEEK composites as high-performance materials for load-bearing biomedical applications, offering a balanced combination of mechanical strength and wear resistance aligned with the functional requirements of bioimplants. Full article
(This article belongs to the Special Issue Additive Manufacturing of (Bio)Polymeric Materials, 2nd Edition)
Show Figures

Figure 1

20 pages, 3018 KB  
Article
Biological Properties of a Composite Polymer Material Based on Polyurea and Submicron-Sized Selenium Particles
by Sergey A. Shumeyko, Dmitriy E. Burmistrov, Denis V. Yanykin, Ilya V. Baimler, Alexandr V. Simakin, Maxim E. Astashev, Mikhail V. Dubinin, Roman Y. Pishchalnikov, Ruslan M. Sarimov, Valeriy A. Kozlov, Alexey S. Dorokhov and Andrey Yu. Izmailov
Inventions 2025, 10(5), 82; https://doi.org/10.3390/inventions10050082 - 19 Sep 2025
Viewed by 463
Abstract
Using the method of laser ablation in liquid, submicron-sized particles of zero-valent amorphous selenium (Se SMPs) were created. A number of composite polymer materials were manufactured based on polyurea and Se SMPs at concentrations ranging 0.1–2.5 wt.%. The manufactured materials showed no significant [...] Read more.
Using the method of laser ablation in liquid, submicron-sized particles of zero-valent amorphous selenium (Se SMPs) were created. A number of composite polymer materials were manufactured based on polyurea and Se SMPs at concentrations ranging 0.1–2.5 wt.%. The manufactured materials showed no significant surface or internal defects at either the macro or micro level. It was found that the Se SMPs were not uniformly distributed inside the polymer, but formed ordered areas with slightly higher and lower concentrations of the particles. It was demonstrated that the manufactured materials did not generate a significant amount of active oxygen species, which could damage biological objects such as protein molecules and DNA, while also exhibiting pronounced bacteriostatic properties without significantly affecting the growth and reproduction of mammalian cells. Materials containing 0.25 and 1% Se SMPs, when added to soil, improved the morphometric parameters of radish plants (Raphanus sativus var. sativus). These polymer composite materials based on polyurea with the addition of Se SMPs are promising functional materials for agriculture due to their antibacterial activity. Full article
(This article belongs to the Section Inventions and Innovation in Biotechnology and Materials)
Show Figures

Figure 1

5 pages, 2258 KB  
Abstract
Laser Thermography as Non-Destructive Technique to Detect Defects in AlSi10Mg Parts Printed with L-PBF Process
by Ester D’Accardi, Rainer Krankenhagen, Davide Palumbo, Philipp D. Hirsch and Umberto Galietti
Proceedings 2025, 129(1), 8; https://doi.org/10.3390/proceedings2025129008 - 12 Sep 2025
Viewed by 274
Abstract
In additive manufacturing (AM), particularly with AlSi10Mg aluminum alloy produced via Laser Powder Bed Fusion (L-PBF), understanding and detecting defects is crucial for ensuring mechanical integrity. This study evaluates the effectiveness of active thermography as a fast, non-destructive testing (NDT) method for identifying [...] Read more.
In additive manufacturing (AM), particularly with AlSi10Mg aluminum alloy produced via Laser Powder Bed Fusion (L-PBF), understanding and detecting defects is crucial for ensuring mechanical integrity. This study evaluates the effectiveness of active thermography as a fast, non-destructive testing (NDT) method for identifying typical L-PBF defects. Artificial defects (cubes, spheres, cylinders with unfused powder) were introduced by varying printing parameters. Their real geometry was assessed via micro-computed tomography (μ-CT), revealing deviations from nominal shapes. Thermographic tests using a laser heat source (≈40 W/cm2) were conducted to examine the detectability of these defects in the highly diffusive material AlSi10Mg. Results highlight both the limitations and potential of thermography as a cost- and time-effective alternative to μ-CT for quantitative inspection. Full article
Show Figures

Figure 1

41 pages, 5816 KB  
Review
A Review of Hybrid Manufacturing: Integrating Subtractive and Additive Manufacturing
by Bruno Freitas, Vipin Richhariya, Mariana Silva, António Vaz, Sérgio F. Lopes and Óscar Carvalho
Materials 2025, 18(18), 4249; https://doi.org/10.3390/ma18184249 - 10 Sep 2025
Viewed by 1181
Abstract
It is challenging to manufacture complex and intricate shapes and geometries with desired surface characteristics using a single manufacturing process. Parts often need to undergo post-processing and must be transported from one machine into another between steps. This makes the whole process cumbersome, [...] Read more.
It is challenging to manufacture complex and intricate shapes and geometries with desired surface characteristics using a single manufacturing process. Parts often need to undergo post-processing and must be transported from one machine into another between steps. This makes the whole process cumbersome, time-consuming, and inaccurate. These shortcomings play a major role during the manufacturing of micro and nano products. Hybrid manufacturing (HM) has emerged as a favorable solution for these issues. It is a flexible process that combines two or more manufacturing processes, such as additive manufacturing (AM) and subtractive manufacturing (SM), into a single setup. HM works synergistically to produce complex, composite, and customized components. It makes the process more time efficient and accurate and can prevent unnecessary transportation of parts. There are still challenges ahead regarding implementing and integrating sensors that allow the machine to detect defects and repair or customize parts according to needs. Even though modern hybrid machines forecast an exciting future in the manufacturing world, they still lack features such as real-time adaptive manufacturing based on sensors and artificial intelligence (AI). Earlier reviews do not profoundly elaborate on the types of laser HM machines available. Laser technology resolutely handles additive and subtractive manufacturing and is capable of producing groundbreaking parts using a wide scope of materials. This review focuses on HM and presents a compendious overview of the types of hybrid machines and setups used in the scientific community and industry. The study is unique in the sense that it covers different HM setups based on machine axes, materials, and processing parameters. We hope this study proves helpful to process, plan, and impart productivity to HM processes for the betterment of material utilization and efficiency. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

20 pages, 4774 KB  
Review
Review of the Integration of Fused Filament Fabrication with Complementary Methods for Fabricating Hierarchical Porous Polymer Structures
by Savvas Koltsakidis and Dimitrios Tzetzis
Appl. Sci. 2025, 15(17), 9703; https://doi.org/10.3390/app15179703 - 3 Sep 2025
Viewed by 688
Abstract
Hierarchically porous polymers can unite macro-scale architected voids with micro-scale pores, enabling unique combinations of low density, high surface area, and controlled transport properties that are difficult to achieve with traditional methods. This review outlines the current advancements in creating such multiscale architectures [...] Read more.
Hierarchically porous polymers can unite macro-scale architected voids with micro-scale pores, enabling unique combinations of low density, high surface area, and controlled transport properties that are difficult to achieve with traditional methods. This review outlines the current advancements in creating such multiscale architectures using fused filament fabrication (FFF), the most widely used polymer additive manufacturing technique. Unlike earlier reviews that consider lattice architectures and foaming chemistries separately, this work integrates both within a single analysis. It begins with an overview of FFF fundamentals and how process parameters affect macropore formation. Design strategies for achieving macroporosity (≳100 µm) with a single thermoplastic are presented and categorized: 2D infill patterns, strut-based lattices, triply periodic minimal surfaces (TPMS), and Voronoi structures, along with functionally graded approaches. The discussion then shifts to functional filaments incorporating chemical or physical blowing agents, thermally expandable or hollow microspheres, and sacrificial porogens, which create microporosity (≲100 µm) either in situ or through post-processing. Each material approach is connected to case studies that demonstrate its application. A comparative analysis highlights the advantages of each method. Key challenges such as viscosity control, thermal gradient management, dimensional instability during foaming, environmental concerns, and the absence of standardized porosity measurement techniques are addressed. Finally, emerging solutions and future directions are explored. Overall, this review provides a comprehensive perspective on strategies that enhance FFF’s capability to fabricate hierarchically porous polymer structures. Full article
(This article belongs to the Special Issue Feature Review Papers in Additive Manufacturing Technologies)
Show Figures

Figure 1

19 pages, 12119 KB  
Article
Multi-Disciplinary Optimization of Mixed-Flow Turbine for Additive Manufacturing
by Victor Loir, Bayindir H. Saracoglu and Tom Verstraete
Int. J. Turbomach. Propuls. Power 2025, 10(3), 26; https://doi.org/10.3390/ijtpp10030026 - 2 Sep 2025
Viewed by 483
Abstract
Additive manufacturing offers new perspectives for creating complex geometries with improved design features at lower cost and with reduced manufacturing time. It may even become possible to print a micro-turbojet engine in one single print, but then unconventional geometrical constraints on compressor and [...] Read more.
Additive manufacturing offers new perspectives for creating complex geometries with improved design features at lower cost and with reduced manufacturing time. It may even become possible to print a micro-turbojet engine in one single print, but then unconventional geometrical constraints on compressor and turbine designs are inevitable. If a radial machine were printed through additive manufacturing as a standalone component, the most logical print direction would be from the radial outlet/inlet to the axial inlet/outlet to ease the process and limit the supports, with limited additional constraints compared to traditional manufacturing methods. If the rotor comprising a radial compressor and turbine needs to be printed in one single print, one of the components will be printed in a direction that is not favorable. In the present work, the radial turbine is considered to be printed in the unfavorable direction, namely, from the axial outlet to the radial inlet. These geometrical constraints orient the geometry towards a mixed-flow configuration with a trailing-edge cutback. Such design features reduce the available design space for improvement and will clearly have an unfavorable impact on performance. Therefore, a multi-disciplinary gradient-based adjoint optimization of the mixed-flow turbine is performed, striving to limit the adverse impact on total-to-total efficiency while respecting the mass flow rate and power matching with the upstream compressor. The structural constraint limits the p-Norm von Mises stress to a maximum threshold based on the material yield strength at the operating temperature. The results show that a satisfactory compromise can be found between manufacturability constraints, material limits and aerodynamic performance. Full article
Show Figures

Figure 1

30 pages, 4753 KB  
Review
Review on Melt Electrowriting Modelling and Applications
by Hongli Ju, Wajira Mirihanage, Weiguang Wang and Zekai Murat Kilic
Machines 2025, 13(9), 763; https://doi.org/10.3390/machines13090763 - 25 Aug 2025
Viewed by 921
Abstract
Melt electrowriting (MEW) is an advanced additive manufacturing technology that can produce micro- or nano-scale fibres, achieving accurate fibre deposition, and is suitable for manufacturing high-precision, miniature products. This review introduces the key principles and parameters that influence the performance of melt electrowriting [...] Read more.
Melt electrowriting (MEW) is an advanced additive manufacturing technology that can produce micro- or nano-scale fibres, achieving accurate fibre deposition, and is suitable for manufacturing high-precision, miniature products. This review introduces the key principles and parameters that influence the performance of melt electrowriting and explores the current mathematical modelling under four stages: (1) heating and extrusion system, (2) formation of the Taylor cone, (3) formation and injection of the melt jet, and (4) deposition of the melt jet. In addition, current applications of melt electrowriting in emerging areas, such as tissue engineering, energy, filtration, and bioengineering, are introduced while discussing its combination with other additive manufacturing technologies. Finally, recent challenges, including production time, cost, and precision are covered, while the future research directions are to improve technology and introduce new materials. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

32 pages, 3244 KB  
Article
Exploring Industry 4.0 Technologies Implementation to Enhance Circularity in Spanish Manufacturing Enterprises
by Juan-José Ortega-Gras, María-Victoria Bueno-Delgado, José-Francisco Puche-Forte, Josefina Garrido-Lova and Rafael Martínez-Fernández
Sustainability 2025, 17(17), 7648; https://doi.org/10.3390/su17177648 - 25 Aug 2025
Viewed by 1241
Abstract
Industry 4.0 (I4.0) is reshaping manufacturing by integrating advanced digital technologies and is increasingly seen as an enabler of the circular economy (CE). However, most research treats digitalisation and circularity separately, with limited empirical insight regarding their combined implementation. This study investigates I4.0 [...] Read more.
Industry 4.0 (I4.0) is reshaping manufacturing by integrating advanced digital technologies and is increasingly seen as an enabler of the circular economy (CE). However, most research treats digitalisation and circularity separately, with limited empirical insight regarding their combined implementation. This study investigates I4.0 adoption to support sustainability and CE across industries, focusing on how enterprise size influences adoption patterns. Based on survey data from 69 enterprises, the research examines which technologies are applied, at what stages of the product life cycle, and what barriers and drivers influence uptake. Findings reveal a modest but growing adoption led by the Internet of Things (IoT), big data, and integrated systems. While larger firms implement more advanced tools (e.g., robotics and simulation), smaller enterprises favour accessible solutions (e.g., IoT and cloud computing). A positive link is observed between digital adoption and CE practices, though barriers remain significant. Five main categories of perceived obstacles are identified: political/institutional, financial, social/market-related, technological/infrastructural, and legal/regulatory. Attitudinal resistance, particularly in micro and small enterprises, emerges as an additional challenge. Based on these insights, and to support the twin transition, the paper proposes targeted policies, including expanded funding, streamlined procedures, enhanced training, and tools for circular performance monitoring. Full article
(This article belongs to the Special Issue Achieving Sustainability: Role of Technology and Innovation)
Show Figures

Figure 1

21 pages, 2258 KB  
Review
Linking Process Parameters, Structure, and Properties in Material Extrusion Additive Manufacturing of Polymers and Composites: A Review
by Attila Debreceni, Zsolt Buri and Sándor Bodzás
J. Manuf. Mater. Process. 2025, 9(9), 286; https://doi.org/10.3390/jmmp9090286 - 22 Aug 2025
Viewed by 3057
Abstract
This review investigates how process parameters and material choices influence the mechanical performance of parts produced by material extrusion additive manufacturing, with a particular focus on Material Extrusion (ME). Through a systematic bibliometric analysis of literature between 2015 and 2025, the study identifies [...] Read more.
This review investigates how process parameters and material choices influence the mechanical performance of parts produced by material extrusion additive manufacturing, with a particular focus on Material Extrusion (ME). Through a systematic bibliometric analysis of literature between 2015 and 2025, the study identifies key factors affecting mechanical strength, anisotropy, and structural reliability, including printing temperature, speed, orientation, layer thickness, and interlayer bonding. Emphasis is placed on emerging techniques such as 4D printing, fiber-reinforced composites, and novel monitoring methods like real-time vibration sensing and thermal imaging, which offer promising pathways to improve part performance and process stability. Three research questions guide the analysis: (1) how printing parameters affect micro- to macrostructure and failure behavior, (2) how optimization strategies enhance part quality, and (3) how material and process selection aligns with functional requirements. The review highlights both advances and persistent limitations in process control, material compatibility, and anisotropic strength. It concludes with a call for further integration of predictive modeling, hybrid material systems, and closed-loop process monitoring to unlock the full potential of additive manufacturing in high-performance engineering applications. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

23 pages, 7663 KB  
Review
Advances in 3D Printing: Microfabrication Techniques and Forming Applications
by Di Pan, Fanghui Jia, Muyuan Zhou, Hao Liu, Jingru Yan, Lisong Zhu, Ming Yang and Zhengyi Jiang
Micromachines 2025, 16(8), 940; https://doi.org/10.3390/mi16080940 - 15 Aug 2025
Viewed by 941
Abstract
Stainless steel is essential in high-performance industries due to its strength, corrosion resistance, and biocompatibility. However, conventional manufacturing methods limit material efficiency, design complexity, and customization. Additive manufacturing (AM) has emerged as a powerful alternative, enabling the production of stainless-steel components with complex [...] Read more.
Stainless steel is essential in high-performance industries due to its strength, corrosion resistance, and biocompatibility. However, conventional manufacturing methods limit material efficiency, design complexity, and customization. Additive manufacturing (AM) has emerged as a powerful alternative, enabling the production of stainless-steel components with complex geometries, tailored microstructures, and integrated functionalities. Key AM methodologies, including laser powder bed fusion (L-PBF), binder jetting, and directed energy deposition (DED), are evaluated for their effectiveness in producing stainless-steel components with optimal performance characteristics. This review highlights innovations in stainless-steel AM, focusing on microfabrication, multi-material approaches, and post-processing strategies such as heat treatment, hot isostatic pressing (HIP), and surface finishing. It also examines the impact of process parameters on microstructure, mechanical anisotropy, and defects. Emerging trends include AM-specific alloy design, functionally graded structures, and AI-based control. Applications span biomedical implants, micro-tooling, energy systems, and automotive parts, with emphasis on microfabrication for biomedical micromachines and precision microforming. Full article
Show Figures

Figure 1

23 pages, 7586 KB  
Article
Multi-Scale Mechanical Anisotropy and Heat Treatment Effects in Additively Manufactured AlSi10Mg
by Aikaterini Argyrou, Leonidas Gargalis, Leonidas Karavias, Evangelia K. Karaxi and Elias P. Koumoulos
Metals 2025, 15(8), 890; https://doi.org/10.3390/met15080890 - 8 Aug 2025
Viewed by 703
Abstract
This study investigates the combined effects of build planes and heat treatments on the micro- and nanoscale mechanical properties of additively manufactured AlSi10Mg alloy. The hardness and elastic modulus were examined across two principal planes, XY and XZ, under three conditions: as-built (AB), [...] Read more.
This study investigates the combined effects of build planes and heat treatments on the micro- and nanoscale mechanical properties of additively manufactured AlSi10Mg alloy. The hardness and elastic modulus were examined across two principal planes, XY and XZ, under three conditions: as-built (AB), after solution annealing followed by water quenching (SA), and artificially aged after solution annealing (SA&AA). The results reveal that hardness is significantly affected by heat treatment, decreasing after SA and partially recovering upon subsequent artificial aging (SA&AA), while remaining largely unaffected by build planes, with average values differing by less than 2%. In contrast, the elastic modulus demonstrates a clear anisotropy, correlated with the microstructural changes from both additive manufacturing and thermal post-processing. The XY plane initially shows a modulus up to 29% higher than the XZ plane. However, after aging, the values of both planes converge to similar levels. While average values suggest general trends, localized measurements reveal notable spatial heterogeneity in both the hardness and elastic modulus—particularly after thermal treatments—arising from microstructural evolutions. These findings highlight the complex interplay between orientation and thermal history, underscoring that the mechanical performance of AlSi10Mg is governed by the synergistic effects that influence anisotropy and local mechanical behavior. Full article
(This article belongs to the Special Issue Welding and Additive Manufacturing of Metals)
Show Figures

Figure 1

20 pages, 23283 KB  
Article
Titanium–Aluminum–Vanadium Surfaces Generated Using Sequential Nanosecond and Femtosecond Laser Etching Provide Osteogenic Nanotopography on Additively Manufactured Implants
by Jonathan T. Dillon, David J. Cohen, Scott McLean, Haibo Fan, Barbara D. Boyan and Zvi Schwartz
Biomimetics 2025, 10(8), 507; https://doi.org/10.3390/biomimetics10080507 - 4 Aug 2025
Viewed by 811
Abstract
Titanium–aluminum–vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale [...] Read more.
Titanium–aluminum–vanadium (Ti6Al4V) is a material chosen for spine, orthopedic, and dental implants due to its combination of desirable mechanical and biological properties. Lasers have been used to modify metal surfaces, enabling the generation of a surface on Ti6Al4V with distinct micro- and nano-scale structures. Studies indicate that topography with micro/nano features of osteoclast resorption pits causes bone marrow stromal cells (MSCs) and osteoprogenitor cells to favor differentiation into an osteoblastic phenotype. This study examined whether the biological response of human MSCs to Ti6Al4V surfaces is sensitive to laser treatment-controlled micro/nano-topography. First, 15 mm diameter Ti6Al4V discs (Spine Wave Inc., Shelton, CT, USA) were either machined (M) or additively manufactured (AM). Surface treatments included no laser treatment (NT), nanosecond laser (Ns), femtosecond laser (Fs), or nanosecond followed by femtosecond laser (Ns+Fs). Surface wettability, roughness, and surface chemistry were determined using sessile drop contact angle, laser confocal microscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). Human MSCs were cultured in growth media on tissue culture polystyrene (TCPS) or test surfaces. On day 7, the levels of osteocalcin (OCN), osteopontin (OPN), osteoprotegerin (OPG), and vascular endothelial growth factor 165 (VEGF) in the conditioned media were measured. M NT, Fs, and Ns+Fs surfaces were hydrophilic; Ns was hydrophobic. AM NT and Fs surfaces were hydrophilic; AM Ns and Ns+Fs were hydrophobic. Roughness (Sa and Sz) increased after Ns and Ns+Fs treatment for both M and AM disks. All surfaces primarily consisted of oxygen, titanium, and carbon; Fs had increased levels of aluminum for both M and AM. SEM images showed that M NT discs had a smooth surface, whereas AM surfaces appeared rough at a higher magnification. Fs surfaces had a similar morphology to their respective NT disc at low magnification, but higher magnification revealed nano-scale bumps not seen on NT surfaces. AM Fs surfaces also had regular interval ridges that were not seen on non-femto laser-ablated surfaces. Surface roughness was increased on M and AM Ns and Ns+Fs disks compared to NT and Fs disks. OCN was enhanced, and DNA was reduced on Ns and Ns+Fs, with no difference between them. OPN, OPG, and VEGF levels for laser-treated M surfaces were unchanged compared to NT, apart from an increase in OPG on Fs. MSCs grown on AM Ns and Ns+Fs surfaces had increased levels of OCN per DNA. These results indicate that MSCs cultured on AM Ns and AM Ns+Fs surfaces, which exhibited unique roughness at the microscale and nanoscale, had enhanced differentiation to an osteoblastic phenotype. The laser treatments of the surface mediated this enhancement of MSC differentiation and warrant further clinical investigation. Full article
Show Figures

Graphical abstract

Back to TopTop