Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,481)

Search Parameters:
Keywords = miRNA-135b

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6977 KB  
Article
An Integrative Small RNA–Degradome–Transcriptome Analysis Reveals Mechanisms of Heat-Induced Anther Indehiscence in Pepper
by Gang Lei, Tao Li, Kunhua Zhou, Xinjie Yuan, Yueqin Huang, Gege Li, Yu Fang, Rong Fang and Xuejun Chen
Biology 2026, 15(2), 129; https://doi.org/10.3390/biology15020129 - 12 Jan 2026
Abstract
Heat threatens male fertility in crops, yet the regulatory basis of anther dehiscence under high temperatures remains unclear. We compared a heat-sensitive pepper cultivar (DL) with a heat-tolerant landrace (B021) across two anther stages using integrated transcriptome, small-RNA, degradome, co-expression, and enzymatic assays. [...] Read more.
Heat threatens male fertility in crops, yet the regulatory basis of anther dehiscence under high temperatures remains unclear. We compared a heat-sensitive pepper cultivar (DL) with a heat-tolerant landrace (B021) across two anther stages using integrated transcriptome, small-RNA, degradome, co-expression, and enzymatic assays. DL showed a collapse of anther dehiscence above 34–38 °C, whereas B021 retained normal dehiscence at 39 °C, and histology revealed tapetal enlargement, premature degeneration, and locule contraction only in DL. RNA-seq indicated genotype- and stage-dependent reprogramming, with DL suppressing phenylpropanoid/cell-wall, transport, and proteostasis pathways, while B021 maintained reproductive and stress-integration programs. Small-RNA profiling and degradome sequencing identified conserved miRNA families with in vivo target cleavage, and notably, miR397 targeting a laccase gene showed stronger evidence in B021, which is consistent with controlled lignification. Functional organization of differentially expressed miRNA targets highlighted modules in respiration/redox, hormone and terpenoid metabolism, vascular–cell-wall programs, and proteostasis/osmotic buffering. WGCNA modules correlated with heat-tolerance traits converged on the same processes. Enzyme assays corroborated multi-omics predictions, with SOD, CAT, and POD activities consistently induced in B021 and limited MDA accumulation. Together, the data supports a model in which tolerant anthers sustain dehiscence under heat by coordinating secondary-wall formation, auxin/jasmonate/gibberellin crosstalk, respiratory and reactive oxygen species buffering, and protein/membrane quality control, providing tractable targets for breeding heat-resilient peppers. Full article
(This article belongs to the Special Issue The Potential of Genetics and Plant Breeding in Crop Improvement)
Show Figures

Figure 1

14 pages, 1446 KB  
Systematic Review
Biomarkers for Predicting Malignant Transformation of Premalignant Lesions of the Larynx: A Systematic Review
by Juan P. Rodrigo, Reydson Alcides de Lima-Souza, Fernando López, Göran Stenman, Abbas Agaymy, Miquel Quer, Vinidh Paleri, Ilmo Leivo, Alfons Nadal, Nina Zidar, Fernanda V. Mariano, Henrik Hellquist, Nina Gale and Alfio Ferlito
Diagnostics 2026, 16(2), 236; https://doi.org/10.3390/diagnostics16020236 - 12 Jan 2026
Abstract
Background/Objectives: Premalignant laryngeal lesions carry a variable risk of malignant transformation to squamous cell carcinoma. Identifying reliable biomarkers that predict malignant transformation could improve patient management and surveillance strategies. The objective of this work is to perform a systematic review of the [...] Read more.
Background/Objectives: Premalignant laryngeal lesions carry a variable risk of malignant transformation to squamous cell carcinoma. Identifying reliable biomarkers that predict malignant transformation could improve patient management and surveillance strategies. The objective of this work is to perform a systematic review of the literature on biomarkers that predict malignant transformation of premalignant laryngeal lesions. Methods: We conducted a systematic review following PRISMA 2020 guidelines. The PubMed, Scopus and Embase databases, and Google Scholar were searched for studies published between January 2011 and November 2025. Studies investigating biomarkers that predict malignant transformation of histopathologically confirmed premalignant laryngeal lesions were included. Risk of bias was assessed using the ROBINS-I tool. Results: From 166 initially identified records, 11 studies met the inclusion criteria, including 730 patients. These studies investigated diverse biomarker categories such as protein markers (cortactin, FAK, NANOG, SOX2, CSPG4), immune markers (tumor-infiltrating lymphocytes, immune gene signatures), microRNAs (miR-183-5p, miR-155-5p, miR-106b-3p), and genetic markers (chromosomal instability, PIK3CA amplification and mutations, FGFR3 mutations). Five studies provided adequate follow-up data on transformation outcomes. Most studies showed a moderate to serious risk of bias primarily due to limited confounder control and incomplete reporting. Conclusions: While several promising biomarker candidates have been identified, the evidence base remains limited due to small sample sizes, heterogeneous methodologies, and inadequate follow-up data. Cortactin/FAK protein expression and immune signatures are the most promising but require validation in larger, well-designed prospective cohorts. Full article
(This article belongs to the Special Issue Clinical Diagnosis of Otorhinolaryngology)
Show Figures

Figure 1

21 pages, 11383 KB  
Article
Identification of miRNAs Responsive to a Defined Period of Iron Deficiency and Resupply in Arabidopsis thaliana
by Qianmiao Zhao, Fei Liu, Jin Xu and Ping Zhang
Plants 2026, 15(2), 227; https://doi.org/10.3390/plants15020227 - 11 Jan 2026
Viewed by 45
Abstract
Iron (Fe), as one of the essential micronutrients for plants, plays a pivotal role in regulating growth and development through homeostatic balance. Fe deficiency is a common agricultural stress that causes visible leaf chlorosis and impairs plant growth. In this study, Arabidopsis thaliana [...] Read more.
Iron (Fe), as one of the essential micronutrients for plants, plays a pivotal role in regulating growth and development through homeostatic balance. Fe deficiency is a common agricultural stress that causes visible leaf chlorosis and impairs plant growth. In this study, Arabidopsis thaliana seedlings grown under Fe deficiency for 4 days were subjected to 6 h Fe resupply via foliar spray or root supply, followed by measurements of chlorophyll fluorescence and metal ion contents in leaves and roots. Fe deficiency significantly reduced Fe levels and the maximum quantum yield of fluorescence (Fv/Fm), while increasing copper (Cu) accumulation in roots. Zinc (Zn) and manganese (Mn) levels were also altered, depending on tissue type. Fe resupply restored Fv/Fm, increased Mn levels, and rebalanced micronutrient content. MicroRNA (miRNA) mediates adaptation to Fe deficiency via post-transcriptional regulation in plants. However, the involved regulatory networks of miRNAs under stress conditions during Fe resupply following deficiency remain poorly understood. These physiological changes prompted us to explore the underlying regulatory networks using miRNA-seq and mRNA-seq. The bioinformatics analysis identified differentially expressed miRNAs responsive to Fe stress, with the Fe-deficiency-specific cis-element IDE1 characterized in their promoter regions. By integrating miRNA-seq and mRNA-seq datasets, we constructed a regulatory network and identified 13 miRNAs harboring IDE1 motifs alongside their functional target genes. Three critical Fe homeostasis modules were proposed—miR396b-LSU2, miR401-HEMA1, and miR169b-NF-YA2—that link Fe homeostasis to chlorophyll synthesis, sulfur (S) responses, and developmental signaling. This study integrates physiological phenotyping with transcriptomic insights to provide a comprehensive view of Fe deficiency and recovery in Arabidopsis. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

20 pages, 4347 KB  
Article
Integrated ceRNA Network Analysis in Silica-Induced Pulmonary Fibrosis and Discovery of miRNA Biomarkers
by Jia Wang, Yuting Jin, Qianwei Chen, Fenglin Zhu and Min Mu
Toxics 2026, 14(1), 63; https://doi.org/10.3390/toxics14010063 - 9 Jan 2026
Viewed by 149
Abstract
Silicosis is an irreversible and progressive pulmonary fibrotic disease caused by the long-term inhalation of silica dust. The precise molecular mechanisms underlying the disease remain incompletely understood, and effective early diagnostic biomarkers are still lacking. In this study, we used a silicosis mouse [...] Read more.
Silicosis is an irreversible and progressive pulmonary fibrotic disease caused by the long-term inhalation of silica dust. The precise molecular mechanisms underlying the disease remain incompletely understood, and effective early diagnostic biomarkers are still lacking. In this study, we used a silicosis mouse model and transcriptomic sequencing to identify 2950 mRNAs, 461 lncRNAs, 81 miRNAs, and 44 circRNAs that were differentially expressed in lung tissue. Enrichment analysis revealed that these differentially expressed genes were significantly enriched in the phosphatidylinositol 3-kinase (PI3K)–protein kinase B (Akt) signaling pathway, nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling pathway, and tumor necrosis factor (TNF) signaling pathway. The constructed competing endogenous RNA (ceRNA) network highlighted extensive regulatory interactions among lncRNAs/circRNAs, miRNAs, and mRNAs. Human validation showed that the expression levels of hsa-miR-215-5p and hsa-miR-146b-5p were significantly upregulated in the peripheral blood of early-stage pneumoconiosis patients, while hsa-miR-485-5p was downregulated. Logistic regression analysis revealed that hsa-miR-215-5p (OR = 1.966, 95% CI: 1.6938–2.2796, p < 0.001) and hsa-miR-146b-5p (OR = 1.9367, 95% CI: 1.697–2.201, p < 0.001) were independent risk factors for pneumoconiosis (p < 0.001). ROC curve analysis showed that both miRNAs demonstrated good diagnostic efficacy for pneumoconiosis, with AUC values of 0.9563 and 0.8876, respectively. These results provide novel insights into the complex ceRNA regulatory network involved in silicosis pathogenesis and suggest potential early, non-invasive diagnostic biomarkers. Full article
(This article belongs to the Special Issue Effects of Air Pollutants on Cardiorespiratory Health)
Show Figures

Figure 1

18 pages, 3327 KB  
Article
Non-Coding RNA Biomarkers in Prostate Cancer: Evidence Mapping and In Silico Characterization
by Lorena Albarracín-Navas, Nicolás I. Lara-Salas, Javier H. Alarcon-Roa, Maylin Almonte-Becerril, Enmanuel Guerrero and Ángela L. Riffo-Campos
Life 2026, 16(1), 95; https://doi.org/10.3390/life16010095 - 8 Jan 2026
Viewed by 155
Abstract
Non-coding RNAs (ncRNAs) have emerged as promising biomarkers for prostate cancer (PCa), yet evidence remains dispersed across heterogeneous studies and their regulatory context is seldom analyzed in an integrated manner. This study systematically maps ncRNAs reported as diagnostic biomarkers for PCa and characterizes [...] Read more.
Non-coding RNAs (ncRNAs) have emerged as promising biomarkers for prostate cancer (PCa), yet evidence remains dispersed across heterogeneous studies and their regulatory context is seldom analyzed in an integrated manner. This study systematically maps ncRNAs reported as diagnostic biomarkers for PCa and characterizes their molecular interactions through in silico analyses. A comprehensive evidence-mapping strategy across major bibliographic databases identified 693 studies, of which 58 met eligibility criteria. Differentially expressed ncRNAs were extracted and classified by RNA type. Subsequently, miRNA–target prediction, miRNA–protein interaction network construction, and functional enrichment analyses were performed to explore the regulatory landscape of miRNA-associated proteins. Results: The final dataset included 4500 participants (2871 PCa cases and 2093 controls) and reported 94 differentially expressed miRNAs, eight lncRNAs, and several circRNAs, snoRNAs, snRNAs, and piRNAs. In silico analyses predicted 13,493 miRNA–mRNA interactions converging on 4916 unique target genes, with an additional 2481 prostate tissue-specific targets. The miRNA–protein network comprised 845 nodes and 2335 edges, revealing highly connected miRNAs (e.g., hsa-miR-16-5p, hsa-miR-20a-5p) and protein hubs (QKI, YOD1, TBL1XR1; prostate-specific CDK6, ACVR2B). Enrichment analysis showed strong overrepresentation of metabolic process-related GO terms and cancer-associated KEGG pathways. Conclusions: These findings refine the list of promising ncRNA biomarkers and highlight candidates for future clinical validation. Full article
(This article belongs to the Special Issue Prostate Cancer: 4th Edition)
Show Figures

Figure 1

13 pages, 2450 KB  
Article
Circulating Tenascin-C/-miR-155-5p Identified as Promising Prognostic Candidates of Intervertebral Disc Herniation
by Catarina Correia, Cláudia Ribeiro-Machado, Joana Caldeira, Inês C. Ferreira, Hugo Osório, Mário A. Barbosa, Milton Severo and Carla Cunha
Bioengineering 2026, 13(1), 74; https://doi.org/10.3390/bioengineering13010074 - 8 Jan 2026
Viewed by 188
Abstract
Intervertebral disc (IVD) herniation is a complex and multifactorial condition with a challenging diagnosis and limited therapeutic options, highlighting the need for reliable biomarkers to improve clinical decision-making. The aim of this study was to identify circulating prognostic biomarkers of IVD herniation regression. [...] Read more.
Intervertebral disc (IVD) herniation is a complex and multifactorial condition with a challenging diagnosis and limited therapeutic options, highlighting the need for reliable biomarkers to improve clinical decision-making. The aim of this study was to identify circulating prognostic biomarkers of IVD herniation regression. The plasma proteomic profile and the expression of circulating non-coding RNAs were analysed in a rat model of IVD herniation and were correlated with herniation size. Four candidate proteins (TNC, COPS3, JUP, and GNAI2) were significantly correlated with herniation size, with TNC further validated by ELISA. Additionally, miR-143-3p, miR-10b-5p, miR-27a-3p, miR-140-5p, miR-155-5p, miR-146a-5p, and miR-21-5p were positively correlated with herniation size. Moreover, TNC, COPS3, JUP, and GNAI2 were found to be potential targets of miR-155-5p. This study provides the first combined proteomic and miRNA account of preclinical plasma biomarkers of IVD herniation size, where TNC-miR-155-5p emerge as promising elements of a regulatory module with IVD herniation prognostic potential. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Figure 1

15 pages, 3280 KB  
Article
Identification and Functional Analysis of tgfb2b Gene in Ovarian Development of Chinese Tongue Sole (Cynoglossus semilaevis)
by Xihong Li, Kaili Zhang, Yue Zhang, Zhijie Li, Zhangfan Chen, Hongyan Wang, Songlin Chen and Na Wang
Biomolecules 2026, 16(1), 105; https://doi.org/10.3390/biom16010105 - 7 Jan 2026
Viewed by 275
Abstract
Transforming growth factor β (TGF-β) superfamily members are critical in teleost sex determination and differentiation. Tgfb2b is an important TGF-β ligand gene exhibiting dominant expression in the ovary of Chinese tongue sole (Cynoglossus semilaevis), yet its function in sex regulation remains [...] Read more.
Transforming growth factor β (TGF-β) superfamily members are critical in teleost sex determination and differentiation. Tgfb2b is an important TGF-β ligand gene exhibiting dominant expression in the ovary of Chinese tongue sole (Cynoglossus semilaevis), yet its function in sex regulation remains unclear. In the present study, the gene expression pattern, transcriptional regulation, and knockdown effect were examined. Its expression persisted and showed a gradual increase throughout ovarian development from 3 months to 1.5 years post-hatching. In situ hybridization (ISH) revealed that the gene was distributed across oocytes at stages I–III, while scarcely detectable in the testis. The transcriptional factors CCAAT/enhancer binding protein α (C/EBPα) and Jun proto-oncogene AP-1 transcription factor subunit (c-Jun) could repress the activity of tgfb2b promoter. In vitro knockdown of tgfb2b in C. semilaevis ovarian cells led to downregulation of its downstream genes (e.g., smad1 and smad2) as well as other sex-related genes (e.g., foxl2 and esr2b). Moreover, multi-omics analysis indicated that, in C. semilaevis gonads, a miRNA named novel-m0083-3p showed an opposite expression pattern with tgfb2b and might have a binding site with the gene. By dual-luciferase assay, tgfb2b was validated to be directly targeted and suppressed by the miRNA. These results demonstrate that tgfb2b plays a significant role in ovarian differentiation and development. Further functional and molecular studies on the interplay between tgfb2b and the foxl2–cyp19a–esr axis will help elucidate the regulatory network underlying sex development in teleost. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

21 pages, 652 KB  
Review
The Role of microRNAs as Potential Biomarkers in Diffuse Large B-Cell Lymphoma
by Eirini Panteli, Epameinondas Koumpis, Vasileios Georgoulis, Georgios Petros Barakos, Evangelos Kolettas, Panagiotis Kanavaros, Alexandra Papoudou-Bai and Eleftheria Hatzimichael
Non-Coding RNA 2026, 12(1), 2; https://doi.org/10.3390/ncrna12010002 - 7 Jan 2026
Viewed by 186
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common and clinically aggressive subtype of non-Hodgkin lymphoma (NHL). While novel therapies such as rituximab and polatuzumab vedotin have led to improved outcomes, approximately 35% of patients eventually develop relapsed or refractory disease. MicroRNAs (miRNAs), [...] Read more.
Diffuse large B-cell lymphoma (DLBCL) is the most common and clinically aggressive subtype of non-Hodgkin lymphoma (NHL). While novel therapies such as rituximab and polatuzumab vedotin have led to improved outcomes, approximately 35% of patients eventually develop relapsed or refractory disease. MicroRNAs (miRNAs), a class of endogenous single-stranded RNAs approximately 22 nucleotides in length, play a pivotal role in the regulation of gene expression at the post-transcriptional level through interactions with complementary target RNAs and contribute significantly to the development, progression, and treatment response of DLBCL. Oncogenic miRNAs, such as miR-155, miR-21, and the miR-17–92 cluster, promote proliferation, survival, immune evasion, and therapy resistance by modulating pathways including PI3K/AKT, NF-κB, and MYC. Conversely, tumor-suppressive miRNAs such as miR-34a, miR-144, miR-181a, and miR-124-3p inhibit oncogene activity and enhance apoptosis, with their loss often associated with adverse outcomes. Among these, miR-155 and miR-21 are particularly well studied, playing central roles in both tumor progression and remodeling of the tumor microenvironment. This review summarizes current evidence on the biological and clinical relevance of miRNAs in DLBCL, emphasizing their diagnostic and prognostic potential. Full article
Show Figures

Figure 1

18 pages, 3264 KB  
Article
The Role of the LINC01376/miR-15b-3p_R-1/FGF2 Axis in A549 and H1299 Cells EMT Induced by LMW-PAHs
by Jiali Qin, Yamin Huang, Yixuan Hu, Haitao Ma, Zhengyi Zhang, Yuanjie Li, Shiyao Jiang, Chengyun Li, Kaikai Li, Junling Wang and Xiaoping Liu
Toxics 2026, 14(1), 54; https://doi.org/10.3390/toxics14010054 - 6 Jan 2026
Viewed by 225
Abstract
Low-molecular-weight polycyclic aromatic hydrocarbons (LMW-PAHs), such as the 400 μM mixture of phenanthrene and fluorene used in this study, are prevalent environmental pollutants. Induction of epithelial–mesenchymal transition (EMT) by LMW-PAHs promote cell invasion and migration and contribute to disease pathogenesis. Long non-coding RNAs [...] Read more.
Low-molecular-weight polycyclic aromatic hydrocarbons (LMW-PAHs), such as the 400 μM mixture of phenanthrene and fluorene used in this study, are prevalent environmental pollutants. Induction of epithelial–mesenchymal transition (EMT) by LMW-PAHs promote cell invasion and migration and contribute to disease pathogenesis. Long non-coding RNAs (lncRNAs) regulate gene expression by acting as competing endogenous RNAs (ceRNAs) that sequester microRNAs (miRNAs), a mechanism important for modulating EMT. Previously, regulation of the PI3K/AKT pathway and EMT in A549 cells are shown to occur through the hsa_circ_0039929/miR-15b-3p_R-1/FGF2 axis. Here, the functional role of the related LINC01376/miR-15b-3p_R-1/FGF2 axis in LMW-PAH-induced EMT was examined in A549 and H1299 cells. The miR-15b-3p_R-1 was downregulated, whereas LINC01376 and FGF2 were upregulated following LMW-PAH exposure. LINC01376 overexpression enhanced EMT, migration, and invasion. Interactions between miR-15b-3p_R-1 and FGF2, as well as direct binding of LINC01376 to miR-15b-3p_R-1, were confirmed experimentally. The results indicate that, in LMW-PAH-treated cells, LINC01376 functions as a ceRNA to sponge miR-15b-3p_R-1, thereby elevating FGF2 expression and promoting EMT, migration, and invasion. Identification of the LINC01376/miR-15b-3p_R-1/FGF2 regulatory axis highlighted as a key mechanism in LMW-PAH-driven EMT and suggests its potential as a therapeutic target in PAH-related pathologies. Full article
Show Figures

Graphical abstract

18 pages, 25442 KB  
Article
Gramine Suppresses Cervical Cancer by Targeting CDK2: Integrated Omics-Pharmacology and In Vitro Evidence
by Zhiyan Zhou, Jin Li, Xingji Zhao, Hongxia Xu, Yu Xiao, Hongchen Wang and Ying Chen
Curr. Issues Mol. Biol. 2026, 48(1), 64; https://doi.org/10.3390/cimb48010064 - 6 Jan 2026
Viewed by 149
Abstract
Cervical cancer (CC) remains a common malignant tumor that seriously threatens women’s health globally. Gramine (GR), a natural alkaloid derived from plants such as Arundo donax L., exhibits anti-tumor activities, yet its mechanistic actions in CC are still unclear. Here, we integrated cell-based [...] Read more.
Cervical cancer (CC) remains a common malignant tumor that seriously threatens women’s health globally. Gramine (GR), a natural alkaloid derived from plants such as Arundo donax L., exhibits anti-tumor activities, yet its mechanistic actions in CC are still unclear. Here, we integrated cell-based assays, network pharmacology, and multi-omics analysis to systematically investigate the molecular mechanisms underlying GR’s anti-CC effects. In vitro experiments showed that GR significantly inhibited proliferation and migration, induced apoptosis, and triggered G0/G1 phase cell cycle arrest in HeLa cells. Integrated multi-omics analysis identified CDK2 as a critical target of GR, with both mRNA and protein levels markedly reduced following treatment. Mechanistically, GR likely suppresses CC progression by modulating the “CYP4A22-AS1/LINC00958–hsa-miR-133b–CDK2” competitive endogenous RNA (ceRNA) axis. Immune analysis indicated positive correlations of CDK2, CYP4A22-AS1, and LINC00958 with the immune checkpoint molecule CD47. Collectively, our findings demonstrate that GR inhibits CC through a ncRNA-mediated suppression of CDK2, leading to reduced HeLa cell proliferation and migration and enhanced apoptosis. These results provide a mechanistic rationale for developing GR as a candidate agent for targeted therapy and immuno-combination strategies in CC. Full article
(This article belongs to the Special Issue Natural Product Drug Activity and Biomedicine Application)
Show Figures

Figure 1

34 pages, 2799 KB  
Review
MicroRNAs in Prostate Cancer Liquid Biopsies: Early Detection, Prognosis, and Treatment Monitoring
by Seyyed Mohammad Yaghoubi, Erfan Zare, Sina Jafari Dargahlou, Maryam Jafari, Mahdiye Azimi, Maedeh Khoshnazar, Solmaz Shirjang and Behzad Mansoori
Cells 2026, 15(1), 83; https://doi.org/10.3390/cells15010083 - 4 Jan 2026
Viewed by 241
Abstract
Prostate cancer (PCa) is a common malignancy in men worldwide, with incidence projected to rise in the coming years. Traditional screening and diagnostic methods, such as prostate-specific antigen (PSA) testing and biopsy, face limitations in specificity and invasiveness. Circulating microRNAs (miRNAs) have emerged [...] Read more.
Prostate cancer (PCa) is a common malignancy in men worldwide, with incidence projected to rise in the coming years. Traditional screening and diagnostic methods, such as prostate-specific antigen (PSA) testing and biopsy, face limitations in specificity and invasiveness. Circulating microRNAs (miRNAs) have emerged as stable, non-invasive biomarkers obtainable via liquid biopsies (blood, urine, semen) that could transform PCa management. These small regulatory RNAs reflect underlying tumor biology and are detectable at early disease stages, enabling improved early detection when used alongside or in place of PSA. Distinct miRNA expression patterns correlate with tumor aggressiveness. For example, miR-141 and miR-375 are elevated in metastatic cases, whereas let-7 family members and miR-326 are upregulated in aggressive disease, highlighting their prognostic value. Moreover, dynamic changes in reported miRNAs during therapy provide real-time insights into treatment response. In androgen-deprivation therapy (ADT), oncogenic miRNAs, such as miR-21 and miR-125b, increase upon resistance, whereas a decline in tumor-suppressive miRNAs, such as miR-23b/-27b, flags the transition to castration-resistant PCa (CRPC). Similarly, baseline levels of miRNAs (e.g., miR-200b/c, miR-20a) can predict chemotherapy outcomes. Integrating multi-miRNA panels has demonstrated superior accuracy for risk stratification and monitoring, paving the way for personalized treatment. Although promising, clinical implementation of miRNA-based assays requires further validation, standardization of protocols, and large-scale prospective studies. Harnessing circulating miRNAs could usher in a new era of precision oncology for PCa, improving early diagnosis, prognostication, and real-time therapeutic guidance. Full article
(This article belongs to the Special Issue Therapeutic Targeting of MicroRNAs in Human Cancer)
Show Figures

Figure 1

19 pages, 4816 KB  
Article
Milk-Derived Extracellular Vesicles Inhibit Staphylococcus aureus Growth and Biofilm Formation
by Peng Liu, Zhaoyuan Wang, Ziqiang Gao, Juan Liu, Yutong Zhang, Yangyang Song, Xiaolin Li, Huaxue Song, Xingli He, Fanzhi Kong, Changyuan Wang and Binglei Shen
Animals 2026, 16(1), 123; https://doi.org/10.3390/ani16010123 - 1 Jan 2026
Viewed by 239
Abstract
Staphylococcus aureus is a key pathogen in bovine mastitis, and antibiotic therapy is challenged by resistance and residue concerns. Milk-derived extracellular vesicles emerge as promising natural antimicrobials. This study aimed to evaluate the antimicrobial activity and explore potential associated mechanisms of milk-derived extracellular [...] Read more.
Staphylococcus aureus is a key pathogen in bovine mastitis, and antibiotic therapy is challenged by resistance and residue concerns. Milk-derived extracellular vesicles emerge as promising natural antimicrobials. This study aimed to evaluate the antimicrobial activity and explore potential associated mechanisms of milk-derived extracellular vesicles against S. aureus. Milk-derived EV-enriched fractions (mEVs) from healthy (HmEVs) and mastitic (MmEVs) bovine milk suppressed S. aureus growth in vitro and were associated with oxidative imbalance, with MmEVs showing stronger inhibition. In addition, MmEVs significantly reduced biofilm biomass, extracellular matrix production, and the expression of key biofilm-associated genes (sarA, icaB, fnbA, clfB, cidA). Small RNA sequencing revealed distinct miRNA profiles between HmEVs and MmEVs; in particular, MmEVs were enriched in miRNAs predicted to target the S. aureus biofilm-associated gene clfB. Although we did not directly demonstrate uptake of mEV-derived miRNAs by bacteria or their regulation of bacterial gene expression in this study, our small RNA sequencing data together with subsequent bioinformatic predictions suggest that vesicular miRNAs should be regarded as candidate contributors, rather than demonstrated mediators, of the observed antibacterial and antibiofilm effects. Taken together, these findings indicate the potential of mEVs as residue-free adjuncts for controlling bovine mastitis, while recognizing that the present conclusions are mainly derived from in vitro experiments with S. aureus and bioinformatic analyses. Therefore, functional validation of candidate miRNAs, in vivo studies, and evaluation of activity against other mastitis-associated pathogens are still required to clarify the underlying mechanisms, therapeutic potential, and spectrum of activity of mEVs. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

15 pages, 2577 KB  
Article
Protective Effects of miR-16-5p and miR-142-3p on Inflammation and Autophagy in Human Corneal Epithelial Cells Under Hyperosmotic Stress In Vitro
by Min-Ji Cha, Hyunsoo Cho, Yeji Yeon and Yu Jeong Kim
Int. J. Mol. Sci. 2026, 27(1), 422; https://doi.org/10.3390/ijms27010422 - 31 Dec 2025
Viewed by 183
Abstract
To investigate the regulatory effects of miR-16-5p and miR-142-3p on inflammation and autophagy in human corneal epithelial cells (HCEpiCs) exposed to hyperosmotic stress, a key pathogenic condition in dry eye disease, HCEpiCs were cultured under NaCl-induced hyperosmotic conditions (450 mOsm, 24 h) and [...] Read more.
To investigate the regulatory effects of miR-16-5p and miR-142-3p on inflammation and autophagy in human corneal epithelial cells (HCEpiCs) exposed to hyperosmotic stress, a key pathogenic condition in dry eye disease, HCEpiCs were cultured under NaCl-induced hyperosmotic conditions (450 mOsm, 24 h) and transfected with miR-16-5p or miR-142-3p mimics. Expression of inflammatory cytokines (IL-1β, IL-6, TNF-α, IRAK1), autophagy-related genes (ATG5, Beclin-1, ATG16L1, p62), and apoptotic markers (Bax, Bcl-2, caspase-3) was analyzed by qRT-PCR and Western blot. Reactive oxygen species (ROS), autophagic vesicles, and apoptosis were evaluated using DCFH-DA, DAPRed, and Annexin V assays. The expression levels of antioxidant proteins (SOD1, catalase, NRF2) were also measured. Hyperosmotic stress induces marked inflammatory activation and excessive autophagy in HCEpiCs, accompanied by increased ROS generation and apoptosis. Overexpression of miR-16-5p or miR-142-3p significantly attenuated these effects by suppressing NF-κB-mediated cytokine expression and downregulating ATG5 and ATG16L1 expression, while restoring p62 expression. Both miRNAs reduced oxidative stress and COX-2 expression, enhanced antioxidant defenses, and normalized the expression of apoptotic markers. miR-16-5p and miR-142-3p are important regulators of inflammation and autophagy under hyperosmotic stress. Our findings suggest that modulating intracellular miR-16-5p and miR-142-3p levels in corneal epithelial cells may represent a potential approach to protect the ocular surface under hyperosmotic stress, although their systemic roles in autoimmune dry eye require further clarification. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

10 pages, 428 KB  
Article
Circulating miR-122-5p, miR-125b-5p, and miR-27a-3p in Post-Mortem Whole Blood: An Exploratory Study of the Association with Sepsis-Related Death
by Carla Occhipinti, Andrea Scatena, Emanuela Turillazzi, Diana Bonuccelli, Paolo Pricoco, Marco Fornili, Aniello Maiese, Stefano Taddei, Marco Di Paolo and Anna Rocchi
Curr. Issues Mol. Biol. 2026, 48(1), 49; https://doi.org/10.3390/cimb48010049 - 30 Dec 2025
Viewed by 164
Abstract
Accurate post-mortem diagnosis of sepsis remains a critical challenge in forensic pathology, as conventional morphological findings often lack specificity. Circulating microRNAs (miRNAs) have been proposed as stable molecular biomarkers, yet their diagnostic value in cadaveric samples is still unclear. This exploratory study investigated [...] Read more.
Accurate post-mortem diagnosis of sepsis remains a critical challenge in forensic pathology, as conventional morphological findings often lack specificity. Circulating microRNAs (miRNAs) have been proposed as stable molecular biomarkers, yet their diagnostic value in cadaveric samples is still unclear. This exploratory study investigated the expression of three candidate miRNAs (miR-122-5p, miR-125b-5p, and miR-27a-3p) in post-mortem peripheral whole blood to assess their association with sepsis-related death versus non-infective controls. Out of 58 cases, 45 met quality-control criteria (26 sepsis-related deaths and 19 controls). miRNA expression was quantified by qRT-PCR, normalized to miR-320, and analyzed using ΔCt values. Group differences were evaluated using linear regression models with adjustment for age, sex, and post-mortem interval, with Benjamini–Hochberg correction for multiple testing. In adjusted models, miR-125b-5p and miR-27a-3p showed evidence of association with sepsis status, whereas miR-122-5p did not. These results support the feasibility of miRNA quantification in post-mortem samples and motivate validation in larger, independent cohorts and within multimodal post-mortem diagnostic frameworks. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

13 pages, 1359 KB  
Article
Study on the Regulatory Mechanism of oar-miR-29b in Lamb Encephalitis Caused by Enterococcus faecalis Infection
by Ming Zhou, Borui Qi, Pengfei Zhao, Longling Jiao, Shuzhu Cao, You Wu, Jingjing Ren, Runze Zhang, Yongjian Li and Yayin Qi
Genes 2026, 17(1), 29; https://doi.org/10.3390/genes17010029 - 29 Dec 2025
Viewed by 185
Abstract
Background: Enterococcus faecalis is an opportunistic pathogen that is capable of causing bacterial encephalitis under specific pathological conditions. MicroRNAs (miRNAs) are a class of small, single-stranded non-coding RNAs, typically approximately 21 nucleotides in length. As master regulators of gene expression, they orchestrate critical [...] Read more.
Background: Enterococcus faecalis is an opportunistic pathogen that is capable of causing bacterial encephalitis under specific pathological conditions. MicroRNAs (miRNAs) are a class of small, single-stranded non-coding RNAs, typically approximately 21 nucleotides in length. As master regulators of gene expression, they orchestrate critical pathways across diverse organisms and a broad spectrum of diseases; however, their role during E. faecalis neuro-invasion remains unexplored. Methods: A lamb model of E. faecalis-induced encephalitis was established. Integrated analysis of high-throughput sequencing data identified oar-miR-29b as a key differentially expressed miRNA during infection. To first verify its association with inflammation, primary SBMECs were stimulated with lipoteichoic acid (LTA), confirming that oar-miR-29b expression was significantly upregulated under inflammatory conditions. Subsequently, independent gain- and loss-of-function experiments in SBMECs were performed, with inflammatory cytokine expression assessed by qPCR and tight-junction protein levels evaluated by Western blotting. Results: Functional studies demonstrated that oar-miR-29b acts as a pro-inflammatory mediator, significantly upregulating IL-1β, IL-6, and TNF-α while degrading tight-junction proteins (ZO-1, occludin, and claudin-5), thereby compromising endothelial barrier integrity. Mechanistically, bioinformatic prediction and dual-luciferase reporter assays confirmed C1QTNF6 as a direct target of oar-miR-29b. The oar-miR-29b/C1QTNF6 axis is thus defined as a novel regulatory pathway contributing to neuro-inflammation and blood-brain barrier disruption. Conclusions: Collectively, our findings identify the oar-miR-29b/C1QTNF6 axis as a novel pathogenic mechanism that exacerbates E. faecalis-induced neuroinflammation and blood-brain barrier disruption. Full article
(This article belongs to the Special Issue Genomic, Transcriptome Analysis in Animals)
Show Figures

Figure 1

Back to TopTop