Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,867)

Search Parameters:
Keywords = miRNA-133

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2761 KB  
Article
Plasma miRNA-Metabolite Dysregulation in People with HIV with Cirrhosis Despite Successful HCV Cure
by Ana Virseda-Berdices, Raquel Behar-Lagares, Juan Berenguer, Juan González-García, Belen Requena, Oscar Brochado-Kith, Cristina Díez, Victor Hontañon, Sergio Grande-García, Carolina González-Riano, Coral Barbas, Salvador Resino, Amanda Fernández-Rodríguez, María Ángeles Jiménez-Sousa and the Marathon Study Group
Pharmaceuticals 2026, 19(1), 170; https://doi.org/10.3390/ph19010170 (registering DOI) - 19 Jan 2026
Abstract
Background: Persistent liver pathology despite a sustained virologic response (SVR) to hepatitis C virus (HCV) therapy is a major clinical concern. This is particularly relevant for people with HIV (PWH) with HCV coinfection, a population prone to accelerated liver disease progression. This [...] Read more.
Background: Persistent liver pathology despite a sustained virologic response (SVR) to hepatitis C virus (HCV) therapy is a major clinical concern. This is particularly relevant for people with HIV (PWH) with HCV coinfection, a population prone to accelerated liver disease progression. This study aimed to characterize the plasma miRNA profile in PWH with cirrhosis one year after successful completion of HCV therapy, and to explore their relationship with metabolite alterations. Methods: This cross-sectional study enrolled 47 PWH who achieved HCV clearance with antiviral therapy. Using plasma samples collected approximately one year after completion of HCV therapy, participants were stratified into two groups based on liver stiffness measurement (LSM): compensated cirrhosis (n = 32, LSM ≥ 12.5 kPa) and non-cirrhosis (n = 15, LSM < 12.5 kPa). Plasma miRNAs and metabolites were determined using small RNA sequencing and untargeted capillary electrophoresis-mass spectrometry (CE-MS), respectively. Significantly differentially expressed (SDE) miRNAs were identified using generalized linear models (GLM) with a negative binomial distribution, and their correlation with metabolite levels was quantified using Spearman’s correlation. Results: In the cirrhosis group (n = 32), we identified a distinct signature of 15 SDE miRNAs (9 upregulated, 6 downregulated) compared to the non-cirrhotic group (n = 15), showing hsa-miR-10401-3p, hsa-miR-548ak, hsa-miR-141-3p, and hsa-miR-3940-3p the largest expression changes. miRNA-gene interaction and pathway enrichment analysis suggested that these 15 SDE miRNAs potentially regulate multiple genes involved in immune response and amino acid metabolism. In addition, correlation analyses with our metabolomic data revealed significant associations between specific SDE miRNAs and amino acids and their derivatives. Specifically, the expression of upregulated miRNAs (e.g., hsa-miR-10401-3p and hsa-miR-16-5p) was positively correlated with plasma levels of L-methionine and its derivatives, while downregulated miRNAs (e.g., hsa-miR-625-5p) were inversely correlated with L-tryptophan. Conclusions: In cirrhotic PWH with history of HCV coinfection, a distinct plasma miRNA signature linked to dysregulated amino acid metabolism is found one year after completion of HCV therapy. This underscores that the HCV cure does not equate to complete hepatic recovery, highlighting the critical need for long-term monitoring in this high-risk population. Full article
Show Figures

Figure 1

25 pages, 4240 KB  
Article
Graphene-Based Nanosystem for Targeted Delivery of Anti-Sense miRNA-21 on Hepatocellular Carcinoma Cells
by Paola Trischitta, Paulina Kucharzewska, Barbara Nasiłowska, Wojciech Skrzeczanowski, Rosamaria Pennisi, Maria Teresa Sciortino and Marta Kutwin
Int. J. Mol. Sci. 2026, 27(2), 975; https://doi.org/10.3390/ijms27020975 (registering DOI) - 19 Jan 2026
Abstract
The application of nanotechnology in medicine has garnered significant interest, particularly in the development of advanced drug delivery systems. Graphene oxide (GO) shows promise as a carrier for delivering microRNA (miRNA) mimics or antisense constructs. miRNAs play a crucial role in regulating gene [...] Read more.
The application of nanotechnology in medicine has garnered significant interest, particularly in the development of advanced drug delivery systems. Graphene oxide (GO) shows promise as a carrier for delivering microRNA (miRNA) mimics or antisense constructs. miRNAs play a crucial role in regulating gene expression, and their dysregulation is associated with various diseases, including cancer. This study aimed to evaluate the impact of graphene oxide on cellular signaling pathways and its potential as a platform for gene delivery by developing a GO–antisense miRNA-21 nanosystem in HepG2 liver cancer cells. A colloidal dispersion of GO was used to prepare GO-antisense miRNA-21 nanosystems via self-assembly. The nanosystem was characterized in terms of ultrastructure, size distribution, surface composition and binding by TEM, DLS, ATR-FTIR and UV-Vis spectra. Zeta potential measurements were conducted to evaluate nanosystem stability by assessing the release kinetics of antisense miRNA-21. The efficiency of the GO nanosystem in delivering antisense miRNA-21 into HepG2 cells was analyzed using confocal microscopy and flow cytometry. Given the central role of miRNA-21 in inflammatory and oncogenic pathways, we first assessed its expression following GO exposure. In line with previous studies reporting high miRNA-21 expression in hepatocellular carcinoma cells, GO treatment further increased miRNA-21 levels in HepG2 cells compared with untreated controls. Changes in the expression levels of IL-8, MCP-1, ICAM-1, TIMP-2, and NF-kB were quantified by qPCR analysis. The ultrastructural analysis confirmed a strong affinity between GO and antisense miRNA-21. Transfection results demonstrate that the GO-based nanosystem effectively delivered antisense miRNA-21 into HepG2 cells, leading to a reduction in the expression of key pro-inflammatory genes. These findings suggest that GO-based nanocarriers may offer a promising strategy for delivering localized intratumoral miRNA-based therapies that target gene regulation in hepatocellular carcinoma. Full article
Show Figures

Graphical abstract

16 pages, 3407 KB  
Article
Deciphering the Regulatory Network of Tail Fat Deposition in Large- and Small-Tailed Han Sheep Through Transcriptome and MicroRNAome Profiling
by Guan Wang, Liming Tian, Shuhong Zhang, Zhaohua He, Fangfang Zhao, Menghan Chang, Wei Han, Dandan Ye, Jingyi Gao, Shaobin Li and Guangli Yang
Biology 2026, 15(2), 179; https://doi.org/10.3390/biology15020179 (registering DOI) - 19 Jan 2026
Abstract
Tail fat deposition constitutes a distinctive adaptive phenotype in sheep. The Large-tailed Han (LTH) and Small-tailed Han (STH) breeds display pronounced divergence in tail fat storage, offering an ideal model for elucidating lipid metabolism regulation. Integrated sRNA-Seq and RNA-Seq analysis identified 521 differentially [...] Read more.
Tail fat deposition constitutes a distinctive adaptive phenotype in sheep. The Large-tailed Han (LTH) and Small-tailed Han (STH) breeds display pronounced divergence in tail fat storage, offering an ideal model for elucidating lipid metabolism regulation. Integrated sRNA-Seq and RNA-Seq analysis identified 521 differentially expressed genes and 144 miRNAs, which were significantly enriched in lipid metabolism pathways, including fatty acid metabolism and PPAR signaling. Key candidate genes (ADIRF, LPL, ACSL5) were highlighted as pivotal regulators. Additionally, 23 miRNA-mRNA regulatory networks were constructed, revealing complex interaction patterns from ‘one-to-one’ to ‘many-to-one’ relationships. For example, six miRNAs collectively targeted LTA4H. Collectively, this study advances understanding of the genetic network underlying tail fat deposition and provides candidate targets for modulating lipid metabolism. Functional validation is warranted to delineate causal mechanisms. Full article
Show Figures

Figure 1

30 pages, 30350 KB  
Article
Targeted Inhibition of Oncogenic microRNAs miR-21, miR-17, and miR-155 Suppresses Tumor Growth and Modulates Immune Response in Colorectal Cancer
by Olga Patutina, Aleksandra Sen’kova, Svetlana Miroshnichenko, Mona Awad, Oleg Markov, Daniil V Gladkikh, Innokenty Savin, Ekaterina Seroklinova, Sergey Zhukov, Maxim Kupryushkin, Mikhail Maslov, Valentin Vlassov and Marina Zenkova
Pharmaceutics 2026, 18(1), 122; https://doi.org/10.3390/pharmaceutics18010122 - 18 Jan 2026
Abstract
Background and Objectives: Aggressive cancer development is characterized by rapid tumor growth and progressive immune dysfunction. Tumor-derived microRNAs (miRNAs) emerge as master regulators of both malignant transformation and immune evasion, making them promising therapeutic targets. Using the highly aggressive CT-26 peritoneal adenomatosis model, [...] Read more.
Background and Objectives: Aggressive cancer development is characterized by rapid tumor growth and progressive immune dysfunction. Tumor-derived microRNAs (miRNAs) emerge as master regulators of both malignant transformation and immune evasion, making them promising therapeutic targets. Using the highly aggressive CT-26 peritoneal adenomatosis model, this study explored the potential of selective miRNA inhibition to simultaneously suppress tumor growth and overcome immunosuppression. Methods and Results: Our results revealed that inhibition of miR-155, miR-21, and miR-17 by methylsulfonyl phosphoramidate (mesyl) oligonucleotides exhibited markedly different therapeutic profiles. miR-155 inhibition demonstrated minimal efficacy. miR-21 suppression provided early tumor regression and prevented cancer-associated thymic atrophy, translating into extended survival. miR-17 inhibition displayed delayed but superior tumor growth inhibition, significantly reducing pathologically elevated polymorphonuclear myeloid-derived suppressor cell (MDSC) populations, and nearly doubled animal lifespan. Combination therapy targeting all three miRNAs integrated these complementary mechanisms, maintaining consistent anti-tumor efficacy across early and late stages while providing thymic protection and MDSC reduction. Importantly, therapeutic responses in vivo substantially exceeded predictions based on in vitro tumor cell proliferation and motility measurements, revealing critical contributions of systemic immunomodulation. Conclusions: These findings demonstrate that miRNA inhibition reshapes tumor–immune interactions, positioning anti-miRNA therapeutics as immunomodulatory agents for effective colorectal cancer treatment. Full article
19 pages, 842 KB  
Review
Diagnostic, Prognostic and Therapeutic Utility of MicroRNA-21 in Ischemic Heart Disease
by Boris Burnjaković, Marko Atanasković, Marko Baralić, Aladin Altić, Emil Nikolov, Anastasija Ilić, Aleksandar Sič, Verica Stanković Popović, Ana Bontić, Selena Gajić and Sanja Stankovic
Int. J. Mol. Sci. 2026, 27(2), 954; https://doi.org/10.3390/ijms27020954 (registering DOI) - 18 Jan 2026
Abstract
Ischemic heart disease (IHD) remains a leading cause of global morbidity and mortality despite advances in prevention, diagnosis, and therapy. Traditional clinical risk scores and biomarkers often fail to fully capture the complex molecular processes underlying atherosclerosis, myocardial infarction, and ischemic cardiomyopathy, leaving [...] Read more.
Ischemic heart disease (IHD) remains a leading cause of global morbidity and mortality despite advances in prevention, diagnosis, and therapy. Traditional clinical risk scores and biomarkers often fail to fully capture the complex molecular processes underlying atherosclerosis, myocardial infarction, and ischemic cardiomyopathy, leaving substantial residual risk. MicroRNAs have emerged as promising regulators and biomarkers of cardiovascular disease, among which microRNA-21 (miR-21) has attracted particular attention. MiR-21 is deeply involved in key pathophysiological mechanisms of IHD, including endothelial dysfunction, vascular inflammation, vascular smooth muscle cell proliferation, plaque development and vulnerability, cardiomyocyte survival, and myocardial fibrosis. Accumulating clinical evidence suggests that circulating miR-21 holds diagnostic value across the ischemic continuum, from stable coronary artery disease to acute coronary syndromes, myocardial infarction, and ischemic heart failure. Moreover, miR-21 demonstrates prognostic relevance, correlating with plaque instability, adverse remodeling, heart failure progression, and long-term cardiovascular outcomes. Preclinical studies further indicate that miR-21 represents a double-edged therapeutic target, offering cardio protection in acute ischemic injury while contributing to fibrosis and maladaptive remodeling if dysregulated. This narrative review summarizes current evidence on the diagnostic, prognostic, and therapeutic utility of miR-21 in IHD, highlighting its clinical promise as well as key limitations and future translational challenges. Full article
40 pages, 1078 KB  
Review
Therapeutic Potential of Bovine Colostrum- and Milk-Derived Exosomes in Cancer Prevention and Treatment: Mechanisms, Evidence, and Future Perspectives
by Yusuf Serhat Karakülah, Yalçın Mert Yalçıntaş, Mikhael Bechelany and Sercan Karav
Pharmaceuticals 2026, 19(1), 168; https://doi.org/10.3390/ph19010168 - 17 Jan 2026
Abstract
Due to their therapeutic potential and effects on cells, exosomes derived from bovine colostrum (BCE) and milk (BME) are molecules that have been at the center of recent studies. Their properties include the ability to cross biological barriers, their natural biocompatibility, and their [...] Read more.
Due to their therapeutic potential and effects on cells, exosomes derived from bovine colostrum (BCE) and milk (BME) are molecules that have been at the center of recent studies. Their properties include the ability to cross biological barriers, their natural biocompatibility, and their structure, which enable them to act as stable nanocarriers. Exosomes derived from milk and colostrum stand out in cancer prevention and treatment due to these properties. BMEs can be enriched with bioactive peptides, lipids, and nucleic acids. The targeted drug delivery capacity of BMEs can be made more efficient through these enrichment processes. For example, BME enriched with an iRGD peptide and developed using hypoxia-sensitive lipids selectively transported drugs and reduced the survival rate of triple-negative breast cancer (TNBC) cells. ARV-825-CME formulations increased antitumor activity in some cancer types. The anticancer effects of exosomes are supported by these examples. In addition to their anticancer activities, exosomes also exhibit effects that maintain immune balance. BME and BCE can regulate inflammatory responses with their miRNA and protein loads. These effects of BMEs have been demonstrated in studies on colon, breast, liver, and lung cancers. The findings support the safety and scalability of these effects. However, significant challenges remain in terms of their large-scale isolation, load heterogeneity, and regulatory standardization. Consequently, BMEs represent a new generation of biogenic nanoplatforms at the intersection of nutrition, immunology, and oncology, paving the way for innovative therapeutic approaches. Full article
13 pages, 853 KB  
Article
Dysregulated MicroRNAs in Parkinson’s Disease: Pathogenic Mechanisms and Biomarker Potential
by Yasemin Ünal, Dilek Akbaş, Çilem Özdemir and Tuba Edgünlü
Int. J. Mol. Sci. 2026, 27(2), 930; https://doi.org/10.3390/ijms27020930 (registering DOI) - 17 Jan 2026
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by dopaminergic neuronal loss and abnormal α-synuclein aggregation. Circulating microRNAs (miRNAs) have emerged as promising biomarkers and potential modulators of PD-related molecular pathways. In this study, we investigated the expression levels of four candidate [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by dopaminergic neuronal loss and abnormal α-synuclein aggregation. Circulating microRNAs (miRNAs) have emerged as promising biomarkers and potential modulators of PD-related molecular pathways. In this study, we investigated the expression levels of four candidate miRNAs—miR-15a-5p, miR-16-5p, miR-139-5p, and miR-34a-3p—in patients with PD compared with healthy controls. A total of 47 PD patients and 45 age- and sex-matched controls were enrolled. Plasma miRNA levels were quantified using standardized RNA extraction, cDNA synthesis, and qPCR protocols. We observed marked upregulation of miR-15a-5p and robust downregulation of both miR-139-5p and miR-34a-3p in PD patients, whereas miR-16-5p showed no significant difference between groups. Target gene prediction and functional enrichment analysis identified 432 unique genes, with enrichment in biological processes related to protein ubiquitination and catabolic pathways, and signaling cascades such as mTOR, PI3K-Akt, MAPK, and Hippo pathways, all of which are implicated in neurodegeneration. Elevated miR-15a-5p may contribute to pro-apoptotic mechanisms, while reduced miR-139-5p and miR-34a-3p expression may reflect impaired mitochondrial function, diminished neuroprotection, or compensatory regulatory responses. Together, these dysregulated circulating miRNAs provide novel insight into PD pathophysiology and highlight their potential as accessible, non-invasive biomarkers. Further longitudinal studies in larger and more diverse cohorts are warranted to validate their diagnostic and prognostic value and to explore their utility as therapeutic targets. Full article
Show Figures

Figure 1

12 pages, 3774 KB  
Article
Gene Expression Profiles of Melanocytes Over-Expressing miR-5110 in Alpaca
by Shanshan Yang, Dingxing Jiao, Fengsai Li, Xuqi Wang, Tao Song, Lili Wang, Ping Rui and Zengjun Ma
Curr. Issues Mol. Biol. 2026, 48(1), 93; https://doi.org/10.3390/cimb48010093 (registering DOI) - 16 Jan 2026
Viewed by 35
Abstract
Previous studies have shown that miR-5110 regulates pigmentation by cotargeting melanophilin (MLPH) and WNT family member 1 (WNT1). In order to find the possible molecular mechanism for pigmentation, we examined the mRNA expression profiles in melanocytes of alpaca transfected with miR-5110, inhibitor or [...] Read more.
Previous studies have shown that miR-5110 regulates pigmentation by cotargeting melanophilin (MLPH) and WNT family member 1 (WNT1). In order to find the possible molecular mechanism for pigmentation, we examined the mRNA expression profiles in melanocytes of alpaca transfected with miR-5110, inhibitor or negative control (NC) plasmids using high-throughput RNA sequencing. The results showed that a total of 91,976 unigenes were assembled from the reads, among which 13,262 had sequence sizes greater than 2000 nucleotides. According to the KEGG pathway analysis, four pathways related to melanogenesis, the MAPK signaling pathway, Wnt signaling pathway, and cAMP signaling pathway were identified. Compared to the NC, 162 gene were upregulated and 41 genes were downregulated in melanocytes over expressed by miR-5110. The differential expressions of mRNAs Dickkopf 3 (DKK3), premelanosome protein (Pmel), insulin-like growth factor 1 receptor (IGF1R), cyclin-dependent kinase 5 (CDK5), endothelin receptor type B (Ednrb), kit ligand (Kitl), Myc, and S100 were verified using qRT-PCR, which agreed with the results of RNA sequencing. We also verified the differential expressions of mRNAs of some genes in the MAPK signaling pathway using qRT-PCR, which agreed with the results of RNA sequencing. Interestingly, several genes were screened as candidates for the melanogenesis regulated by miR-5110, including Kitl and MAPK-activated protein kinase 3 (MAPKAPK3). These findings provide new insights for further molecular studies on the effects of miR-5110 on the melanogenesis and pigmentation. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
17 pages, 568 KB  
Article
Liquid Biopsy in Clear Cell Renal Cell Carcinoma: Diagnostic Potential of Urinary miRNAs
by Giacomo Vannuccini, Alessio Paladini, Matteo Mearini, Francesca Cocci, Giuseppe Giardino, Paolo Mangione, Vincenza Maulà, Daniele Mirra, Ettore Mearini and Giovanni Cochetti
Cancers 2026, 18(2), 285; https://doi.org/10.3390/cancers18020285 - 16 Jan 2026
Viewed by 65
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer subtype and, in most cases, it is incidentally diagnosed, as early-stage disease is often asymptomatic. Therefore, the identification of stable, noninvasive biomarkers is a major unmet clinical need. Urinary microRNAs [...] Read more.
Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer subtype and, in most cases, it is incidentally diagnosed, as early-stage disease is often asymptomatic. Therefore, the identification of stable, noninvasive biomarkers is a major unmet clinical need. Urinary microRNAs (miRNAs) have emerged as promising candidates since they are extraordinarily stable in urine and show a close relationship with tumour biology. Methods: In this study, urinary expression levels of five miRNAs (miR-15a, miR-15b, miR-16, miR-210, and miR-let-7b) were analysed in RCC patients before surgery, 5 days after, and one month after surgery, and compared to healthy controls. Results: Non-parametric analyses revealed significant postoperative decreases for miR-15a (p = 0.002), miR-16 (p = 0.025), miR-210 (p = 0.030), and in the overall miRNA Sum (p = 0.002), suggesting that these miRNAs are directly linked to tumour presence. In the comparison between preoperative and one-month postoperative samples, miR-let-7b (p = 0.049) and the global miRNA Sum (p = 0.037) remained significantly reduced after intervention, indicating a partial normalisation of urinary miRNA profiles. Correlation analyses demonstrated positive associations between specific miRNAs and clinical parameters such as age, ischemia time, and surgical time, reinforcing their potential relevance to tumour biology and treatment response. Conclusions: These findings support urinary miRNAs as promising, minimally invasive biomarkers for ccRCC diagnosis and postoperative monitoring. Full article
(This article belongs to the Special Issue miRNAs in Targeted Cancer Therapy)
Show Figures

Figure 1

21 pages, 1740 KB  
Systematic Review
Comparative Meta-Analysis: Salivary, Plasma, and Serum miRNA Profiles for Oral Squamous Cell Carcinoma Detection
by Arbi Wijaya, Vera Julia, Nurtami Soedarsono, Turmidzi Fath, Bayu Brahma, Alif Rizqy Soeratman, Denni Joko Purwanto, Yutaro Higashi, Masaaki Miyakoshi and Tsuyoshi Sugiura
J. Pers. Med. 2026, 16(1), 52; https://doi.org/10.3390/jpm16010052 - 16 Jan 2026
Viewed by 41
Abstract
Background: MiRNAs have emerged as minimally invasive biomarkers with considerable potential for the early detection of oral squamous cell carcinoma (OSCC). Although numerous studies have evaluated circulating miRNAs across different biofluids, the comparative diagnostic performance of saliva-, serum-, and plasma-derived miRNAs has not [...] Read more.
Background: MiRNAs have emerged as minimally invasive biomarkers with considerable potential for the early detection of oral squamous cell carcinoma (OSCC). Although numerous studies have evaluated circulating miRNAs across different biofluids, the comparative diagnostic performance of saliva-, serum-, and plasma-derived miRNAs has not been systematically clarified. Methods: A meta-analysis was performed by screening PubMed, MEDLINE, Scopus, CINAHL, and related databases. Nineteen eligible studies evaluating miRNA-based assays in saliva, serum, or plasma were included. A random-effects bivariate model was used to calculate pooled sensitivity, specificity, and area under the HSROC curve. Meta-regression using log diagnostic odds ratio (lnDOR) examined whether biofluid type significantly influenced diagnostic performance. Results: Salivary miRNAs showed a pooled sensitivity of 0.76 (95% CI: 0.68–0.82; I2 = 84.69%), specificity of 0.79 (95% CI: 0.70–0.85; I2 = 70.41%), and an AUC of 0.84 (95% CI: 0.80–0.87). Plasma miRNAs produced comparable results with a pooled sensitivity of 0.77 (95% CI: 0.61–0.88; I2 = 90.45%), specificity of 0.79 (95% CI: 0.63–0.89; I2 = 80.20%), and an AUC of 0.85 (95% CI: 0.81–0.89). Serum-derived miRNAs demonstrated the highest accuracy with a pooled sensitivity of 0.82 (95% CI: 0.70–0.90; I2 = 76.92%), specificity of 0.88 (95% CI: 0.75–0.95; I2 = 74.87%), and an AUC of 0.91 (95% CI: 0.89–0.94). Despite serum’s numerically superior performance, meta-regression revealed no significant matrix effect (Wald χ2 = 0.20, p = 0.903). Conclusions: Although serum-derived miRNAs performed best overall, biofluid type was not a statistically significant determinant of diagnostic performance. Full article
(This article belongs to the Special Issue Personalized Diagnosis and Treatment for Head and Neck Cancer)
Show Figures

Graphical abstract

18 pages, 14186 KB  
Article
Modulation of Cancer-Associated Fibroblasts via the miR-624-5p/FAP Axis Drives Progression and Metastasis in Non-Small Cell Lung Cancer
by Yan Zhao, Shuman Zhen, Xiaoxu Li, Xiaolin Chen, Xue Zhang, Xinming Zhao and Lihua Liu
Cancers 2026, 18(2), 279; https://doi.org/10.3390/cancers18020279 - 16 Jan 2026
Viewed by 37
Abstract
Background: Cancer-associated fibroblasts (CAFs) are key mediators of metastatic progression in non-small cell lung cancer (NSCLC). Fibroblast activation protein (FAP) serves as the hallmark of CAF activation. However, the upstream regulation of FAP remains elusive, limiting stroma-targeted therapy development. Methods: 68Ga-FAP inhibitor [...] Read more.
Background: Cancer-associated fibroblasts (CAFs) are key mediators of metastatic progression in non-small cell lung cancer (NSCLC). Fibroblast activation protein (FAP) serves as the hallmark of CAF activation. However, the upstream regulation of FAP remains elusive, limiting stroma-targeted therapy development. Methods: 68Ga-FAP inhibitor (FAPI)-04 PET/CT imaging was performed on 61 NSCLC patients to evaluate the clinical significance of FAP. CAFs and normal fibroblasts (NFs) were isolated from patient tissues. Bioinformatic analysis and qRT-PCR were employed to screen and validate miRNAs. Functional assays (CCK-8, collagen contraction, wound healing, transwell co-culture) were utilized to investigate the role of miR-624-5p in regulating fibroblast activation and the effects on the metastatic potential of NSCLC cells. The targeting relationship between miR-624-5p and FAP was validated using FISH, dual-luciferase assay, and Western blotting. Results: 68Ga-FAPI-04 uptake was higher in advanced NSCLC (p < 0.001) and correlated with tumor size, lymph node metastases, and distant metastases (p < 0.05). Isolated primary CAFs significantly enhanced the migration and invasion of A549 and PC9 cells compared to NFs (p < 0.001). We identified miR-624-5p as a significantly downregulated miRNA in CAFs (p < 0.001). Functionally, miR-624-5p overexpression inhibited CAF proliferation and collagen contraction (p < 0.01) and reduced the proliferation, migration, and invasion capabilities of A549 and PC9 cells (p < 0.001). Mechanistically, miR-624-5p bound to FAP mRNA and negatively regulated FAP expression (p < 0.001), thus suppressing CAF activation and tumor metastasis. Conclusions: Our findings establish miR-624-5p as a novel upstream regulator that suppresses FAP expression, consequently inhibiting CAF activation and its pro-metastatic function. Targeting the miR-624-5p/FAP axis represents a promising therapeutic strategy for NSCLC metastasis. Full article
(This article belongs to the Special Issue Lung Cancer: Updates on Therapy and Prognostic Prediction)
Show Figures

Figure 1

13 pages, 1789 KB  
Article
Distinct Serum MicroRNA Signatures and mRNA Decay Pathway Dysregulation in NSAID-Exacerbated Chronic Urticaria
by Young-Min Ye, Jin Young Noh, Seung Ho Kim, Jiwon Yoon, Da-Hye Moon, Boyoun Choi, Se-Min Park, Kun-Woo Park, Jungmo Kim and Hyun Goo Woo
Int. J. Mol. Sci. 2026, 27(2), 904; https://doi.org/10.3390/ijms27020904 - 16 Jan 2026
Viewed by 44
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) can exacerbate urticaria and/or angioedema in up to 30% of patients with chronic urticaria (CU), representing a distinct subtype characterized by heightened inflammation and leukotriene-driven pathophysiology. MicroRNAs (miRNAs) are post-transcriptional regulators that modulate immune and inflammatory responses. This study [...] Read more.
Nonsteroidal anti-inflammatory drugs (NSAIDs) can exacerbate urticaria and/or angioedema in up to 30% of patients with chronic urticaria (CU), representing a distinct subtype characterized by heightened inflammation and leukotriene-driven pathophysiology. MicroRNAs (miRNAs) are post-transcriptional regulators that modulate immune and inflammatory responses. This study aimed to identify differentially expressed miRNAs (DEMs) according to NSAID hypersensitivity status and to elucidate their molecular networks in CU. Serum miRNA profiles were analyzed in 14 NSAID-exacerbated CU (NECU) and 16 NSAID-tolerant CU (NTCU) patients using an Affymetrix GeneChip® miRNA 4.0 Array. DEMs were identified (fold difference > 1.5, p < 0.05), and validated targets were retrieved from the multiMiR database for network construction and Gene Ontology enrichment analyses. NECU patients exhibited a higher frequency of angioedema and systemic corticosteroid use than NTCU patients. Eight DEMs were identified, including upregulated miR-5001-5p, miR-4270, and miR-6869-5p, and downregulated miR-6511b-5p, miR-2277-5p, and miR-378h in NECU. Network integration revealed AGO2-BTG2-LMNB2, NFIC-ZZZ3, and NUFIP2-GLG1 as central clusters, implicating dysregulation of mRNA decay and inflammatory signaling pathways. Reduced miR-6511b-5p expression may derepress BRG1, enhancing chromatin accessibility for inflammatory and leukotriene-synthetic genes. Distinct miRNA signatures differentiate NECU from NTCU, implying a miR-5001-5p/miR-6511b-5p–mRNA decay axis that links impaired post-transcriptional regulation with leukotriene-driven inflammation in CU. These findings highlight candidate miRNAs as potential biomarkers for disease endotyping and therapeutic stratification. Full article
(This article belongs to the Special Issue Molecular Studies of Skin Diseases: From Mechanisms to Therapy)
Show Figures

Figure 1

19 pages, 1001 KB  
Review
MicroRNAs—Are They Possible Markers of Allergic Diseases and Efficient Immunotherapy?
by Krzysztof Specjalski and Marek Niedoszytko
Int. J. Mol. Sci. 2026, 27(2), 902; https://doi.org/10.3390/ijms27020902 - 16 Jan 2026
Viewed by 67
Abstract
Micro-RNAs (miRNAs) are short, non-coding RNA molecules regulating genes’ expression. Studies published over last years demonstrated that they play an important role in allergic diseases by regulating humoral and cellular immunity, cytokine secretion and epithelium function. Some of them seem potential non-invasive biomarkers [...] Read more.
Micro-RNAs (miRNAs) are short, non-coding RNA molecules regulating genes’ expression. Studies published over last years demonstrated that they play an important role in allergic diseases by regulating humoral and cellular immunity, cytokine secretion and epithelium function. Some of them seem potential non-invasive biomarkers facilitating diagnosis of the most common allergic diseases, such as allergic rhinitis (miR-21, miR-126, miR-142-3p, miR-181a, miR-221), asthma (miR-16, miR-21, miR-126, miR-146a, miR-148a, miR-221, miR-223) and atopic dermatitis (miR-24, miR-124, miR-155, miR-191, miR-223, miR-483-5p), or objectively assessing severity of inflammation and endotype of the disease. In spite of the large body of literature available, its scientific value is limited due to the small numbers of study participants, heterogeneity of populations enrolled, and diverse methodology. Some studies have revealed significant changes in miRNAs’ profile in the course of allergen immunotherapy. Tolerance induction is associated with processes controlled by miRNAs: enhanced activity of Treg cells and increased production of tolerogenic IL-10 and TGF-β. Thus, miRNAs may be candidates as biomarkers of successful immunotherapy. Finally, they are also possible therapeutic agents or targets of therapies based on antagomirs blocking their activity. However, so far no studies are available that demonstrate efficacy in overcoming delivery barriers, tissue targeting or drugs’ safety. As a consequence, despite promising results of in vitro and animal model studies, translation into human therapeutic agents is uncertain. Full article
Show Figures

Figure 1

12 pages, 257 KB  
Review
Epigenetic Alterations in Colitis-Associated Colorectal Cancer
by Nisha Ganesh, William M. Grady and Andrew M. Kaz
Epigenomes 2026, 10(1), 4; https://doi.org/10.3390/epigenomes10010004 - 16 Jan 2026
Viewed by 140
Abstract
Colitis-associated colorectal cancer (CAC) represents a distinct subtype of colorectal malignancy that arises in the setting of chronic inflammatory bowel disease (IBD). Unlike sporadic colorectal cancer, CAC develops through inflammation-driven molecular pathways, in which epigenetic alterations play a pivotal role in tumor initiation [...] Read more.
Colitis-associated colorectal cancer (CAC) represents a distinct subtype of colorectal malignancy that arises in the setting of chronic inflammatory bowel disease (IBD). Unlike sporadic colorectal cancer, CAC develops through inflammation-driven molecular pathways, in which epigenetic alterations play a pivotal role in tumor initiation and progression. This review highlights the major epigenetic mechanisms implicated in CAC, including DNA methylation, histone modifications, and microRNA (miRNA) dysregulation. Aberrant DNA methylation patterns, such as promoter hypermethylation of tumor suppressor genes and global hypomethylation, contribute to genomic instability and altered gene expression. In parallel, inflammation-induced changes in histone configuration modulate chromatin accessibility and transcriptional activity of key oncogenic and tumor-suppressive pathways. Furthermore, deregulated miRNAs influence multiple aspects of CAC pathogenesis by targeting genes involved in inflammation and tumor progression. Understanding these epigenetic processes provides valuable insights into the development of colorectal malignancy and identifies potential biomarkers for early detection and intervention in colitis-associated colorectal cancer. Full article
(This article belongs to the Special Issue Epigenetic Signatures in Metabolic Health and Cancer)
15 pages, 2460 KB  
Article
Exercise-Induced Meat Quality Improvement Is Associated with an lncRNA-miRNA-mRNA Network in Tibetan Sheep
by Pengfei Zhao, Zhiyong Jiang, Xin He, Ting Tian, Fang He and Xiong Ma
Biology 2026, 15(2), 158; https://doi.org/10.3390/biology15020158 - 16 Jan 2026
Viewed by 45
Abstract
Tibetan sheep, a unique breed indigenous to the Qinghai–Tibet Plateau, exhibit remarkable adaptations to high-altitude hypoxia, and their muscle quality is a key economic determinant. However, the molecular mechanisms by which exercise regulates meat quality in this breed remain poorly understood. This study [...] Read more.
Tibetan sheep, a unique breed indigenous to the Qinghai–Tibet Plateau, exhibit remarkable adaptations to high-altitude hypoxia, and their muscle quality is a key economic determinant. However, the molecular mechanisms by which exercise regulates meat quality in this breed remain poorly understood. This study aimed to systematically investigate the effects of different exercise volumes on the biceps femoris muscle of Tibetan sheep, integrating histological analysis with high-throughput transcriptome sequencing. We compared a low-exercise group with a high-exercise group and found that long-term endurance exercise resulted in phenotypic changes suggestive of a shift toward oxidative muscle fiber characteristics. This adaptation was characterized by significantly reduced muscle fiber diameter and cross-sectional area, alongside a crucial increase in intramuscular fat content, collectively enhancing meat tenderness, flavor, and juiciness. Transcriptomic analysis revealed extensive gene expression reprogramming, identifying 208 mRNAs and 490 lncRNAs that were differentially expressed and primarily associated with muscle fiber transition and energy metabolism. Furthermore, we constructed a putative lncRNA-miRNA-mRNA competing endogenous RNA network based on expression correlations and bioinformatic predictions, highlighting potential key regulatory axes such as LOC105603384/miR-16-z/MYLK3, LOC121820630/miR-381-y/NOX4, and LOC132659150/oar-miR-329a-3p/NF1. These findings provide a new perspective on the molecular basis of exercise-induced muscle adaptation in high-altitude animals and offer a solid theoretical framework for improving meat quality through scientific livestock management. Full article
(This article belongs to the Special Issue Non-Coding RNA Research and Functional Insights)
Show Figures

Figure 1

Back to TopTop