Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = methylarginines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3796 KB  
Article
Investigating Glial Fibrillary Acidic Protein Expression and Cell Morphology in a Rat Brain Following Exposure to a Weak Electromagnetic Field and Nitric Oxide Modulation During Development
by Stephanie M. Sissons, Nirosha J. Murugan and Blake T. Dotta
Neuroglia 2025, 6(2), 21; https://doi.org/10.3390/neuroglia6020021 - 3 May 2025
Viewed by 789
Abstract
Background/Objectives: Nitric oxide (NO) and electromagnetic fields (EMFs) have been reported to influence central nervous system (CNS) function and organization. This study explores the effects of NO modulation and EMF exposure on neurodevelopment and glial fibrillary acidic protein (GFAP) expression and cell morphology, [...] Read more.
Background/Objectives: Nitric oxide (NO) and electromagnetic fields (EMFs) have been reported to influence central nervous system (CNS) function and organization. This study explores the effects of NO modulation and EMF exposure on neurodevelopment and glial fibrillary acidic protein (GFAP) expression and cell morphology, extending the prior work on perinatal EMF exposure in Wistar rats. Methods: Rats were perinatally exposed to water, 1 g/L L-arginine (LA), or 0.5 g/L N-methylarginine (NMA), along with a 7 Hz square-wave EMF at intensities of 0 nT, ≤50 nT, or 500 nT, starting three days before birth and continuing for 14 days postnatally. GFAP expression and cell morphology were analyzed via immunohistochemistry in regions including the hypothalamus, amygdala, hippocampus, and cortex. Results: Significant changes in GFAP morphology and expression are observed. A main EMF effect emerged in the right ventromedial hypothalamus, where the branch length of GFAP-expressing cells increased in EMF-exposed groups compared to the controls [t(32) = −2.52, p = 0.017]. In the hippocampus, LA exposure decreased GFAP expression in the right dentate gyrus compared to water controls [t(23) = 2.37, p = 0.027]. A sex-specific EMF effect was detected in the left CA2 hippocampus, where males exposed to EMF showed significant differences from unexposed males [t(15) = −2.90, p = 0.011]. Conclusions: These findings reveal complex interactions between EMF exposure, sex, and NO modulation, with region-specific effects on GFAP expression in the developing rat brain. Full article
Show Figures

Figure 1

16 pages, 1607 KB  
Article
Ubiquinone (Coenzyme Q-10) Supplementation Influences Exercise-Induced Changes in Serum 25(OH)D3 and the Methyl-Arginine Metabolites: A Double-Blind Randomized Controlled Trial
by Jan Mieszkowski, Andrzej Kochanowicz, Paulina Brzezińska, Magdalena Kochanowicz, Katarzyna Żołądkiewicz, Błażej Stankiewicz, Bartłomiej Niespodziński, Joanna Reczkowicz, Konrad Kowalski and Jędrzej Antosiewicz
Antioxidants 2024, 13(7), 760; https://doi.org/10.3390/antiox13070760 - 23 Jun 2024
Viewed by 3702
Abstract
Researchers have studied the effects of exercise on serum methyl-arginine and vitamin D metabolites; however, the effects of exercise combined with antioxidants are not well documented. Since oxidative stress affects the metabolism of vitamin D and methyl-arginine, we hypothesised that the antioxidant coenzyme [...] Read more.
Researchers have studied the effects of exercise on serum methyl-arginine and vitamin D metabolites; however, the effects of exercise combined with antioxidants are not well documented. Since oxidative stress affects the metabolism of vitamin D and methyl-arginine, we hypothesised that the antioxidant coenzyme Q10 (CoQ10) might modulate exercise-induced changes. A group of twenty-eight healthy men participated in this study and were divided into two groups: an experimental group and a control group. The exercise test was performed until exhaustion, with gradually increasing intensity, before and after the 21-day CoQ10 supplementation. Blood samples were collected before, immediately after, and 3 and 24 h after exercise. CoQ10, vitamin D metabolites, asymmetric dimethylarginine (ADMA), symmetric dimethylarginine, methylarginine, dimethylamine, arginine, citrulline, and ornithine were analysed in serum samples. CoQ10 supplementation caused a 2.76-fold increase in the concentration of serum CoQ10. Conversely, the 25(OH)D3 concentration increased after exercise only in the placebo group. ADMA increased after exercise before supplementation, but a decrease was observed in the CoQ10 supplementation group 24 h after exercise. In conclusion, our data indicate that CoQ10 supplementation modifies the effects of exercise on vitamin D and methyl-arginine metabolism, suggesting its beneficial effects. These findings contribute to the understanding of how antioxidants like CoQ10 can modulate biochemical responses to exercise, potentially offering new insights for enhancing athletic performance and recovery. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

9 pages, 253 KB  
Article
Eight-Day Fast and a Single Bout of Exercise: The Effect on Serum Methylarginines and Amino Acids in Men
by Joanna Reczkowicz, Jakub Kortas, Ulana Juhas, Malgorzata Zychowska, Andzelika Borkowska, Karol Pilis, Ewa Ziemann, Zuzanna Sobol and Jedrzej Antosiewicz
Nutrients 2023, 15(13), 2981; https://doi.org/10.3390/nu15132981 - 30 Jun 2023
Viewed by 1618
Abstract
Changes in serum concentration of methylarginines and amino acids after exercise are well documented, whereas the effects of exercise applied together with fasting are still debated and not thoroughly studied. Thus, we hypothesised that alterations in methylarginines such as ADMA, SDMA and L-NMMA [...] Read more.
Changes in serum concentration of methylarginines and amino acids after exercise are well documented, whereas the effects of exercise applied together with fasting are still debated and not thoroughly studied. Thus, we hypothesised that alterations in methylarginines such as ADMA, SDMA and L-NMMA might be responsible for decreased exercise performance after 8 days of fasting. Additionally, we propose that conditions in which the human body is exposed to prolonged fasting for more than a week elicit a distinctly different response to exercise than after overnight fasting. A group of 10 healthy men with previous fasting experience participated in the study. The exercise test was performed until exhaustion with a gradually increasing intensity before and after the 8-day fast. Blood samples were collected before and immediately after exercise. ADMA, SDMA, L-NMMA, dimethylamine and amino acids were analysed in serum samples by ID-LC-MS/MS. SDMA, L-NMMA and dimethylamine significantly decreased after 8 days of fasting, whereas ADMA did not change. BCAA, Phe, alanine and some other amino acids increased after fasting. Exercise-induced changes in amino acids were distinct after an 8-day fast compared to overnight fasting. A decrease in physical performance accompanied all of these alterations. In conclusion, our data indicate that neither methyl-arginine changes nor the Trp/BCAA ratio can explain exercise-induced fatigue after fasting. However, the observed decrease in hArg concentration suggests the limited synthesis of creatine, possibly contributing to reduced physical performance. Full article
(This article belongs to the Special Issue Advance in Nutrition and Metabolic Homeostasis)
13 pages, 1054 KB  
Review
The Role of L-Arginine-NO System in Female Reproduction: A Narrative Review
by Jozsef Bodis, Balint Farkas, Bernadett Nagy, Kalman Kovacs and Endre Sulyok
Int. J. Mol. Sci. 2022, 23(23), 14908; https://doi.org/10.3390/ijms232314908 - 28 Nov 2022
Cited by 22 | Viewed by 8436
Abstract
Accumulating evidence are available on the involvement of l-arginine-nitric oxide (NO) system in complex biological processes and numerous clinical conditions. Particular attention was made to reveal the association of l-arginine and methylarginines to outcome measures of women undergoing in vitro fertilization (IVF). This [...] Read more.
Accumulating evidence are available on the involvement of l-arginine-nitric oxide (NO) system in complex biological processes and numerous clinical conditions. Particular attention was made to reveal the association of l-arginine and methylarginines to outcome measures of women undergoing in vitro fertilization (IVF). This review attempts to summarize the expression and function of the essential elements of this system with particular reference to the different stages of female reproduction. A literature search was performed on the PubMed and Google Scholar systems. Publications were selected for evaluation according to the results presented in the Abstract. The regulatory role of NO during the period of folliculogenesis, oocyte maturation, fertilization, embryogenesis, implantation, placentation, pregnancy, and delivery was surveyed. The major aspects of cellular l-arginine uptake via cationic amino acid transporters (CATs), arginine catabolism by nitric oxide synthases (NOSs) to NO and l-citrulline and by arginase to ornithine, and polyamines are presented. The importance of NOS inhibition by methylated arginines and the redox-sensitive elements of the process of NO generation are also shown. The l-arginine-NO system plays a crucial role in all stages of female reproduction. Insufficiently low or excessively high rates of NO generation may have adverse influences on IVF outcome. Full article
(This article belongs to the Collection Feature Papers Collection in Biochemistry)
Show Figures

Figure 1

22 pages, 3202 KB  
Article
Target Metabolome Profiling-Based Machine Learning as a Diagnostic Approach for Cardiovascular Diseases in Adults
by Natalia E. Moskaleva, Ksenia M. Shestakova, Alexey V. Kukharenko, Pavel A. Markin, Maria V. Kozhevnikova, Ekaterina O. Korobkova, Alex Brito, Sabina N. Baskhanova, Natalia V. Mesonzhnik, Yuri N. Belenkov, Natalia V. Pyatigorskaya, Elena Tobolkina, Serge Rudaz and Svetlana A. Appolonova
Metabolites 2022, 12(12), 1185; https://doi.org/10.3390/metabo12121185 - 27 Nov 2022
Cited by 16 | Viewed by 2964
Abstract
Metabolomics is a promising technology for the application of translational medicine to cardiovascular risk. Here, we applied a liquid chromatography/tandem mass spectrometry approach to explore the associations between plasma concentrations of amino acids, methylarginines, acylcarnitines, and tryptophan catabolism metabolites and cardiometabolic risk factors [...] Read more.
Metabolomics is a promising technology for the application of translational medicine to cardiovascular risk. Here, we applied a liquid chromatography/tandem mass spectrometry approach to explore the associations between plasma concentrations of amino acids, methylarginines, acylcarnitines, and tryptophan catabolism metabolites and cardiometabolic risk factors in patients diagnosed with arterial hypertension (HTA) (n = 61), coronary artery disease (CAD) (n = 48), and non-cardiovascular disease (CVD) individuals (n = 27). In total, almost all significantly different acylcarnitines, amino acids, methylarginines, and intermediates of the kynurenic and indolic tryptophan conversion pathways presented increased (p < 0.05) in concentration levels during the progression of CVD, indicating an association of inflammation, mitochondrial imbalance, and oxidative stress with early stages of CVD. Additionally, the random forest algorithm was found to have the highest prediction power in multiclass and binary classification patients with CAD, HTA, and non-CVD individuals and globally between CVD and non-CVD individuals (accuracy equal to 0.80 and 0.91, respectively). Thus, the present study provided a complex approach for the risk stratification of patients with CAD, patients with HTA, and non-CVD individuals using targeted metabolomics profiling. Full article
(This article belongs to the Special Issue Metabolic Profiling of Cardiovascular Disease, 2nd Edition)
Show Figures

Figure 1

16 pages, 14348 KB  
Article
Bariatric Surgery Improves the Atherogenic Profile of Circulating Methylarginines in Obese Patients: Results from a Pilot Study
by Julie Poirier, Chloé Cloteau, Audrey Aguesse, Xavier Billot, Etienne Thévenot, Michel Krempf, René Valéro, Marie Maraninchi and Mikaël Croyal
Metabolites 2021, 11(11), 759; https://doi.org/10.3390/metabo11110759 - 4 Nov 2021
Cited by 7 | Viewed by 2604
Abstract
Bariatric surgery improves obesity-related comorbidities. Methylarginines are biomarkers of cardiometabolic risk, liver steatosis, and insulin resistance. Here, we aimed to investigate methylarginines in obese patients undergoing bariatric surgery and compared them to age- and sex-matched healthy subjects. Thirty-one obese patients who underwent bariatric [...] Read more.
Bariatric surgery improves obesity-related comorbidities. Methylarginines are biomarkers of cardiometabolic risk, liver steatosis, and insulin resistance. Here, we aimed to investigate methylarginines in obese patients undergoing bariatric surgery and compared them to age- and sex-matched healthy subjects. Thirty-one obese patients who underwent bariatric surgery and 31 healthy individuals were used for this retrospective study. The basal serum methylarginine levels were determined in the healthy individuals and the obese patients, before surgery and 6 and 12 months after surgery, by mass spectrometry. Compared with the healthy individuals, the obese patients displayed elevated monomethylarginine (mean change: +95%, p < 0.001), asymmetric-dimethylarginine (+105%, p < 0.001), symmetric-dimethylarginine (+25%, p = 0.003), and dimethylguanidino valerate (+32%, p = 0.008) concentrations. Bariatric surgery durably reduced the body mass index by 28% (12 months, 95%CI: 24–33, p = 0.002) and improved plasma lipids, insulin resistance, and liver function. Bariatric surgery reduced the serum levels of monomethylarginine and asymmetric-dimethylarginine by 12% (95%CI: 6–17) and 36% (95%CI: 27–45) (12 months, p = 0.003), respectively, but not symmetric-dimethylarginine or dimethylguanidino valerate. The monomethylarginine and asymmetric-dimethylarginine concentrations were strongly correlated with markers of dyslipidemia, insulin resistance, and a fatty liver. Serum dimethylguanidino valerate was primarily correlated with glycemia and renal function, whereas serum symmetric-dimethylarginine was almost exclusively associated with renal function. In conclusion, the monomethylarginine and asymmetric-dimethylarginine levels are efficiently decreased by bariatric surgery, leading to a reduced atherogenic profile in obese patients. Methylarginines follow different metabolic patterns, which could help for the stratification of cardiometabolic disorders in obese patients. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

19 pages, 6948 KB  
Article
Protein Arginine Methyltransferase 1 Is Essential for the Meiosis of Male Germ Cells
by Sahar Waseem, Sudeep Kumar, Kanghoon Lee, Byoung-Ha Yoon, Mirang Kim, Hail Kim and Keesook Lee
Int. J. Mol. Sci. 2021, 22(15), 7951; https://doi.org/10.3390/ijms22157951 - 26 Jul 2021
Cited by 6 | Viewed by 3085
Abstract
Protein arginine methyltransferase 1 (PRMT1) is a major enzyme responsible for the formation of methylarginine in mammalian cells; however, its function in vivo is not well understood due to its early embryonic lethality in null mice exhibiting spontaneous DNA damage, cell cycle delays, [...] Read more.
Protein arginine methyltransferase 1 (PRMT1) is a major enzyme responsible for the formation of methylarginine in mammalian cells; however, its function in vivo is not well understood due to its early embryonic lethality in null mice exhibiting spontaneous DNA damage, cell cycle delays, and defects in check point activation. Here, we generated germ cell-specific Prmt1 knock-out (KO) mice to evaluate the function of PRMT1 in spermatogenesis. Our findings demonstrate that PRMT1 is vital for male fertility in mice. Spermatogenesis in Prmt1 KO mice was arrested at the zygotene-like stage of the first meiotic division due to an elevated number of DNA double-strand breaks (DSBs). There was a loss of methylation in meiotic recombination 11 (MRE11), the key endonuclease in MRE11/RAD50/NBS 1 (MRN) complex, resulting in the accumulation of SPO11 protein in DSBs. The ATM-mediated negative feedback control over SPO11 was lost and, consequently, the repair pathway of DSBs was highly affected in PRMT1 deficient male germ cells. Our findings provide a novel insight into the role of PRMT1-mediated asymmetric demethylation in mouse spermatogenesis. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

16 pages, 1561 KB  
Review
The Second Life of Methylarginines as Cardiovascular Targets
by Natalia Jarzebska, Arduino A. Mangoni, Jens Martens-Lobenhoffer, Stefanie M. Bode-Böger and Roman N. Rodionov
Int. J. Mol. Sci. 2019, 20(18), 4592; https://doi.org/10.3390/ijms20184592 - 17 Sep 2019
Cited by 51 | Viewed by 5133
Abstract
Endogenous methylarginines were proposed as cardiovascular risk factors more than two decades ago, however, so far, this knowledge has not led to the development of novel therapeutic approaches. The initial studies were primarily focused on the endogenous inhibitors of nitric oxide synthases asymmetric [...] Read more.
Endogenous methylarginines were proposed as cardiovascular risk factors more than two decades ago, however, so far, this knowledge has not led to the development of novel therapeutic approaches. The initial studies were primarily focused on the endogenous inhibitors of nitric oxide synthases asymmetric dimethylarginine (ADMA) and monomethylarginine (MMA) and the main enzyme regulating their clearance dimethylarginine dimethylaminohydrolase 1 (DDAH1). To date, all the screens for DDAH1 activators performed with the purified recombinant DDAH1 enzyme have not yielded any promising hits, which is probably the main reason why interest towards this research field has started to fade. The relative contribution of the second DDAH isoenzyme DDAH2 towards ADMA and MMA clearance is still a matter of controversy. ADMA, MMA and symmetric dimethylarginine (SDMA) are also metabolized by alanine: glyoxylate aminotransferase 2 (AGXT2), however, in addition to methylarginines, this enzyme also has several cardiovascular protective substrates, so the net effect of possible therapeutic targeting of AGXT2 is currently unclear. Recent studies on regulation and functions of the enzymes metabolizing methylarginines have given a second life to this research direction. Our review discusses the latest discoveries and controversies in the field and proposes novel directions for targeting methylarginines in clinical settings. Full article
(This article belongs to the Special Issue Arginine Metabolism)
Show Figures

Figure 1

15 pages, 885 KB  
Review
Asymmetric (ADMA) and Symmetric (SDMA) Dimethylarginines in Chronic Kidney Disease: A Clinical Approach
by Elena Oliva-Damaso, Nestor Oliva-Damaso, Francisco Rodriguez-Esparragon, Juan Payan, Eduardo Baamonde-Laborda, Fayna Gonzalez-Cabrera, Raquel Santana-Estupiñan and Jose Carlos Rodriguez-Perez
Int. J. Mol. Sci. 2019, 20(15), 3668; https://doi.org/10.3390/ijms20153668 - 26 Jul 2019
Cited by 106 | Viewed by 13060
Abstract
Asymmetric dimethylarginine (ADMA) and its enantiomer, Symmetric dimethylarginine (SDMA), are naturally occurring amino acids that were first isolated and characterized in human urine in 1970. ADMA is the most potent endogenous inhibitor of nitric oxide synthase (NOS), with higher levels in patients with [...] Read more.
Asymmetric dimethylarginine (ADMA) and its enantiomer, Symmetric dimethylarginine (SDMA), are naturally occurring amino acids that were first isolated and characterized in human urine in 1970. ADMA is the most potent endogenous inhibitor of nitric oxide synthase (NOS), with higher levels in patients with end-stage renal disease (ESRD). ADMA has shown to be a significant predictor of cardiovascular outcome and mortality among dialysis patients. On the other hand, although initially SDMA was thought to be an innocuous molecule, we now know that it is an outstanding marker of renal function both in human and in animal models, with ESRD patients on dialysis showing the highest SDMA levels. Today, we know that ADMA and SDMA are not only uremic toxins but also independent risk markers for mortality and cardiovascular disease (CVD). In this review, we summarize the role of both ADMA and SDMA in chronic kidney disease along with other cardiovascular risk factors. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

10 pages, 790 KB  
Article
Specificity of Anti-Citrullinated Protein Antibodies in Rheumatoid Arthritis
by Nicole H. Trier, Bettina E. Holm, Paul R. Hansen, Ole Slot, Henning Locht and Gunnar Houen
Antibodies 2019, 8(2), 37; https://doi.org/10.3390/antib8020037 - 7 Jun 2019
Cited by 13 | Viewed by 7186
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology. The majority of individuals with RA are positive for the disease-specific anti-citrullinated protein antibodies (ACPAs). These antibodies are primarily of cross-reactive nature, hence, the true autoantigen to ACPA remains unidentified. In this study, [...] Read more.
Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology. The majority of individuals with RA are positive for the disease-specific anti-citrullinated protein antibodies (ACPAs). These antibodies are primarily of cross-reactive nature, hence, the true autoantigen to ACPA remains unidentified. In this study, we analyzed the reactivity of RA sera to several post-translationally modified epitopes, in order to further characterize the specific nature of ACPAs by immunoassays. Substituting citrulline with other amino acids, e.g., D-citrulline, homo-citrulline and methyl-arginine illustrated that ACPAs are utmost specific for citrullinated targets. Collectively, these findings support that ACPAs and citrullinated targets are specific for RA, making citrulline-containing peptide targets the most effective assays for detection of ACPAs. Full article
(This article belongs to the Special Issue Antibody-Based Diagnostics)
Show Figures

Figure 1

18 pages, 2885 KB  
Article
Simultaneous Characterization and Quantification of Varied Ingredients from Sojae semen praeparatum in Fermentation Using UFLC–TripleTOF MS
by Chuan Chai, Xiaobing Cui, Chenxiao Shan, Sheng Yu, Xinzhi Wang and Hongmei Wen
Molecules 2019, 24(10), 1864; https://doi.org/10.3390/molecules24101864 - 15 May 2019
Cited by 21 | Viewed by 3867
Abstract
Systematic comparison of active ingredients in Sojae semen praeparatum (SSP) during fermentation was performed using ultra-fast liquid chromatography (UFLC)–TripleTOF MS and principal component analysis (PCA). By using this strategy, a total of 25 varied compounds from various biosynthetic groups were assigned and relatively [...] Read more.
Systematic comparison of active ingredients in Sojae semen praeparatum (SSP) during fermentation was performed using ultra-fast liquid chromatography (UFLC)–TripleTOF MS and principal component analysis (PCA). By using this strategy, a total of 25 varied compounds from various biosynthetic groups were assigned and relatively quantified in the positive or negative ion mode, including two oligosaccharides, twelve isoflavones, eight fatty acids, N–(3–Indolylacetyl)–dl–aspartic acid, methylarginine, and sorbitol. Additionally, as the representative constituents, six targeted isoflavones were sought in a targeted manner and accurately quantified using extracted ion chromatograms (XIC) manager (AB SCIEX, Los Angeles, CA, USA) combined with MultiQuant software (AB SCIEX, Los Angeles, CA, USA). During the fermentation process, the relative contents of oligoses decreased gradually, while the fatty acids increased. Furthermore, the accurate contents of isoflavone glycosides decreased, while aglycones increased and reached a maximum in eight days, which indicated that the ingredients converted obviously and regularly throughout the SSP fermentation. In combination with the morphological changes, which meet the requirements of China Pharmacopoeia, this work suggested that eight days is the optimal time for fermentation of SSP from the aspects of morphology and content. Full article
(This article belongs to the Collection Advances in Food Analysis)
Show Figures

Graphical abstract

8 pages, 1915 KB  
Article
Folinic Acid Increases Protein Arginine Methylation in Human Endothelial Cells
by Ruben Esse, Tom Teerlink, Pieter Koolwijk, Isabel Tavares de Almeida, Henk J. Blom and Rita Castro
Nutrients 2018, 10(4), 404; https://doi.org/10.3390/nu10040404 - 24 Mar 2018
Cited by 3 | Viewed by 4533
Abstract
Elevated plasma total homocysteine (tHcy) is associated with increased risk of cardiovascular disease, but the mechanisms underlying this association are not completely understood. Cellular hypomethylation has been suggested to be a key pathophysiologic mechanism, since S-adenosylhomocysteine (AdoHcy), the Hcy metabolic precursor and [...] Read more.
Elevated plasma total homocysteine (tHcy) is associated with increased risk of cardiovascular disease, but the mechanisms underlying this association are not completely understood. Cellular hypomethylation has been suggested to be a key pathophysiologic mechanism, since S-adenosylhomocysteine (AdoHcy), the Hcy metabolic precursor and a potent inhibitor of methyltransferase activity, accumulates in the setting of hyperhomocysteinemia. In this study, the impact of folate and methionine on intracellular AdoHcy levels and protein arginine methylation status was studied. Human endothelial cells were incubated with increasing concentrations of folinic acid (FnA), a stable precursor of folate, with or without methionine restriction. The levels of intracellular AdoHcy and AdoMet, tHcy in the cell culture medium, and protein-incorporated methylarginines were evaluated by suitable liquid chromatography techniques. FnA supplementation, with or without methionine restriction, reduced the level of tHcy and did not affect intracellular AdoMet levels. Interestingly, FnA supplementation reduced intracellular AdoHcy levels only in cells grown under methionine restriction. Furthermore, these cells also displayed increased protein arginine methylation status. These observations suggest that folic acid supplementation may enhance cellular methylation capacity under a low methionine status. Our results lead us to hypothesize that the putative benefits of folic acid supplementation in restoring endothelial homeostasis, thus preventing atherothrombotic events, should be reevaluated in subjects under a methionine restriction diet. Full article
Show Figures

Figure 1

24 pages, 633 KB  
Review
Asymmetric Dimethylarginine, Endothelial Dysfunction and Renal Disease
by Luis Aldámiz-Echevarría and Fernando Andrade
Int. J. Mol. Sci. 2012, 13(9), 11288-11311; https://doi.org/10.3390/ijms130911288 - 10 Sep 2012
Cited by 73 | Viewed by 10704
Abstract
L-Arginine (Arg) is oxidized to L-citrulline and nitric oxide (NO) by the action of endothelial nitric oxide synthase (NOS). In contrast, protein-incorporated Arg residues can be methylated with subsequent proteolysis giving rise to methylarginine compounds, such as asymmetric dimethylarginine (ADMA) that competes with [...] Read more.
L-Arginine (Arg) is oxidized to L-citrulline and nitric oxide (NO) by the action of endothelial nitric oxide synthase (NOS). In contrast, protein-incorporated Arg residues can be methylated with subsequent proteolysis giving rise to methylarginine compounds, such as asymmetric dimethylarginine (ADMA) that competes with Arg for binding to NOS. Most ADMA is degraded by dimethylarginine dimethyaminohydrolase (DDAH), distributed widely throughout the body and regulates ADMA levels and, therefore, NO synthesis. In recent years, several studies have suggested that increased ADMA levels are a marker of atherosclerotic change, and can be used to assess cardiovascular risk, consistent with ADMA being predominantly absorbed by endothelial cells. NO is an important messenger molecule involved in numerous biological processes, and its activity is essential to understand both pathogenic and therapeutic mechanisms in kidney disease and renal transplantation. NO production is reduced in renal patients because of their elevated ADMA levels with associated reduced DDAH activity. These factors contribute to endothelial dysfunction, oxidative stress and the progression of renal damage, but there are treatments that may effectively reduce ADMA levels in patients with kidney disease. Available data on ADMA levels in controls and renal patients, both in adults and children, also are summarized in this review. Full article
(This article belongs to the Special Issue ADMA and Nitrergic System)
Show Figures

Graphical abstract

Back to TopTop