Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = methionine sulfoxide reductases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4288 KiB  
Article
In Salmonella Typhimurium and Bacillus subtilis, Nucleoid-Associated HU Proteins Are N-Terminally Acetylated
by Anastacia R. Parks, Jessica L. Will, Liju G. Mathew, Sébastien Massier, Julie Hardouin and Jorge C. Escalante-Semerena
Pathogens 2025, 14(7), 616; https://doi.org/10.3390/pathogens14070616 - 20 Jun 2025
Viewed by 426
Abstract
Here we report that the Salmonella Typhimurium NatB (SeNatB) protein N-terminal acetyltransferase acetylated the N-terminal methionine of the nucleoid-associated HU proteins. Our findings were supported by an in vitro analysis of acetylation of the HUα and HUβ proteins and [...] Read more.
Here we report that the Salmonella Typhimurium NatB (SeNatB) protein N-terminal acetyltransferase acetylated the N-terminal methionine of the nucleoid-associated HU proteins. Our findings were supported by an in vitro analysis of acetylation of the HUα and HUβ proteins and lysine-null (K-null) variants, and by an in vivo analysis of the effect of acetylation on HU-mediated transcriptional regulation of a known target of HU, the hilA promoter. SeNatB did not acetylate the initiating methionines of HU proteins that were oxidized to methionine sulfoxide, but the reduction of these methionine sulfoxide residues restored the acetylation of HU proteins by SeNatB. These results demonstrate that the SeHU proteins are bona fide substrates for the methionine sulfoxide reductases MsrA and MsrB. Finally, we showed that the Bacillus subtilis acetyltransferase, YfmK, is a functional homolog of SeNatB, and that BsYfmK acetylates the Nα amino group of the initiating methionine of the B. subtilis HU protein (HBsu). Full article
Show Figures

Graphical abstract

23 pages, 11275 KiB  
Review
The Role and Regulatory Mechanism of Methionine Sulfoxide Reductase (Msr) in the Process of Chilling Injury of Fruits and Vegetables: A Review
by Feilong Yin, Liang Shuai, Mohd Termizi Yusof, Nurul Shazini Ramli, Azizah Misran, Yunfen Liu, Meiying He, Yuanli Liang and Mohd Sabri Pak Dek
Horticulturae 2025, 11(4), 422; https://doi.org/10.3390/horticulturae11040422 - 15 Apr 2025
Viewed by 692
Abstract
The failure to promptly eliminate excessive reactive oxygen species (ROS) leads to the oxidation of biological macromolecules such as proteins, which is a key factor in chilling injury (CI) in harvested fruits and vegetables. Methionine sulfoxide reductase (Msr) is a class of redox [...] Read more.
The failure to promptly eliminate excessive reactive oxygen species (ROS) leads to the oxidation of biological macromolecules such as proteins, which is a key factor in chilling injury (CI) in harvested fruits and vegetables. Methionine sulfoxide reductase (Msr) is a class of redox proteins that reduce methionine sulfoxide (MetSO) in oxidized proteins back to methionine (Met), thereby restoring protein function. In recent years, the role of Msr in protecting fruits and vegetables from CI has attracted increasing research interest. This review summarizes the classification, distribution, and subcellular localization of Msr in plants and examines its roles and regulatory mechanisms in mitigating CI. The discussion focuses on postharvest CI, ROS dynamics, and Msr-related regulatory pathways. This review provides insights into improving plant quality and enhancing cold resistance through genetic engineering. Full article
Show Figures

Figure 1

15 pages, 5035 KiB  
Article
Development and Optimization of a Redox Enzyme-Based Fluorescence Biosensor for the Identification of MsrB1 Inhibitors
by Hyun Bo Shim, Hyunjeong Lee, Hwa Yeon Cho, Young Ho Jo, Lionel Tarrago, Hyunggee Kim, Vadim N. Gladyshev and Byung Cheon Lee
Antioxidants 2024, 13(11), 1348; https://doi.org/10.3390/antiox13111348 - 2 Nov 2024
Viewed by 1508
Abstract
MsrB1 is a thiol-dependent enzyme that reduces protein methionine-R-sulfoxide and regulates inflammatory response in macrophages. Therefore, MsrB1 could be a promising therapeutic target for the control of inflammation. To identify MsrB1 inhibitors, we construct a redox protein-based fluorescence biosensor composed of [...] Read more.
MsrB1 is a thiol-dependent enzyme that reduces protein methionine-R-sulfoxide and regulates inflammatory response in macrophages. Therefore, MsrB1 could be a promising therapeutic target for the control of inflammation. To identify MsrB1 inhibitors, we construct a redox protein-based fluorescence biosensor composed of MsrB1, a circularly permutated fluorescent protein, and the thioredoxin1 in a single polypeptide chain. This protein-based biosensor, named RIYsense, efficiently measures protein methionine sulfoxide reduction by ratiometric fluorescence increase. We used it for high-throughput screening of potential MsrB1 inhibitors among 6868 compounds. A total of 192 compounds were selected based on their ability to reduce relative fluorescence intensity by more than 50% compared to the control. Then, we used molecular docking simulations of the compound on MsrB1, affinity assays, and MsrB1 activity measurement to identify compounds with reliable and strong inhibitory effects. Two compounds were selected as MsrB1 inhibitors: 4-[5-(4-ethylphenyl)-3-(4-hydroxyphenyl)-3,4-dihydropyrazol-2-yl]benzenesulfonamide and 6-chloro-10-(4-ethylphenyl)pyrimido[4,5-b]quinoline-2,4-dione. They are heterocyclic, polyaromatic compounds with a substituted phenyl moiety interacting with the MsrB1 active site, as revealed by docking simulation. These compounds were found to decrease the expression of anti-inflammatory cytokines such as IL-10 and IL-1rn, leading to auricular skin swelling and increased thickness in an ear edema model, effectively mimicking the effects observed in MsrB1 knockout mice. In summary, using a novel redox protein-based fluorescence biosensor, we identified potential MsrB1 inhibitors that can regulate the inflammatory response, particularly by influencing the expression of anti-inflammatory cytokines. These compounds are promising tools for understanding MsrB1’s role during inflammation and eventually controlling inflammation in therapeutic approaches. Full article
(This article belongs to the Special Issue Advances in Redox Biosensor)
Show Figures

Figure 1

16 pages, 1539 KiB  
Review
Role of Oxidative Stress, Methionine Oxidation and Methionine Sulfoxide Reductases (MSR) in Alzheimer’s Disease
by Sanjana Chandran and David Binninger
Antioxidants 2024, 13(1), 21; https://doi.org/10.3390/antiox13010021 - 21 Dec 2023
Cited by 21 | Viewed by 3474
Abstract
A major contributor to dementia seen in aging is Alzheimer’s disease (AD). Amyloid beta (Aβ), a main component of senile plaques (SPs) in AD, induces neuronal death through damage to cellular organelles and structures, caused by oxidation of important molecules such as proteins [...] Read more.
A major contributor to dementia seen in aging is Alzheimer’s disease (AD). Amyloid beta (Aβ), a main component of senile plaques (SPs) in AD, induces neuronal death through damage to cellular organelles and structures, caused by oxidation of important molecules such as proteins by reactive oxygen species (ROS). Hyperphosphorylation and accumulation of the protein tau in the microtubules within the brain also promote ROS production. Methionine, a residue of proteins, is particularly sensitive to oxidation by ROS. One of the enzyme systems that reverses the oxidative damage in mammalian cells is the enzyme system known as Methionine Sulfoxide Reductases (MSRs). The components of the MSR system, namely MSRA and MSRB, reduce oxidized forms of methionine (Met-(o)) in proteins back to methionine (Met). Furthermore, the MSRs scavenge ROS by allowing methionine residues in proteins to utilize their antioxidant properties. This review aims to improve the understanding of the role of the MSR system of enzymes in reducing cellular oxidative damage and AD pathogenesis, which may contribute to effective therapeutic approaches for AD by targeting the MSR system. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Graphical abstract

24 pages, 1139 KiB  
Review
“Alphabet” Selenoproteins: Their Characteristics and Physiological Roles
by Carmen Beatrice Dogaru, Corina Muscurel, Carmen Duță and Irina Stoian
Int. J. Mol. Sci. 2023, 24(21), 15992; https://doi.org/10.3390/ijms242115992 - 6 Nov 2023
Cited by 15 | Viewed by 3867
Abstract
Selenium (Se) is a metalloid that is recognized as one of the vital trace elements in our body and plays multiple biological roles, largely mediated by proteins containing selenium—selenoproteins. Selenoproteins mainly have oxidoreductase functions but are also involved in many different molecular signaling [...] Read more.
Selenium (Se) is a metalloid that is recognized as one of the vital trace elements in our body and plays multiple biological roles, largely mediated by proteins containing selenium—selenoproteins. Selenoproteins mainly have oxidoreductase functions but are also involved in many different molecular signaling pathways, physiological roles, and complex pathogenic processes (including, for example, teratogenesis, neurodegenerative, immuno-inflammatory, and obesity development). All of the selenoproteins contain one selenocysteine (Sec) residue, with only one notable exception, the selenoprotein P (SELENOP), which has 10 Sec residues. Although these mechanisms have been studied intensely and in detail, the characteristics and functions of many selenoproteins remain unknown. This review is dedicated to the recent data describing the identity and the functions of several selenoproteins that are less known than glutathione peroxidases (Gpxs), iodothyronine deiodinases (DIO), thioredoxin reductases (TRxRs), and methionine sulfoxide reductases (Msrs) and which are named after alphabetical letters (i.e., F, H, I, K, M, N, O, P, R, S, T, V, W). These “alphabet” selenoproteins are involved in a wide range of physiological and pathogenetic processes such as antioxidant defense, anti-inflammation, anti-apoptosis, regulation of immune response, regulation of oxidative stress, endoplasmic reticulum (ER) stress, immune and inflammatory response, and toxin antagonism. In selenium deficiency, the “alphabet” selenoproteins are affected hierarchically, both with respect to the particular selenoprotein and the tissue of expression, as the brain or endocrine glands are hardly affected by Se deficiency due to their equipment with LRP2 or LRP8. Full article
(This article belongs to the Topic Metalloproteins and Metalloenzymes)
Show Figures

Figure 1

10 pages, 1659 KiB  
Article
Engineering of a Bacterial Biosensor for the Detection of Chlorate in Food
by Alexandra Vergnes, Jérôme Becam, Laurent Loiseau and Benjamin Ezraty
Biosensors 2023, 13(6), 629; https://doi.org/10.3390/bios13060629 - 6 Jun 2023
Viewed by 2215
Abstract
Chlorate can contaminate food due to the use of chlorinated water for processing or equipment disinfection. Chronic exposure to chlorate in food and drinking water is a potential health concern. The current methods for detecting chlorate in liquids and foods are expensive and [...] Read more.
Chlorate can contaminate food due to the use of chlorinated water for processing or equipment disinfection. Chronic exposure to chlorate in food and drinking water is a potential health concern. The current methods for detecting chlorate in liquids and foods are expensive and not easily accessible to all laboratories, highlighting an urgent need for a simple and cost-effective method. The discovery of the adaptation mechanism of Escherichia coli to chlorate stress, which involves the production of the periplasmic Methionine Sulfoxide Reductase (MsrP), prompted us to use an E. coli strain with an msrP-lacZ fusion as a biosensor for detecting chlorate. Our study aimed to optimize the bacterial biosensor’s sensitivity and efficiency to detect chlorate in various food samples using synthetic biology and adapted growth conditions. Our results demonstrate successful biosensor enhancement and provide proof of concept for detecting chlorate in food samples. Full article
(This article belongs to the Special Issue Application of Biosensors in Food Safety Analysis)
Show Figures

Figure 1

19 pages, 8827 KiB  
Article
Genome-Wide Identification and Characterization of the Msr Gene Family in Alfalfa under Abiotic Stress
by Xianglong Zhao, Xiao Han, Xuran Lu, Haoyue Yang, Zeng-Yu Wang and Maofeng Chai
Int. J. Mol. Sci. 2023, 24(11), 9638; https://doi.org/10.3390/ijms24119638 - 1 Jun 2023
Cited by 5 | Viewed by 2388
Abstract
Alfalfa (Medicago sativa) is an important leguminous forage, known as the “The Queen of Forages”. Abiotic stress seriously limits the growth and development of alfalfa, and improving the yield and quality has become an important research area. However, little is known [...] Read more.
Alfalfa (Medicago sativa) is an important leguminous forage, known as the “The Queen of Forages”. Abiotic stress seriously limits the growth and development of alfalfa, and improving the yield and quality has become an important research area. However, little is known about the Msr (methionine sulfoxide reductase) gene family in alfalfa. In this study, 15 Msr genes were identified through examining the genome of the alfalfa “Xinjiang DaYe”. The MsMsr genes differ in gene structure and conserved protein motifs. Many cis-acting regulatory elements related to the stress response were found in the promoter regions of these genes. In addition, a transcriptional analysis and qRT-PCR (quantitative reverse transcription PCR) showed that MsMsr genes show expression changes in response to abiotic stress in various tissues. Overall, our results suggest that MsMsr genes play an important role in the response to abiotic stress for alfalfa. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance and Genetic Diversity in Plants)
Show Figures

Figure 1

14 pages, 2377 KiB  
Article
The Key Role of Chalcogenurane Intermediates in the Reduction Mechanism of Sulfoxides and Selenoxides by Thiols Explored In Silico
by Andrea Madabeni and Laura Orian
Int. J. Mol. Sci. 2023, 24(9), 7754; https://doi.org/10.3390/ijms24097754 - 24 Apr 2023
Cited by 5 | Viewed by 1693
Abstract
Sulfoxides and selenoxides oxidize thiols to disulfides while being reduced back to sulfides and selenides. While the reduction mechanism of sulfoxides to sulfides has been thoroughly explored experimentally as well as computationally, less attention has been devoted to the heavier selenoxides. In this [...] Read more.
Sulfoxides and selenoxides oxidize thiols to disulfides while being reduced back to sulfides and selenides. While the reduction mechanism of sulfoxides to sulfides has been thoroughly explored experimentally as well as computationally, less attention has been devoted to the heavier selenoxides. In this work, we explore the reductive mechanism of dimethyl selenoxide, as an archetypal selenoxide and, for the sake of comparison, the reductive mechanism of dimethyl sulfoxide to gain insight into the role of the chalcogen on the reaction substrate. Particular attention is devoted to the key role of sulfurane and selenurane intermediates. Moreover, the capacity of these system to oxidize selenols rather than thiols, leading to the formation of selenyl sulfide bridges, is explored in silico. Notably, this analysis provides molecular insight into the role of selenocysteine in methionine sulfoxide reductase selenoenzyme. The activation strain model of chemical reactivity is employed in the studied reactions as an intuitive tool to bridge the computationally predicted effect of the chalcogen on the chalcogenoxide as well as on the chalcogenol. Full article
Show Figures

Graphical abstract

16 pages, 2431 KiB  
Article
Different Effects and Mechanisms of Selenium Compounds in Improving Pathology in Alzheimer’s Disease
by Zhong-Hao Zhang, Jia-Ying Peng, Yu-Bin Chen, Chao Wang, Chen Chen and Guo-Li Song
Antioxidants 2023, 12(3), 702; https://doi.org/10.3390/antiox12030702 - 12 Mar 2023
Cited by 13 | Viewed by 3244
Abstract
Owing to the strong antioxidant capacity of selenium (Se) in vivo, a variety of Se compounds have been shown to have great potential for improving the main pathologies and cognitive impairment in Alzheimer’s disease (AD) models. However, the differences in the anti-AD effects [...] Read more.
Owing to the strong antioxidant capacity of selenium (Se) in vivo, a variety of Se compounds have been shown to have great potential for improving the main pathologies and cognitive impairment in Alzheimer’s disease (AD) models. However, the differences in the anti-AD effects and mechanisms of different Se compounds are still unclear. Theoretically, the absorption and metabolism of different forms of Se in the body vary, which directly determines the diversification of downstream regulatory pathways. In this study, low doses of Se-methylselenocysteine (SMC), selenomethionine (SeM), or sodium selenate (SeNa) were administered to triple transgenic AD (3× Tg-AD) mice for short time periods. AD pathology, activities of selenoenzymes, and metabolic profiles in the brain were studied to explore the similarities and differences in the anti-AD effects and mechanisms of the three Se compounds. We found that all of these Se compounds significantly increased Se levels and antioxidant capacity, regulated amino acid metabolism, and ameliorated synaptic deficits, thus improving the cognitive capacity of AD mice. Importantly, SMC preferentially increased the expression and activity of thioredoxin reductase and reduced tau phosphorylation by inhibiting glycogen synthase kinase-3 beta (GSK-3β) activity. Glutathione peroxidase 1 (GPx1), the selenoenzyme most affected by SeM, decreased amyloid beta production and improved mitochondrial function. SeNa improved methionine sulfoxide reductase B1 (MsrB1) expression, reflected in AD pathology as promoting the expression of synaptic proteins and restoring synaptic deficits. Herein, we reveal the differences and mechanisms by which different Se compounds improve multiple pathologies of AD and provide novel insights into the targeted administration of Se-containing drugs in the treatment of AD. Full article
(This article belongs to the Special Issue The Role of Selenium/Selenoproteins in Metabolism and Diseases)
Show Figures

Figure 1

18 pages, 2451 KiB  
Article
Methionine Sulfoxide Reductases Suppress the Formation of the [PSI+] Prion and Protein Aggregation in Yeast
by Jana Schepers, Zorana Carter, Paraskevi Kritsiligkou and Chris M. Grant
Antioxidants 2023, 12(2), 401; https://doi.org/10.3390/antiox12020401 - 7 Feb 2023
Cited by 2 | Viewed by 2364
Abstract
Prions are self-propagating, misfolded forms of proteins associated with various neurodegenerative diseases in mammals and heritable traits in yeast. How prions form spontaneously into infectious amyloid-like structures without underlying genetic changes is poorly understood. Previous studies have suggested that methionine oxidation may underlie [...] Read more.
Prions are self-propagating, misfolded forms of proteins associated with various neurodegenerative diseases in mammals and heritable traits in yeast. How prions form spontaneously into infectious amyloid-like structures without underlying genetic changes is poorly understood. Previous studies have suggested that methionine oxidation may underlie the switch from a soluble protein to the prion form. In this current study, we have examined the role of methionine sulfoxide reductases (MXRs) in protecting against de novo formation of the yeast [PSI+] prion, which is the amyloid form of the Sup35 translation termination factor. We show that [PSI+] formation is increased during normal and oxidative stress conditions in mutants lacking either one of the yeast MXRs (Mxr1, Mxr2), which protect against methionine oxidation by reducing the two epimers of methionine-S-sulfoxide. We have identified a methionine residue (Met124) in Sup35 that is important for prion formation, confirming that direct Sup35 oxidation causes [PSI+] prion formation. [PSI+] formation was less pronounced in mutants simultaneously lacking both MXR isoenzymes, and we show that the morphology and biophysical properties of protein aggregates are altered in this mutant. Taken together, our data indicate that methionine oxidation triggers spontaneous [PSI+] prion formation, which can be alleviated by methionine sulfoxide reductases. Full article
Show Figures

Figure 1

11 pages, 1299 KiB  
Review
Regulation of Retroviral and SARS-CoV-2 Protease Dimerization and Activity through Reversible Oxidation
by David A. Davis, Haydar Bulut, Prabha Shrestha, Hiroaki Mitsuya and Robert Yarchoan
Antioxidants 2022, 11(10), 2054; https://doi.org/10.3390/antiox11102054 - 18 Oct 2022
Cited by 3 | Viewed by 2518
Abstract
Most viruses encode their own proteases to carry out viral maturation and these often require dimerization for activity. Studies on human immunodeficiency virus type 1 (HIV-1), type 2 (HIV-2) and human T-cell leukemia virus (HTLV-1) proteases have shown that the activity of these [...] Read more.
Most viruses encode their own proteases to carry out viral maturation and these often require dimerization for activity. Studies on human immunodeficiency virus type 1 (HIV-1), type 2 (HIV-2) and human T-cell leukemia virus (HTLV-1) proteases have shown that the activity of these proteases can be reversibly regulated by cysteine (Cys) glutathionylation and/or methionine oxidation (for HIV-2). These modifications lead to inhibition of protease dimerization and therefore loss of activity. These changes are reversible with the cellular enzymes, glutaredoxin or methionine sulfoxide reductase. Perhaps more importantly, as a result, the maturation of retroviral particles can also be regulated through reversible oxidation and this has been demonstrated for HIV-1, HIV-2, Mason-Pfizer monkey virus (M-PMV) and murine leukemia virus (MLV). More recently, our group has learned that SARS-CoV-2 main protease (Mpro) dimerization and activity can also be regulated through reversible glutathionylation of Cys300. Overall, these studies reveal a conserved way for viruses to regulate viral polyprotein processing particularly during oxidative stress and reveal novel targets for the development of inhibitors of dimerization and activity of these important viral enzyme targets. Full article
(This article belongs to the Special Issue Glutaredoxin and Glutathione)
Show Figures

Figure 1

16 pages, 6795 KiB  
Article
Recombinant Humanized IgG1 Antibody Protects against oxLDL-Induced Oxidative Stress and Apoptosis in Human Monocyte/Macrophage THP-1 Cells by Upregulation of MSRA via Sirt1-FOXO1 Axis
by Qi Zhang, Zhonghao Li, Xianyan Liu and Ming Zhao
Int. J. Mol. Sci. 2022, 23(19), 11718; https://doi.org/10.3390/ijms231911718 - 3 Oct 2022
Cited by 2 | Viewed by 2180
Abstract
Oxidized low-density lipoprotein (oxLDL)-induced oxidative stress and apoptosis are considered as critical contributors to cardiovascular diseases. Methionine sulfoxide reductase A (MSRA) is a potent intracellular oxidoreductase and serves as an essential factor that protects cells against oxidative damage. Here, we firstly provide evidence [...] Read more.
Oxidized low-density lipoprotein (oxLDL)-induced oxidative stress and apoptosis are considered as critical contributors to cardiovascular diseases. Methionine sulfoxide reductase A (MSRA) is a potent intracellular oxidoreductase and serves as an essential factor that protects cells against oxidative damage. Here, we firstly provide evidence that recombinant humanized IgG1 antibody treatment upregulated the expression of MSRA in THP-1 cells to defend against oxLDL-induced oxidative stress and apoptosis. It was also observed that the upregulation of MSRA is regulated by the forkhead box O transcription factor (FOXO1), and the acetylation of FOXO1 increased when exposed to oxLDL but declined when treated with recombinant humanized IgG1 antibody. In addition, we identified that silent information regulator 1 (SIRT1) suppresses FOXO1 acetylation. Importantly, SIRT1 or FOXO1 deficiency impaired the anti-oxidative stress and anti-apoptotic effect of recombinant humanized IgG1 antibody. Together, our results suggest that recombinant humanized IgG1 antibody exerts its anti-oxidative stress and anti-apoptotic function by upregulation of MSRA via the Sirt1-FOXO1 axis. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 1891 KiB  
Article
The Peptide Methionine Sulfoxide Reductase (MsrAB) of Haemophilus influenzae Repairs Oxidatively Damaged Outer Membrane and Periplasmic Proteins Involved in Nutrient Acquisition and Virulence
by Marufa Nasreen, Remya Purushothaman Nair, Alastair G. McEwan and Ulrike Kappler
Antioxidants 2022, 11(8), 1557; https://doi.org/10.3390/antiox11081557 - 11 Aug 2022
Cited by 6 | Viewed by 2927
Abstract
Sulfoxide-damage repair mechanisms are emerging as essential for the virulence of bacterial pathogens, and in the human respiratory pathogen Haemophilus influenzae the periplasmic MsrAB peptide methionine sulfoxide reductase is necessary for resistance to reactive chlorine species such as hypochlorite. Additionally, this enzyme has [...] Read more.
Sulfoxide-damage repair mechanisms are emerging as essential for the virulence of bacterial pathogens, and in the human respiratory pathogen Haemophilus influenzae the periplasmic MsrAB peptide methionine sulfoxide reductase is necessary for resistance to reactive chlorine species such as hypochlorite. Additionally, this enzyme has a role in modulating the host immune response to infection. Here, we have analysed the enzymatic properties of MsrAB, which revealed that both domains of the protein are catalytically active, with the turnover number of the MsrA domain being 50% greater than that for the MsrB domain. MsrAB was active with small molecular sulfoxides as well as oxidised calmodulin, and maximal activity was observed at 30°C, a temperature close to that found in the natural niche of H. influenzae, the nasopharynx. Analyses of differential methionine oxidation identified 29 outer membrane and periplasmic proteins that are likely substrates for MsrAB. These included the LldD lactate dehydrogenase and the lipoprotein eP4 that is involved in NAD and hemin metabolism in H. influenzae. Subsequent experiments showed that H. influenzae MsrAB can repair oxidative damage to methionines in purified eP4 with up to 100% efficiency. Our work links MsrAB to the maintenance of different adhesins and essential metabolic processes in the H. influenzae, such as NAD metabolism and access to L-lactate, which is a key growth substrate for H. influenzae during infection. Full article
(This article belongs to the Special Issue Methionine Oxidation and Reduction)
Show Figures

Figure 1

12 pages, 1917 KiB  
Article
Whole Genome Sequence Analysis of a Novel Apilactobacillus Species from Giant Honeybee (Apis dorsata) Gut Reveals Occurrence of Genetic Elements Coding Prebiotic and Probiotic Traits
by Waqar Ahmad, Shazia Khaliq, Nasrin Akhtar, Jamilah El Arab, Kalsoom Akhtar, Satya Prakash, Munir A. Anwar and Nayla Munawar
Microorganisms 2022, 10(5), 904; https://doi.org/10.3390/microorganisms10050904 - 26 Apr 2022
Cited by 8 | Viewed by 3502
Abstract
Apilactobacillus spp. are classified as obligate fructophilic lactic acid bacteria (FLAB) that inhabit fructose-rich niches such as honeybee gut. Lactic acid bacteria are an important component of the gut microbiome and play a crucial role in maintaining gut health. In this study, a [...] Read more.
Apilactobacillus spp. are classified as obligate fructophilic lactic acid bacteria (FLAB) that inhabit fructose-rich niches such as honeybee gut. Lactic acid bacteria are an important component of the gut microbiome and play a crucial role in maintaining gut health. In this study, a new FLAB strain HBW1, capable of producing glucan-type exopolysaccharide, was isolated from giant honeybee (Apis dorsata) gut and subjected to whole genome sequencing (WHS) to determine its health-beneficial traits. The genome size of the isolate was 1.49 Mb with a GC content of 37.2%. For species level identity, 16S rDNA sequence similarity, genome to genome distance calculator (dDDH), and average nucleotide identity (ANI) values were calculated. Phylogenetic analysis showed that the isolate HBW1 belongs to the Apilactobacillus genus. The dDDH and ANI values in comparison with closely clustered Apilactobacillus kunkeei species were 52% and 93.10%, respectively. Based on these values, we concluded that HBW1 is a novel species of Apilactobacillus, and we propose the name Apilactobacillus waqarii HBW1 for it. Further, WHS data mining of HBW1 revealed that it harbors two glucosyltransferase genes for prebiotic glucan-type exopolysaccharide synthesis. Moreover, chaperon (clp) and methionine sulfoxide reductase (msrA, msrB, and msrC) genes as well as nutritional marker genes for folic acid (folD) and riboflavin biosynthesis (rib operon), important for conferring probiotic properties, were also detected. Occurrence of these genetic traits make HBW1 an excellent candidate for application to improve gut function. Full article
(This article belongs to the Special Issue Microorganisms in Pollinators: Interactions with Other Factors 2.0)
Show Figures

Figure 1

11 pages, 1073 KiB  
Article
Epigenome-Wide Analysis of DNA Methylation in Parkinson’s Disease Cortex
by Oliver Kaut, Ina Schmitt, Fabian Stahl, Holger Fröhlich, Per Hoffmann, Frank J. Gonzalez and Ullrich Wüllner
Life 2022, 12(4), 502; https://doi.org/10.3390/life12040502 - 29 Mar 2022
Cited by 26 | Viewed by 4303
Abstract
Background: Epigenetic factors including DNA methylation contribute to specific patterns of gene expression. Gene–environment interactions can change the methylation status in the brain, and accumulation of these epigenetic changes over a lifespan may be co-responsible for a neurodegenerative disease like Parkinson’s disease, which [...] Read more.
Background: Epigenetic factors including DNA methylation contribute to specific patterns of gene expression. Gene–environment interactions can change the methylation status in the brain, and accumulation of these epigenetic changes over a lifespan may be co-responsible for a neurodegenerative disease like Parkinson’s disease, which that is characterised by a late onset in life. Aims: To determine epigenetic modifications in the brains of Parkinson’s disease patients. Patients and Methods: DNA methylation patterns were compared in the cortex tissue of 14 male PD patients and 10 male healthy individuals using the Illumina Methylation 450 K chip. Subsequently, DNA methylation of candidate genes was evaluated using bisulphite pyrosequencing, and DNA methylation of cytochrome P450 2E1 (CYP2E1) was characterized in DNA from blood mononuclear cells (259 PD patients and 182 healthy controls) and skin fibroblasts (10 PD patients and 5 healthy controls). Protein levels of CYP2E1 were analysed using Western blot in human cortex and knock-out mice brain samples. Results: We found 35 hypomethylated and 22 hypermethylated genes with a methylation M-value difference >0.5. Decreased methylation of cytochrome P450 2E1 (CYP2E1) was associated with increased protein levels in PD brains, but in peripheral tissues, i.e., in blood cells and skin fibroblasts, DNA methylation of CYP2E1 was unchanged. In CYP2E1 knock-out mice brain alpha-synuclein (SNCA) protein levels were down-regulated compared to wild-type mice, whereas treatment with trichloroethylene (TCE) up-regulated CYP2E1 protein in a dose-dependent manner in cultured cells. We further identified an interconnected group of genes associated with oxidative stress, such as Methionine sulfoxide reductase A (MSRA) and tumour protein 73 (TP73) in the brain, which again were not paralleled in other tissues and appeared to indicate brain-specific changes. Conclusions: Our study revealed surprisingly few dysmethylated genes in a brain region less affected in PD. We confirmed hypomethylation of CYP2E1. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

Back to TopTop