Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = methane hazard assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 2115 KiB  
Review
Biodigesters for Sustainable Food Waste Management
by Jay N. Meegoda, Charmi Chande and Ishani Bakshi
Int. J. Environ. Res. Public Health 2025, 22(3), 382; https://doi.org/10.3390/ijerph22030382 - 6 Mar 2025
Cited by 3 | Viewed by 4699
Abstract
The global challenge of food waste management poses severe environmental and public health risks. Traditional disposal methods, such as landfilling and incineration, exacerbate these issues. Decomposing food waste in landfills emits methane, a greenhouse gas 25 times more potent than CO2, [...] Read more.
The global challenge of food waste management poses severe environmental and public health risks. Traditional disposal methods, such as landfilling and incineration, exacerbate these issues. Decomposing food waste in landfills emits methane, a greenhouse gas 25 times more potent than CO2, while landfill leachate contaminates soil and groundwater with hazardous pathogens and toxins. Additionally, improper waste disposal fosters microbial proliferation, posing severe health risks. Incineration, though commonly used, is inefficient due to the high moisture content of food waste, leading to incomplete combustion and further air pollution. Therefore, this review examines biodigesters as a sustainable alternative to traditional food waste disposal, assessing their effectiveness in mitigating environmental and health risks while promoting circular economy practices. It evaluates different biodigester designs, their operational scalability, and their economic feasibility across diverse global contexts. Through an analysis of case studies, this review highlights biodigesters’ potential to address localized waste management challenges by converting organic waste into biogas—a renewable energy source—and nutrient-rich digestate, a valuable natural fertilizer. The process reduces greenhouse gas emissions, improves soil health, and minimizes public health risks associated with microbial contamination. Various biodigester designs, including fixed-dome, floating-drum, and tubular systems, are compared for their efficiency and adaptability. Additionally, this review identifies key barriers to biodigester adoption, including feedstock variability, maintenance costs, and policy constraints, while also discussing strategies to enhance their efficiency and accessibility. This review is novel in its comprehensive approach, bridging the technological, environmental, and public health perspectives on biodigesters in food waste management. Unlike prior studies that focused on isolated aspects—such as specific case studies, policy analyses, or laboratory-scale evaluations—this review synthesizes the findings across diverse real-world implementations, offering a holistic understanding of biodigesters’ impact. By addressing knowledge gaps in terms of health risks, environmental benefits, and economic challenges, this study provides valuable insights for policymakers, researchers, and industry stakeholders seeking sustainable waste management solutions. Full article
Show Figures

Figure 1

12 pages, 692 KiB  
Article
Small Intestinal Bacterial Overgrowth Is a Predictor of Overt Hepatic Encephalopathy in Patients with Liver Cirrhosis
by Akira Sakamaki, Kunihiko Yokoyama, Hanako Yamazaki, Takuya Wakabayashi, Yuichi Kojima, Kentaro Tominaga, Atsunori Tsuchiya, Kenya Kamimura, Junji Yokoyama and Shuji Terai
J. Clin. Med. 2025, 14(5), 1491; https://doi.org/10.3390/jcm14051491 - 23 Feb 2025
Viewed by 964
Abstract
Objective: Liver cirrhosis (LC) progression induces intestinal microbiota abnormalities, such as small intestinal bacterial overgrowth (SIBO), and these changes lead to the inflow of gut pathogens and their degradation products into the vessels, causing cirrhotic complications such as hepatic encephalopathy (HE). Methods: To [...] Read more.
Objective: Liver cirrhosis (LC) progression induces intestinal microbiota abnormalities, such as small intestinal bacterial overgrowth (SIBO), and these changes lead to the inflow of gut pathogens and their degradation products into the vessels, causing cirrhotic complications such as hepatic encephalopathy (HE). Methods: To clarify the relationship between the development of overt HE and SIBO, we conducted a three-year observation after assessment of SIBO in patients with LC. Results: In the analysis of 107 patients, with a mean follow-up duration of 29.4 months, 31 were diagnosed with SIBO and 30 with covert HE. In the Cox multivariate regression analysis for prognosis, the Child–Pugh score, blood urea nitrogen level, and the Union for International Cancer Control (UICC) stage of hepatocellular carcinoma were derived using the following five factors: white blood cell count, blood urea nitrogen level, Child–Pugh score, UICC stage, and serum aspartate aminotransferase and alkaline phosphatase levels (p = 0.002, hazard ratio [HR] 3.733, 95% confidence interval [CI] 1.592–8.754, p = 0.001, HR 1.076, 95% CI 1.030–1.123, and p < 0.001, HR 2.767, 95% CI 1.780–4.302, respectively). Furthermore, in the Cox multivariate regression analysis for overt HE development, covert HE and methane-producing SIBO were derived using the following four factors: methane-producing SIBO, UICC stage, covert HE, and serum ammonia levels (p = 0.038, HR 5.008, 95% CI 1.096–22.892 and p = 0.006, HR 8.597, 95% CI 1.881–39.291, respectively). Conclusions: M-SIBO positivity was a significant predictor of overt HE. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

21 pages, 3679 KiB  
Article
Use of IoT with Deep Learning for Classification of Environment Sounds and Detection of Gases
by Priya Mishra, Naveen Mishra, Dilip Kumar Choudhary, Prakash Pareek and Manuel J. C. S. Reis
Computers 2025, 14(2), 33; https://doi.org/10.3390/computers14020033 - 22 Jan 2025
Cited by 1 | Viewed by 1718
Abstract
The need for safe and healthy air quality has become critical as urbanization and industrialization increase, leading to health risks and environmental concerns. Gas leaks, particularly of gases like carbon monoxide, methane, and liquefied petroleum gas (LPG), pose significant dangers due to their [...] Read more.
The need for safe and healthy air quality has become critical as urbanization and industrialization increase, leading to health risks and environmental concerns. Gas leaks, particularly of gases like carbon monoxide, methane, and liquefied petroleum gas (LPG), pose significant dangers due to their flammability and toxicity. LPG, widely used in residential and industrial settings, is especially hazardous because it is colorless, odorless, and highly flammable, making undetected leaks an explosion risk. To mitigate these dangers, modern gas detection systems employ sensors, microcontrollers, and real-time monitoring to quickly identify dangerous gas levels. This study introduces an IoT-based system designed for comprehensive environmental monitoring, with a focus on detecting LPG and butane leaks. Using sensors like the MQ6 for gas detection, MQ135 for air quality, and DHT11 for temperature and humidity, the system, managed by an Arduino Mega, collects data and sends these to the ThingSpeak platform for analysis and visualization. In cases of elevated gas levels, it triggers an alarm and notifies the user through IFTTT. Additionally, the system includes a microphone and a CNN model for analyzing audio data, enabling a thorough environmental assessment by identifying specific sounds related to ongoing activities, reaching an accuracy of 96%. Full article
Show Figures

Figure 1

12 pages, 4627 KiB  
Article
Coal Dust and Methane as a Hazard in Coal Preparation Plants
by Aleksander Lutyński and Marcin Lutyński
Appl. Sci. 2024, 14(23), 11433; https://doi.org/10.3390/app142311433 - 9 Dec 2024
Cited by 1 | Viewed by 1022
Abstract
This article presents the results of analysis of the hazards posed by coal mine dust and methane in the coal preparation plants of hard coal mines in Poland. It was shown how the number of workplaces in plants at risk of coal dust [...] Read more.
This article presents the results of analysis of the hazards posed by coal mine dust and methane in the coal preparation plants of hard coal mines in Poland. It was shown how the number of workplaces in plants at risk of coal dust explosion and the highest permissible dust concentration changed in the period from 2003 to 2022 when compared with coal production. The methodology of assessing mine dust hazards was based on hazard ratios related to one million tons of hard coal enriched in preparation plants. As a result of the analysis, it was found that the explosion hazard index with zone 20 showed an increasing trend in the analyzed period, while the explosion hazard indices with zones 21 and 22 analyzed together and the maximum permissible dust concentration showed decreasing trends following a decrease in hard coal production. In the case of methane, no zone 0 explosion hazards were found, and there were only a few instances of zone 1 explosion hazards. However, it was determined that the explosion hazard index for zone 2 showed an increasing trend during the analyzed period, which is directly proportional to the coal produced and is a result of increasing depth of mining. Full article
(This article belongs to the Special Issue Advanced Methodology and Analysis in Coal Mine Gas Control)
Show Figures

Figure 1

18 pages, 5995 KiB  
Article
Multi-Omics Analysis of the Co-Regulation of Wood Alcohol Accumulation in Baijiu Fermentation
by Tong Liu, Qingqing Cao, Fan Yang, Jianjun Lu, Xianglian Zeng, Jianghua Li, Guocheng Du, Huabin Tu and Yanfeng Liu
Fermentation 2024, 10(4), 175; https://doi.org/10.3390/fermentation10040175 - 22 Mar 2024
Cited by 2 | Viewed by 2084
Abstract
Methanol, also known as wood alcohol, is a common hazardous by-product of alcoholic beverage fermentation and serves as a crucial indicator for assessing the safety of alcoholic beverages. However, the metabolic mechanisms of methanol production during the solid-state fermentation of Chinese Baijiu remain [...] Read more.
Methanol, also known as wood alcohol, is a common hazardous by-product of alcoholic beverage fermentation and serves as a crucial indicator for assessing the safety of alcoholic beverages. However, the metabolic mechanisms of methanol production during the solid-state fermentation of Chinese Baijiu remain unclear. In this study, we sought to determine the primary stage of methanol production in Chinese Baijiu by measuring the methanol content at different stages of fermentation. High-throughput multi-omics sequencing techniques were employed to elucidate methanol metabolic pathways and associated microorganisms. In addition, a comprehensive analysis incorporating environmental factors and microbial interactions was conducted to explore their combined effects on methanol production. Methanol was predominantly produced during pit fermentation, with the most significant increase observed within the first seven days. Microorganisms such as Pichia kudriavzevii, Byssochlamys spectabilis, Penicillium, and Aspergillus played a regulatory role in methanol content during the first seven days through their involvement in butyrate and methane metabolic pathways and pectin degradation modules. During Baijiu production, various types of molds and yeasts participate in methanol production. Differences in their abundance within fermentation cycles may contribute to variations in methanol content between stages. Lactobacillus accumulated abundantly in the first seven days in each stage, suppressing methanol-metabolizing microorganisms. In addition, the increased acidity resulting from Lactobacillus metabolism may indirectly promote methanol generation. Full article
(This article belongs to the Special Issue Advances in Beverages, Food, Yeast and Brewing Research, 3rd Edition)
Show Figures

Figure 1

28 pages, 5584 KiB  
Article
Point Source Capture of Methane Using Ionic Liquids in Packed Bed Absorbers/Strippers: Experimental and Modelling
by Hamid Reza Rahimpour, Jafar Zanganeh and Behdad Moghtaderi
Processes 2024, 12(3), 596; https://doi.org/10.3390/pr12030596 - 16 Mar 2024
Cited by 1 | Viewed by 1729
Abstract
Fugitive methane emissions from the mining industry, particularly so-called ventilation air methane (VAM) emissions, are considered among the largest sources of greenhouse gas (GHG) emissions. VAM emissions not only contribute to the global warming but also pose a significant hazard to mining safety [...] Read more.
Fugitive methane emissions from the mining industry, particularly so-called ventilation air methane (VAM) emissions, are considered among the largest sources of greenhouse gas (GHG) emissions. VAM emissions not only contribute to the global warming but also pose a significant hazard to mining safety due to the risk of accidental fires and explosions. This research presents a novel approach that investigates the capture of CH4 in a controlled environment using 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [BMIM][TF2N] ionic liquid (IL), which is an environmentally friendly solvent. The experimental and modelling results confirm that CH4 absorption in [BMIM][TF2N], in a packed column, can be a promising technique for capturing CH4 from point sources, particularly the outlet streams of ventilation shafts in underground coal mines, which typically accounts for <1% v/v of the flow. This study assessed the effectiveness of CH4 removal in a packed bed column by testing various factors such as absorption temperature, liquid and gas flow rates, flow pattern, packing size, desorption temperature, and desorption pressure. According to the optimisation results, the following parameters can be used to achieve a CH4 removal efficiency of 23.8%: a gas flow rate of 0.1 L/min, a liquid flow rate of 0.5 L/min, a packing diameter of 6 mm, and absorption and desorption temperatures of 303 K and 403.15 K, respectively. Additionally, the experimental results indicated that ILs could concentrate CH4 in the simulated VAM stream by approximately 4 fold. It is important to note that the efficiency of CH4 removal was determined to be 3.5-fold higher compared to that of N2. Consequently, even though the VAM stream primarily contains N2, the IL used in the same stream shows a notably superior capacity for removing CH4 compared to N2. Furthermore, CH4 absorption with [BMIM][TF2N] is based on physical interactions, leading to reduced energy requirements for regeneration. These findings validate the method’s effectiveness in mitigating CH4 emissions within the mining sector and enabling the concentration of VAM through a secure and energy-efficient procedure. Full article
Show Figures

Figure 1

19 pages, 5951 KiB  
Article
Conditions That Determine Changing the Function of Mine Shafts in a Gassy Coal Mine—A Case Study
by Nikodem Szlązak and Marek Korzec
Energies 2024, 17(6), 1379; https://doi.org/10.3390/en17061379 - 13 Mar 2024
Cited by 2 | Viewed by 1259
Abstract
Ventilation plays a key role in ensuring safe exploitation in underground gassy mines. Over the years, the structure of a mine’s ventilation network changes. Therefore, it becomes necessary to construct new excavations, while some existing excavations lose their potential for future mining activity. [...] Read more.
Ventilation plays a key role in ensuring safe exploitation in underground gassy mines. Over the years, the structure of a mine’s ventilation network changes. Therefore, it becomes necessary to construct new excavations, while some existing excavations lose their potential for future mining activity. Constructing new excavations, especially shafts, is very expensive. Therefore, mine operators are looking for solutions to ensure appropriate ventilation by reorganizing the ventilation network and using existing infrastructure, including shafts. This article presents the example of a coal mine located in the Upper Silesian Coal Basin in Poland to discuss the factors relevant to switching the function of one of the central shafts from a downcast function to an upcast one. This change is accompanied by the closure of a peripheral upcast shaft. The main aim of this change is to assess the possibility of further safe operation without the construction of new shafts. This action also results in the release of the coal currently closed in the pillar of the shaft being closed. Using a numerical model of the mine ventilation network allowed for the comparison of the considered solutions before making final decisions and implementing changes in the network. The calculations showed that it is possible to provide appropriate ventilation in the mine, but it would need to take into account certain technological assumptions, like the additional technical function of the changed shaft. This article discusses the advantages and disadvantages of modifications to the mine ventilation network, as well as their guiding principles, in the context of existing methane hazards. The procedure presented in this article can be adopted in other mine ventilation networks in which analogous modifications are considered. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

13 pages, 1526 KiB  
Article
Technological Aspects of Methane–Hydrogen Mixture Transportation through Operating Gas Pipelines Considering Industrial and Fire Safety
by Vadim Fetisov, Hadi Davardoost and Veronika Mogylevets
Fire 2023, 6(10), 409; https://doi.org/10.3390/fire6100409 - 23 Oct 2023
Cited by 30 | Viewed by 4348
Abstract
Pipeline transportation is widely regarded as the most cost-effective method for conveying substantial volumes of hydrogen across extensive distances. However, before hydrogen can be widely used, a new pipeline network must be built to reliably supply industrial users. An alternative way to rather [...] Read more.
Pipeline transportation is widely regarded as the most cost-effective method for conveying substantial volumes of hydrogen across extensive distances. However, before hydrogen can be widely used, a new pipeline network must be built to reliably supply industrial users. An alternative way to rather expensive investments in new infrastructure could be to use the existing pipeline network to add pure hydrogen to natural gas and further transport the gas mixture in an industrially safe way. The new solution necessities will be examined for compression, transportation, and fire hazard accidents, which have not been scrutinized by other scholars. This study presents the results of a comprehensive analysis of the methane–hydrogen mixture compression process and a mathematical description of the main pipeline operation during gas mixture transportation, considering industrial fire safety issues. By examining a case study involving a main gas pipeline and its associated mathematical model for hydrogen transportation, it becomes feasible to assess the potential hazards associated with various leakage areas and the subsequent occurrence of fires. The findings of this investigation demonstrate that the spontaneous combustion of hydrogen due to leakage from a natural gas pipeline is directly influenced by the proportion of hydrogen present in the gas mixture. If the hydrogen percentage reaches a balanced ratio of 50–50%, it is plausible that the equipment at the compressor station could be subject to detrimental consequences, potentially leading to accidents and fires. Furthermore, the obtained results from modeling in ANSYS Fluent software propose two practical scenarios, which demonstrate that despite the limited research conducted on the safety aspects and the occurrence of fires during the operation of hydrogen gas pipelines, industrial and fire safety necessitate the inclusion of hydrogen transport infrastructure as a pivotal element within the broader framework of hydrogen infrastructure development. Full article
(This article belongs to the Special Issue Hydrogen Safety: Challenges and Opportunities)
Show Figures

Figure 1

20 pages, 5435 KiB  
Article
Assessment of the Safety of Transport of the Natural Gas–Ammonia Mixture
by Andrzej Rusin and Katarzyna Stolecka-Antczak
Energies 2023, 16(5), 2472; https://doi.org/10.3390/en16052472 - 5 Mar 2023
Cited by 8 | Viewed by 3626
Abstract
The decarbonisation of many sectors of the economy, including primarily the energy sector, results in the gradual elimination of hydrocarbon fuels, especially coal. During the transition period, it will be possible to use natural gas, the combustion of which is associated with lower [...] Read more.
The decarbonisation of many sectors of the economy, including primarily the energy sector, results in the gradual elimination of hydrocarbon fuels, especially coal. During the transition period, it will be possible to use natural gas, the combustion of which is associated with lower carbon dioxide emissions. Further reduction in this emission is possible with the use of mixtures of natural gas with other gases, e.g., ammonia. Ammonia, widely used in many industries, has recently been described as the emission-free fuel of the future. However, both of these gases are hazardous substances. Natural gas is a flammable gas and ammonia is a toxic gas. This paper presents an assessment of the transport safety of natural gas (methane) and its mixture with ammonia. The uncontrolled release of these substances from a damaged gas pipeline may cause a fire or a toxic hazard. This work presents hazard zones arising in the event of such a failure and determines the impact of various mixture compositions on the level of the potential hazard. The level of risk related to the uncontrolled release of a mixture of natural gas and ammonia was analysed. It has been estimated that for pipelines with a diameter of 400 mm and a low-pressure mixture of methane and ammonia in the proportion of 50/50 v/v, the danger zone with the risk of loss of life above 1 × 10−3 is approximately 50 m. In the case of the same pipelines transmitting the mixture of these high-pressure gases, the high-risk zone may extend to approximately 175 m. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

19 pages, 4521 KiB  
Article
Design of Coal Seam Exploitation in Methane Hazard Conditions: A Case Study
by Nikodem Szlązak, Justyna Swolkień and Paweł Kamiński
Energies 2023, 16(1), 365; https://doi.org/10.3390/en16010365 - 28 Dec 2022
Cited by 3 | Viewed by 1533
Abstract
Carrying out exploitation in coal mines with a methane hazard imposes the use of special procedures and the analyses of numerous parameters in order to secure mining teams working underground. The article presents a method of coal seam exploitation design under conditions of [...] Read more.
Carrying out exploitation in coal mines with a methane hazard imposes the use of special procedures and the analyses of numerous parameters in order to secure mining teams working underground. The article presents a method of coal seam exploitation design under conditions of a methane hazard for the newly prepared coal seams 404/1 and 403/1 in the years 2022 to 2030 in a coal mine in southern Poland as a case study. It primarily focuses on the preparation of the methane hazard prognosis. When adequately prepared, this is key to correctly designing the mining system in the newly opened parts of the deposit. Based on the obtained results, the appropriate methane drainage system and detection systems can be selected. The calculations led to the definition in which the longwall panel emissions of methane would be the highest. The estimates showed that, from 2022 to the beginning of 2028, even methane emissions between approximately 30 m3/min and 45 m3/min are forecast, with a significant increase for half of 2028 to a value between 57.58 m3/min and 100.00 m3/min. The highest value of methane emission was forecast for the A4 and A5 longwall panels in the 403/1 coal seam at 13.53 and 49.67 m3/min, respectively, and for the A2 and B1 longwall panels in the 404/1 seam at 41.85 m3/min and 25.46 m3/min, all with advance equal 7 m/d. Therefore, a drainage system will be required in all designed longwall panels. Considering the methane emission into the longwalls and the designed U-type ventilation, the calculated drainage effectiveness will vary between 38.3 and 40.6%. Higher effectiveness values require the application of a U-type ventilation with drainage, which allows obtaining effectiveness reaching 60.2%, with the methane emission between 20 and 30 m3/min, or even up to 62.6%, with the methane emission at the level of 30–40 m3/min. Another critical design stage is utilizing the gathered methane; the proposition is to use it in the cogeneration system. The heat generated by gas-powered engines should be used in the absorbent coolers that are used for chilling the water for the central air-conditioning system of the mine. Full article
Show Figures

Figure 1

26 pages, 720 KiB  
Review
Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South
by Ismaila Rimi Abubakar, Khandoker M. Maniruzzaman, Umar Lawal Dano, Faez S. AlShihri, Maher S. AlShammari, Sayed Mohammed S. Ahmed, Wadee Ahmed Ghanem Al-Gehlani and Tareq I. Alrawaf
Int. J. Environ. Res. Public Health 2022, 19(19), 12717; https://doi.org/10.3390/ijerph191912717 - 5 Oct 2022
Cited by 381 | Viewed by 80279
Abstract
Solid waste management (SWM) is one of the key responsibilities of city administrators and one of the effective proxies for good governance. Effective SWM mitigates adverse health and environmental impacts, conserves resources, and improves the livability of cities. However, unsustainable SWM practices, exacerbated [...] Read more.
Solid waste management (SWM) is one of the key responsibilities of city administrators and one of the effective proxies for good governance. Effective SWM mitigates adverse health and environmental impacts, conserves resources, and improves the livability of cities. However, unsustainable SWM practices, exacerbated by rapid urbanization and financial and institutional limitations, negatively impact public health and environmental sustainability. This review article assesses the human and environmental health impacts of SWM practices in the Global South cities that are the future of global urbanization. The study employs desktop research methodology based on in-depth analysis of secondary data and literature, including official documents and published articles. It finds that the commonplace SWM practices include mixing household and commercial garbage with hazardous waste during storage and handling. While waste storage is largely in old or poorly managed facilities such as storage containers, the transportation system is often deficient and informal. The disposal methods are predominantly via uncontrolled dumping, open-air incinerators, and landfills. The negative impacts of such practices include air and water pollution, land degradation, emissions of methane and hazardous leachate, and climate change. These impacts impose significant environmental and public health costs on residents with marginalized social groups mostly affected. The paper concludes with recommendations for mitigating the public and environmental health risks associated with the existing SWM practices in the Global South. Full article
(This article belongs to the Special Issue Sustainable Waste Management to Mitigate Global Climate Change)
Show Figures

Figure 1

2 pages, 172 KiB  
Abstract
Laminar Burning Velocities of Stoichiometric Inert-Diluted Methane-N2O Flames
by Maria Mitu, Codina Movileanu, Venera Giurcan, Adina Magdalena Musuc and Domnina Razus
Eng. Proc. 2022, 19(1), 23; https://doi.org/10.3390/ECP2022-12626 - 20 May 2022
Cited by 1 | Viewed by 921
Abstract
Combustion and explosion of combustible mixtures are a major hazard that can occur anywhere from industry to energy use in households and, therefore, protective measures must be taken to limit these undesirable events. This study pays attention to the laminar burning velocity, an [...] Read more.
Combustion and explosion of combustible mixtures are a major hazard that can occur anywhere from industry to energy use in households and, therefore, protective measures must be taken to limit these undesirable events. This study pays attention to the laminar burning velocity, an important parameter involved in the combustion process. The experimental laminar burning velocities of stoichiometric methane-nitrous oxide mixtures in the presence of diluents (50 vol% inerts: argon, helium, and carbon dioxide) were calculated from pressure-time records obtained in a spherical vessel with central ignition, using a correlation based on the cubic law of pressure rise during the early stage of explosion. The nitrous oxide (N2O)-based mixtures are frequently used as propellants in propulsion systems and supersonic wind tunnels, due to the nontoxicity, high saturation pressure, and the exothermic property during decomposition. However, N2O is an oxidizer that can cause safety concerns in technical applications where it is involved. The experimental data were compared with data from the literature on stoichiometric methane-nitrous oxide mixtures diluted with nitrogen and with the calculated laminar burning velocities obtained by numerical modelling of their premixed flames. The modelling was performed with Cosilab package, using GRI 3.0 mechanism, based on 53 chemical species and 325 elementary reactions. The influence of initial pressure (0.5 bar–1.75 bar) of stoichiometric inert-diluted methane-nitrous oxide mixtures on laminar burning velocities, maximum flame temperature, heat release rate, and peak concentrations of main reaction intermediates was investigated and discussed. Using the correlations of the laminar burning velocities with the initial pressure, the pressure exponent and overall reaction order of methane oxidation with nitrous oxide were determined. Obtaining a clear perspective on the laminar burning velocities of these flammable mixtures is of great importance for both assessing fire and explosion risks and guaranteeing safety in chemical and process industries. Full article
18 pages, 5977 KiB  
Article
Characterizing Air Pollution and Its Association with Emission Sources in Lahore: A Guide to Adaptation Action Plans to Control Pollution and Smog
by Mifrah Ali, Iffat Siddique and Sawaid Abbas
Appl. Sci. 2022, 12(10), 5102; https://doi.org/10.3390/app12105102 - 19 May 2022
Cited by 15 | Viewed by 8317
Abstract
Lahore, the home of 11 million people, is one of the most polluted cities in the world. Pollution causes deaths, birth defects, and years of life lost. This study’s real-time data analysis of the air quality index (AQI) showed that air pollution remained [...] Read more.
Lahore, the home of 11 million people, is one of the most polluted cities in the world. Pollution causes deaths, birth defects, and years of life lost. This study’s real-time data analysis of the air quality index (AQI) showed that air pollution remained “unhealthy for everyone” for 54% of the time, and “unhealthy for sensitive groups” for 88% of the time, during the last three years (June 2019–September 2021). The air quality index (AQI) value in Lahore reached 175 µg/m3 in 2021. This alarmingly hazardous air situation was analyzed by selecting fourteen sites based on the provenance of industrialization and tailpipe emissions. An analysis of remote sensing data for these sites was performed, in addition to field surveys, to identify the relationship between pollutant concentration and on-ground current practices. The key primary and secondary air pollutants selected for analysis were carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), aerosol optical depth (AOD), methane (CH4), and formaldehyde (HCHO). The assessment was carried out for the study period of July 2018 to April 2021. The real-time AQI was plotted against each pollutant’s monthly concentration, which showed a significant positive correlation of AQI with SO2, NO2, and CO. A plotting of the percentage contribution of each pollutant with its emission sources highlighted the main pollutant to take action to reduce, as a priority on those particular sites. The pollutant hotspot within each economic activity was also determined. Assessments showed that the AQI value was higher on weekends than on weekdays. These findings can help to develop smart adaptation action plans for immediate implementation, to dilute the current environmental risks in the city. Full article
Show Figures

Figure 1

14 pages, 3055 KiB  
Article
The Determination of the Methane Content of Coal Seams Based on Drill Cutting and Core Samples from Coal Mine Roadway
by Nikodem Szlązak, Marek Korzec and Kazimierz Piergies
Energies 2022, 15(1), 178; https://doi.org/10.3390/en15010178 - 28 Dec 2021
Cited by 15 | Viewed by 2635
Abstract
The determination of methane content of coal seams is conducted in hard coal mines in order to assess the state of methane hazard but also to evaluate gas resources in the deposit. In the world’s mining industry, natural gas content in coal determination [...] Read more.
The determination of methane content of coal seams is conducted in hard coal mines in order to assess the state of methane hazard but also to evaluate gas resources in the deposit. In the world’s mining industry, natural gas content in coal determination is usually based on direct methods. It remains the basic method in Poland as well. An important element in the determination procedure is the gas loss that occurs while collecting a sample for testing in underground conditions. In the method developed by the authors, which is a Polish standard, based on taking a sample in the form of drill cuttings, this loss was established at a level of 12%. Among researchers dealing with the methane content of coal, there are doubts related to the procedures adopted for coal sampling and the time which passes from taking a sample to enclosing it in a sealed container. Therefore, the studies were designed to evaluate the degree of degassing of the sample taken in the form of drill cuttings according to the standard procedure and in the form of the drill core from a coal mine roadway. The results show that the determinations made for the core coincide with the determinations made for the drill cutting samples, with the loss of gas taken into account. Full article
Show Figures

Figure 1

20 pages, 3487 KiB  
Article
Analysis of the Influence of Coal Petrography on the Proper Application of the Unipore and Bidisperse Models of Methane Diffusion
by Marcin Karbownik, Jerzy Krawczyk, Katarzyna Godyń, Tomasz Schlieter and Jiří Ščučka
Energies 2021, 14(24), 8495; https://doi.org/10.3390/en14248495 - 16 Dec 2021
Cited by 14 | Viewed by 2793
Abstract
The analysis of phenomena related to gas transport in hard coal is important with regard to the energetic use of coal bed methane (CBM), the reduction of greenhouse gas emissions to the atmosphere (CO2) and the prevention of natural hazards such [...] Read more.
The analysis of phenomena related to gas transport in hard coal is important with regard to the energetic use of coal bed methane (CBM), the reduction of greenhouse gas emissions to the atmosphere (CO2) and the prevention of natural hazards such as methane hazards and gas and rock outbursts. This article presents issues concerning the feasibility and scope of applying the unipore and bidisperse diffusion models to obtain knowledge concerning the kinetics of methane sorption and its diffusion in the carbon structure, depending on its petrography. Laboratory tests were carried out on coal samples which varied in terms of petrography. Quantitative point analyses were carried out, based on which content of groups of macerals was determined. The degree of coalification of coal samples was also determined based on measurements of vitrinite reflectivity R0 and the volatile matter content Vdaf. Sorption kinetics were also investigated, and attempts were made to adjust the unipore and bidisperse models to the real sorption kinetic courses. This allowed the identification of appropriate coefficients controlling the course of sorption in mathematical models. An attempt was also made to assess the possibility of applying a given model to properly describe the phenomenon of methane sorption on hard coal. Full article
(This article belongs to the Topic Interdisciplinary Studies for Sustainable Mining)
Show Figures

Figure 1

Back to TopTop