Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = metastable liquid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 218 KiB  
Article
Environmentally Sustainable and Energy-Efficient Nanobubble Engineering: Applications in the Oil and Fuels Sector
by Niall J. English
Fuels 2025, 6(3), 50; https://doi.org/10.3390/fuels6030050 - 1 Jul 2025
Viewed by 346
Abstract
In bulk liquid or on solid surfaces, nanobubbles (NBs) are gaseous domains at the nanoscale. They stand out due to their extended (meta)stability and great potential for use in practical settings. However, due to the high energy cost of bubble generation, maintenance issues, [...] Read more.
In bulk liquid or on solid surfaces, nanobubbles (NBs) are gaseous domains at the nanoscale. They stand out due to their extended (meta)stability and great potential for use in practical settings. However, due to the high energy cost of bubble generation, maintenance issues, membrane bio-fouling, and the small actual population of NBs, significant advancements in nanobubble engineering through traditional mechanical generation approaches have been impeded thus far. With the introduction of the electric field approach to NB creation, which is based on electrostrictive NB generation from an incoming population of “electro-fragmented” meso-to micro bubbles (i.e., with bubble size broken down by the applied electric field), when properly engineered with a convective-flow turbulence profile, there have been noticeable improvements in solid-state operation and energy efficiency, even allowing for solar-powered deployment. Here, these innovative methods were applied to a selection of upstream and downstream activities in the oil–water–fuels nexus: advancing core flood tests, oil–water separation, boosting the performance of produced-water treatment, and improving the thermodynamic cycle efficiency and carbon footprint of internal combustion engines. It was found that the application of electric field NBs results in a superior performance in these disparate operations from a variety of perspectives; for instance, ~20 and 7% drops in surface tension for CO2- and air-NBs, respectively, a ~45% increase in core-flood yield for CO2-NBs and 55% for oil–water separation efficiency for air-NBs, a rough doubling of magnesium- and calcium-carbonate formation in produced-water treatment via CO2-NB addition, and air-NBs boosting diesel combustion efficiency by ~16%. This augurs well for NBs being a potent agent for sustainability in the oil and fuels sector (whether up-, mid-, or downstream), not least in terms of energy efficiency and environmental sustainability. Full article
11 pages, 7517 KiB  
Article
Effect of Size on Phase Mixing Patterns in Rapidly Solidified Au–Ge Nanoparticles
by Olha Khshanovska, Vladyslav Ovsynskyi and Aleksandr Kryshtal
Nanomaterials 2025, 15(12), 924; https://doi.org/10.3390/nano15120924 - 14 Jun 2025
Viewed by 408
Abstract
We investigated the morphological patterns, crystalline structures and their thermal stability in solidified Au–Ge nanoparticles ranging in size from 10 to 500 nm. Liquid Au–Ge alloy nanoparticles with hypoeutectic composition were rapidly cooled from a temperature of 500 °C in a TEM and [...] Read more.
We investigated the morphological patterns, crystalline structures and their thermal stability in solidified Au–Ge nanoparticles ranging in size from 10 to 500 nm. Liquid Au–Ge alloy nanoparticles with hypoeutectic composition were rapidly cooled from a temperature of 500 °C in a TEM and characterized using advanced TEM techniques. We demonstrated that Au–Ge nanoparticles 10–80 nm in size predominantly solidified into a Janus-like morphology with nearly pure single-crystalline hcp Au and diamond cubic Ge domains. These particles remained stable up to the eutectic temperature, indicating that Ge doping and particle size play key roles in stabilizing the hcp Au phase. In turn, larger nanoparticles exhibited a metastable core–shell morphology with polycrystalline Ge shell and hcp Au-Ge alloy core under solidification. It was shown that the mentioned morphology and crystalline structure evolved into the equilibrium Janus morphology with fcc Au and diamond Ge domains at temperatures above ≈160 °C. Full article
(This article belongs to the Special Issue Nanoscale Microscopy Techniques for Energy Materials)
Show Figures

Graphical abstract

14 pages, 1453 KiB  
Article
Yield of Protein Crystallization from Metastable Liquid–Liquid Phase Separation
by Shamberia Thomas, Joel A. Dougay and Onofrio Annunziata
Molecules 2025, 30(11), 2371; https://doi.org/10.3390/molecules30112371 - 29 May 2025
Viewed by 675
Abstract
Preparative protein crystallization is regarded as an economically sustainable protein purification alternative to chromatography in biotechnological downstream processing. However, protein crystallization is a not-well-understood process that is usually slow and poorly reproducible. A promising strategy for enhancing protein crystallization is exploiting the metastable [...] Read more.
Preparative protein crystallization is regarded as an economically sustainable protein purification alternative to chromatography in biotechnological downstream processing. However, protein crystallization is a not-well-understood process that is usually slow and poorly reproducible. A promising strategy for enhancing protein crystallization is exploiting the metastable liquid–liquid phase separation (LLPS) of protein solutions. Here, we report an enhancement of lysozyme-crystallization yield by using a combination of two additives under LLPS conditions. The first additive, NaCl (0.15 M), is necessary to introduce protein–protein attractive interactions and induce LLPS by lowering temperature. The second additive, 4-(2-hydroxyethyl)-1-piperazineethanesulfonate (HEPES, 0.10 M, pH 7.4), accumulates in the metastable protein-rich liquid phase and thermodynamically stabilizes lysozyme crystals. We found that this combination of additives leads to crystallization yields of higher than 90% under LLPS conditions at a lysozyme concentration of 5% by weight and a fairly low ionic strength (0.2 M) within an operational time of the order of one hour. This crystallization yield is more than three-fold larger than that obtained from samples containing NaCl without HEPES at the same pH and ionic strength. Moreover, we determined crystallization yield as a function of incubation time, and temperature below and above the LLPS boundary. As crystallization temperature intersects with LLPS temperature, a significant increase in crystallization yield is observed. This is consistent with LLPS boosting protein crystallization. Our work suggests a possible strategy for increasing the crystallization success of other proteins, with applications in protein purification. Full article
Show Figures

Figure 1

13 pages, 4801 KiB  
Article
Annealing Time Effect on the Microstructure, Phase Evolution, and Magnetic Properties of Self-Foaming AlCuFe Alloy
by Rodolfo López, José Manuel Hernández, Carlos Damián, Ismeli Alfonso Lopez, Gonzalo Gonzalez and Ignacio Alejandro Figueroa
Inorganics 2025, 13(5), 149; https://doi.org/10.3390/inorganics13050149 - 6 May 2025
Viewed by 483
Abstract
The self-foaming method offers a promising approach for producing AlCuFe metallic foams without the need for external foaming agents. Although it is well established that both alloy composition and heat treatment play a fundamental role in pore formation, the specific influence of annealing [...] Read more.
The self-foaming method offers a promising approach for producing AlCuFe metallic foams without the need for external foaming agents. Although it is well established that both alloy composition and heat treatment play a fundamental role in pore formation, the specific influence of annealing time on the resulting microstructure and physical properties remains insufficiently explored. In the present study, the effects of annealing time on the microstructure, phase evolution, and magnetic properties of self-foaming Al58Cu27Fe15 alloys are investigated. Metallic foams were synthesized using the self-foaming method, heat-treating the samples at 850 °C for 6, 9, 15, and 24 h. X-ray diffraction (XRD), differential thermal analysis (DTA), and scanning electron microscopy (SEM) reveal that prolonged annealing increases porosity, reaching 64% and 61% after 15 and 24 h, respectively. The porosity formation mechanism was attributed to a peritectic reaction involving the liquid metastable τ phase and the solid λ and β phases. Magnetic measurements indicated complex behavior consistent with the Curie–Weiss law, influenced by phase composition and interactions between Coulomb forces, Hund’s rule exchange, and Fe 3d–Al s, p orbital hybridization. Full article
Show Figures

Graphical abstract

20 pages, 2734 KiB  
Article
Third-Generation CALPHAD Modeling of Elemental Nb and Zr and Partial Re-Assessment of Their Binary Phase Diagram
by Gabriele Traversari, Mariano Casu, Roberto Orrù, Alberto Cincotti, Alessandro Concas, Giacomo Cao and Antonio Mario Locci
Materials 2024, 17(23), 5978; https://doi.org/10.3390/ma17235978 - 6 Dec 2024
Cited by 1 | Viewed by 1010
Abstract
Liquid metals and metallic alloys often exist as metastable phases or can be undercooled below their equilibrium melting point. The Traditional CALPHAD (CALculation of PHAse Diagrams) approach struggles to accurately model these metastable conditions, which are important in rapid quenching techniques like additive [...] Read more.
Liquid metals and metallic alloys often exist as metastable phases or can be undercooled below their equilibrium melting point. The Traditional CALPHAD (CALculation of PHAse Diagrams) approach struggles to accurately model these metastable conditions, which are important in rapid quenching techniques like additive manufacturing, and to understand glass formation or oxidation phenomena occurring in the liquid phase during nuclear and high-temperature aerospace applications. On the contrary, the third-generation CALPHAD models have the potential to accurately describe metastable phase diagrams to provide better predictions of molten phase behavior under non-equilibrium conditions. The latter approach is utilized in this study to achieve a more accurate description of the thermodynamic properties of elemental Nb and Zr, with a particular focus on their liquid phases. By incorporating available first-principles data, the representation of the liquid state is improved for both elements, capturing the peculiar behavior of the heat capacity in a wide temperature range. These improvements enable a more reliable prediction of phase stability and liquidus boundaries in the Nb-Zr system. A partial re-assessment of the Nb-Zr binary phase diagram is also conducted with refined predictions of liquidus boundaries that align well with experimental data. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

14 pages, 2777 KiB  
Article
Metastable Racemic Ibuprofen Supercooled Liquid
by Tuanjia Li, Wangchuan Xiao, Shizhao Ren, Rongrong Xue and Fenghua Chen
Crystals 2024, 14(12), 1037; https://doi.org/10.3390/cryst14121037 - 28 Nov 2024
Viewed by 987
Abstract
Amorphous solid dispersions are good candidates for improving solubility in water and the oral bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). Amorphous solids become supercooled liquids when the temperature reaches the glass transition temperature (Tg). For APIs with low melting [...] Read more.
Amorphous solid dispersions are good candidates for improving solubility in water and the oral bioavailability of poorly water-soluble active pharmaceutical ingredients (APIs). Amorphous solids become supercooled liquids when the temperature reaches the glass transition temperature (Tg). For APIs with low melting points, Tg can be below room temperature, which makes it difficult to prepare long-term stable amorphous solids. Studies on the physicochemical properties of supercooled liquids shed light on the design of ASDs for APIs with low melting points. Racemic ibuprofen (IBU) supercooled liquid has been detected using differential scanning calorimetry and powder X-ray diffraction during the melt-quenching of IBU at a low temperature (0 °C). In this work, gram-scaled IBU supercooled liquid was prepared using the melt-quenching method, maintaining a liquid state for minutes at room temperature and for hours at 10 °C, as confirmed by visual observation. The Raman spectra, IR spectra, and UV-vis spectra results indicate that the structure of the IBU supercooled liquid is similar to that of an IBU solution instead of IBU Form I. The rate of recrystallization into Form I can be adjusted by controlling the temperature and additives, as confirmed by visual observation. Moreover, long-term stable IBU dispersions, with improved aqueous solubility, were inspired by the IBU supercooled liquid. The IBU supercooled liquid model can guide the preparation of ASDs for low melting point drugs. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

13 pages, 12045 KiB  
Article
Study of the Solidification Microstructure and Deformation Behaviour of Cu20Fe Alloy
by Wenyong Niu, Su Huang, Baosen Lin and Jianping Li
Metals 2024, 14(12), 1313; https://doi.org/10.3390/met14121313 - 21 Nov 2024
Cited by 1 | Viewed by 796
Abstract
In this paper, the solidification microstructure characteristics of metastable immiscible Cu20Fe alloys under natural cooling conditions and subsequent cold rolling were analysed. The findings demonstrate that the Cu20Fe alloy underwent a liquid–solid transformation under natural cooling conditions. The equiaxed Cu matrix and the [...] Read more.
In this paper, the solidification microstructure characteristics of metastable immiscible Cu20Fe alloys under natural cooling conditions and subsequent cold rolling were analysed. The findings demonstrate that the Cu20Fe alloy underwent a liquid–solid transformation under natural cooling conditions. The equiaxed Cu matrix and the Fe dendrites exhibited elongation into ribbon-like structures parallel to the cold rolling direction. Following cold rolling, the mean grain size of the Cu20Fe alloy was considerably refined, and the mechanical properties were improved. After cold rolling, the Cu matrix formed both {112}<111> copper and {110}<112> brass textures. Furthermore, the strengthening mechanisms of the cold-rolled Cu20Fe alloy are primarily dependent on the strengthening of grain boundaries and work hardening. This provides an economically friendly method for the preparation of Cu-Fe alloys with high Fe compositions. Full article
Show Figures

Figure 1

16 pages, 2072 KiB  
Review
Chiral, Topological, and Knotted Colloids in Liquid Crystals
by Ye Yuan and Ivan I. Smalyukh
Crystals 2024, 14(10), 885; https://doi.org/10.3390/cryst14100885 - 11 Oct 2024
Cited by 6 | Viewed by 2081
Abstract
The geometric shape, symmetry, and topology of colloidal particles often allow for controlling colloidal phase behavior and physical properties of these soft matter systems. In liquid crystalline dispersions, colloidal particles with low symmetry and nontrivial topology of surface confinement are of particular interest, [...] Read more.
The geometric shape, symmetry, and topology of colloidal particles often allow for controlling colloidal phase behavior and physical properties of these soft matter systems. In liquid crystalline dispersions, colloidal particles with low symmetry and nontrivial topology of surface confinement are of particular interest, including surfaces shaped as handlebodies, spirals, knots, multi-component links, and so on. These types of colloidal surfaces induce topologically nontrivial three-dimensional director field configurations and topological defects. Director switching by electric fields, laser tweezing of defects, and local photo-thermal melting of the liquid crystal host medium promote transformations among many stable and metastable particle-induced director configurations that can be revealed by means of direct label-free three-dimensional nonlinear optical imaging. The interplay between topologies of colloidal surfaces, director fields, and defects is found to show a number of unexpected features, such as knotting and linking of line defects, often uniquely arising from the nonpolar nature of the nematic director field. This review article highlights fascinating examples of new physical behavior arising from the interplay of nematic molecular order and both chiral symmetry and topology of colloidal inclusions within the nematic host. Furthermore, the article concludes with a brief discussion of how these findings may lay the groundwork for new types of topology-dictated self-assembly in soft condensed matter leading to novel mesostructured composite materials, as well as for experimental insights into the pure-math aspects of low-dimensional topology. Full article
(This article belongs to the Special Issue Liquid Crystal Research and Novel Applications in the 21st Century)
Show Figures

Figure 1

13 pages, 580 KiB  
Article
The Quest for Industrially and Environmentally Efficient Nanobubble Engineering: Electric-Field versus Mechanical Generation Approaches
by Niall J. English
Appl. Sci. 2024, 14(17), 7636; https://doi.org/10.3390/app14177636 - 29 Aug 2024
Cited by 2 | Viewed by 2405
Abstract
Nanobubbles (NBs) are gaseous domains at the nanoscale that can exist in bulk liquid or on solid surfaces. They are noteworthy for their high potential for real-world applications and their long (meta)stability. “Platform-wide” applications abound in medicine, wastewater treatment, hetero-coagulation, boundary-slip control in [...] Read more.
Nanobubbles (NBs) are gaseous domains at the nanoscale that can exist in bulk liquid or on solid surfaces. They are noteworthy for their high potential for real-world applications and their long (meta)stability. “Platform-wide” applications abound in medicine, wastewater treatment, hetero-coagulation, boundary-slip control in microfluidics, and nanoscopic cleaning. Here, we compare and contrast the industrial NB-generation performance of various types of commercial NB generators in both water-flow and submerged-in-water settings—in essence, comparing electric-field NB-generation approaches versus mechanical ones—finding that the former embodiments are superior from a variety of perspectives. It was found that the electric-field approach for NB generation surpasses traditional mechanical approaches for clean-water NB generation, especially when considering the energy running cost. In particular, more passive electric-field approaches are very operationally attractive for NB generation, where water and gas flow can be handled at little to no cost to the end operator, and/or submersible NB generators can be deployed, allowing for the use of photovoltaic approaches (with backup batteries for night-time and “low-sun” scenarios and air-/CO2-pumping paraphernalia). Full article
Show Figures

Figure 1

14 pages, 8921 KiB  
Article
Free Energy Evaluation of Cavity Formation in Metastable Liquid Based on Stochastic Thermodynamics
by Issei Shimizu and Mitsuhiro Matsumoto
Entropy 2024, 26(8), 700; https://doi.org/10.3390/e26080700 - 17 Aug 2024
Cited by 1 | Viewed by 1249
Abstract
Nucleation is a fundamental and general process at the initial stage of first-order phase transition. Although various models based on the classical nucleation theory (CNT) have been proposed to explain the energetics and kinetics of nucleation, detailed understanding at nanoscale is still required. [...] Read more.
Nucleation is a fundamental and general process at the initial stage of first-order phase transition. Although various models based on the classical nucleation theory (CNT) have been proposed to explain the energetics and kinetics of nucleation, detailed understanding at nanoscale is still required. Here, in view of the homogeneous bubble nucleation, we focus on cavity formation, in which evaluation of the size dependence of free energy change is the key issue. We propose the application of a formula in stochastic thermodynamics, the Jarzynski equality, for data analysis of molecular dynamics (MD) simulation to evaluate the free energy of cavity formation. As a test case, we performed a series of MD simulations with a Lennard-Jones (LJ) fluid system. By applying an external spherical force field to equilibrated LJ liquid, we evaluated the free energy change during cavity growth as the Jarzynski’s ensemble average of required works. A fairly smooth free energy curve was obtained as a function of bubble radius in metastable liquid of mildly negative pressure conditions. Full article
(This article belongs to the Special Issue Thermodynamics and Kinetics of Bubble Nucleation)
Show Figures

Figure 1

18 pages, 6373 KiB  
Article
Critical Experiments and Thermodynamic Modeling of the Li2O-SiO2 System
by Danilo Alencar de Abreu and Olga Fabrichnaya
Solids 2024, 5(2), 303-320; https://doi.org/10.3390/solids5020020 - 1 Jun 2024
Cited by 3 | Viewed by 1921
Abstract
Phase equilibria studies were performed in the Li2O-SiO2 system for heat-treated samples using Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD). The temperature of the eutectic reaction (Liq. ⇌ Li4SiO4 + Li2SiO3) was [...] Read more.
Phase equilibria studies were performed in the Li2O-SiO2 system for heat-treated samples using Scanning Electron Microscope (SEM) and X-Ray Diffraction (XRD). The temperature of the eutectic reaction (Liq. ⇌ Li4SiO4 + Li2SiO3) was experimentally determined at 1289 K using Differential Thermal Analysis (DTA). No evidences of the Li6Si2O7 formation was found by the experimental investigation and therefore, it was not considered. Heat capacity of the Li8SiO6 phase was measured using Differential Scanning Calorimetry (DSC). Solid phases of the Li2O-SiO2 system were described as stoichiometric compounds and liquid phases by two-sublattice partially ionic liquid model. Four stoichiometric intermediate compounds were considered to be stable (Li8SiO6, Li4SiO4, Li2SiO3 and Li2Si2O5). The polymorphic transformation in Li2Si2O5 phase was accounted and the metastable liquid miscibility gap on SiO2-rich side was reproduced. The calculated phase diagram satisfactorily agrees with the experimental phase equilibria as well as calculated thermodynamic properties reproduces experimental values within uncertainty limits. Full article
Show Figures

Figure 1

15 pages, 659 KiB  
Review
Ising Paradigm in Isobaric Ensembles
by Claudio A. Cerdeiriña and Jacobo Troncoso
Entropy 2024, 26(6), 438; https://doi.org/10.3390/e26060438 - 22 May 2024
Cited by 1 | Viewed by 1086
Abstract
We review recent work on Ising-like models with “compressible cells” of fluctuating volume that, as such, are naturally treated in NpT and μpT ensembles. Besides volumetric phenomena, local entropic effects crucially underlie the models. We focus on “compressible cell [...] Read more.
We review recent work on Ising-like models with “compressible cells” of fluctuating volume that, as such, are naturally treated in NpT and μpT ensembles. Besides volumetric phenomena, local entropic effects crucially underlie the models. We focus on “compressible cell gases” (CCG), namely, lattice gases with fluctuating cell volumes, and “compressible cell liquids” (CCL) with singly occupied cells and fluctuating cell volumes. CCGs contemplate singular diameters and “Yang–Yang features” predicted by the “complete scaling” formulation of asymmetric fluid criticality, with a specific version incorporating “ice-like” hydrogen bonding further describing the “singularity-free scenario” for the low-temperature unusual thermodynamics of supercooled water. In turn, suitable CCL variants constitute adequate prototypes of water-like liquid–liquid criticality and the freezing transition of a system of hard spheres. On incorporating vacant cells to such two-state CCL variants, one obtains three-state, BEG-like models providing a satisfactory description of water’s “second-critical-point scenario” and the whole phase behavior of a simple substance like argon. Future challenges comprise water’s crystal–fluid phase behavior and metastable states. Full article
(This article belongs to the Special Issue Matter-Aggregating Systems at a Classical vs. Quantum Interface)
Show Figures

Figure 1

67 pages, 22902 KiB  
Article
A New Non-Extensive Equation of State for the Fluid Phases of Argon, Including the Metastable States, from the Melting Line to 2300 K and 50 GPa
by Frédéric Aitken, André Denat and Ferdinand Volino
Fluids 2024, 9(5), 102; https://doi.org/10.3390/fluids9050102 - 24 Apr 2024
Viewed by 1758
Abstract
A new equation of state for argon was developed with the view of extending the range of validity of the equation of state previously proposed by Tegeler et al. and obtaining a better physical description of the experimental thermodynamic data for the whole [...] Read more.
A new equation of state for argon was developed with the view of extending the range of validity of the equation of state previously proposed by Tegeler et al. and obtaining a better physical description of the experimental thermodynamic data for the whole fluid region (single-phase, metastable, and saturation states). As proposed by Tegeler et al., this equation is also based on a functional form of the residual part of the reduced Helmholtz free energy. However, in this work, the fundamental equation for Helmholtz free energy was derived from the measured quantities CV(ρ, T) and P(ρ, T). The empirical description of the isochoric heat capacity CV(ρ, T) was based on an original empirical description explicitly containing the metastable states. The thermodynamic properties (internal energy, entropy, and free energy) were then obtained by combining the integration of CV(ρ, T). The arbitrary functions introduced by the integration process were deduced from a comparison between calculated and experimental pressure P(ρ, T) data. The new formulation is valid for the whole fluid region from the melting line to 2300 K and for pressures up to 50 GPa. It also predicts the existence of a maximum of the isochoric heat capacity CV along isochors, as experimentally observed in several other fluids. For many applications, an approximate form of the equation of state for the liquid phase may be sufficient. A Tait–Tammann equation is therefore proposed between the triple-point temperature and 148 K. Full article
Show Figures

Figure 1

14 pages, 2362 KiB  
Article
Influence of Organic Impurities on Fractional Crystallization of NaCl and Na2SO4 from High-Salinity Coal Chemical Wastewater: Thermodynamics and Nucleation Kinetics Analysis
by Bo Shen, Bo Zhao, Hai Du, Yongsheng Ren, Jianwei Tang, Yong Liu, Quanxian Hua and Baoming Wang
Molecules 2024, 29(9), 1928; https://doi.org/10.3390/molecules29091928 - 23 Apr 2024
Cited by 3 | Viewed by 2181
Abstract
It is a valid path to realize the zero discharge of coal chemical wastewater by using the fractional crystallization method to recycle the miscellaneous salt in high-salinity wastewater. In this study, the thermodynamics and nucleation kinetics of sodium chloride (NaCl) and sodium sulfate [...] Read more.
It is a valid path to realize the zero discharge of coal chemical wastewater by using the fractional crystallization method to recycle the miscellaneous salt in high-salinity wastewater. In this study, the thermodynamics and nucleation kinetics of sodium chloride (NaCl) and sodium sulfate (Na2SO4) crystallization in coal chemical wastewater were systematically studied. Through analyses of solubility, metastable zone width, and induction period, it was found that the impurity dimethoxymethane would increase the solid–liquid interface energy and critical crystal size during the nucleation of Na2SO4. Ternary phase diagrams of the pseudo-ternary Na2SO4-NaCl-H2O systems in simulated wastewater were plotted in the temperature range of 303.15 to 333.15 K, indicating that a co-ionization effect existed between NaCl and Na2SO4, and NaCl had a strong salting out effect on Na2SO4. Finally, the nucleation rate and growth rate of Na2SO4 crystals under simulated wastewater conditions were determined by the intermittent dynamic method, and the crystallization kinetic models of Na2SO4 were established. The crystallization nucleation of Na2SO4 crystals was found to be secondary nucleation controlled by surface reactions. The basic theoretical research of crystallization in this study is expected to fundamentally promote the application of fractional crystallization to realize the resource utilization of high-salinity wastewater in the coal chemical industry. Full article
(This article belongs to the Special Issue Saline Wastewater: Characteristics and Treatment Technologies)
Show Figures

Graphical abstract

16 pages, 5577 KiB  
Article
Qualitatively and Quantitatively Different Configurations of Nematic–Nanoparticle Mixtures
by Maha Zid, Kaushik Pal, Saša Harkai, Andreja Abina, Samo Kralj and Aleksander Zidanšek
Nanomaterials 2024, 14(5), 436; https://doi.org/10.3390/nano14050436 - 27 Feb 2024
Cited by 3 | Viewed by 1427
Abstract
We consider the influence of different nanoparticles or micrometre-scale colloidal objects, which we commonly refer to as particles, on liquid crystalline (LC) orientational order in essentially spatially homogeneous particle–LC mixtures. We first illustrate the effects of coupling a single particle with the surrounding [...] Read more.
We consider the influence of different nanoparticles or micrometre-scale colloidal objects, which we commonly refer to as particles, on liquid crystalline (LC) orientational order in essentially spatially homogeneous particle–LC mixtures. We first illustrate the effects of coupling a single particle with the surrounding nematic molecular field. A particle could either act as a “dilution”, i.e., weakly distorting local effective orientational field, or as a source of strong distortions. In the strong anchoring limit, particles could effectively act as topological point defects, whose topological charge q depends on particle topology. The most common particles exhibit spherical topology and consequently act as q = 1 monopoles. Depending on the particle’s geometry, these effective monopoles could locally induce either point-like or line-like defects in the surrounding LC host so that the total topological charge of the system equals zero. The resulting system’s configuration is topologically equivalent to a crystal-like array of monopole defects with alternating topological charges. Such configurations could be trapped in metastable or stable configurations, where the history of the sample determines a configuration selection. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

Back to TopTop