Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = metallophores

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3388 KiB  
Article
Pseudogymnoascus destructans Transcriptional Response to Chronic Copper Stress
by Saika Anne, Maranda R. McDonald, Yuan Lu and Ryan L. Peterson
J. Fungi 2025, 11(5), 372; https://doi.org/10.3390/jof11050372 - 13 May 2025
Viewed by 580
Abstract
Copper (Cu) is an essential metal micronutrient, and a fungal pathogen’s ability to thrive in diverse niches across a broad range of bioavailable copper levels is vital for host colonization and fungal propagation. Recent transcriptomic studies have implied that trace metal acquisition is [...] Read more.
Copper (Cu) is an essential metal micronutrient, and a fungal pathogen’s ability to thrive in diverse niches across a broad range of bioavailable copper levels is vital for host colonization and fungal propagation. Recent transcriptomic studies have implied that trace metal acquisition is important for the propagation of the white nose syndrome (WNS) causing fungus, Pseudogymnoascus destructans, on bat hosts. This report characterizes the P. destructans transcriptional response to Cu-withholding and Cu-overload stress. We identify 583 differently expressed genes (DEGs) that respond to Cu-withholding stress and 667 DEGs that respond to Cu-overload stress. We find that the P. destructans Cu-transporter genes CTR1a and CTR1b, as well as two homologs to Cryptococcus neoformans Cbi1/BIM1 VC83_03095 (BLP2) and VC83_07867 (BLP3), are highly regulated by Cu-withholding stress. We identify a cluster of genes, VC83_01834VC83_01838, that are regulated by copper bioavailability, which we identify as the Cu-Responsive gene Cluster (CRC). We find that chronic exposure to elevated copper levels leads to an increase in genes associated with DNA repair and DNA replication fidelity. A comparison of our transcriptomic datasets with P. destructans at WNS fungal infection sites reveals several putative fungal virulence factors that respond to environmental copper stress. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

22 pages, 1495 KiB  
Review
Microbial Metallophores in the Productivity of Agroecosystems
by Lily X. Zelaya-Molina, Ismael F. Chávez-Díaz, José A. Urrieta-Velázquez, Marco A. Aragón-Magadan, Cristo O. Puente-Valenzuela, Mario Blanco-Camarillo, Sergio de los Santos-Villalobos and Juan Ramos-Garza
Microbiol. Res. 2025, 16(3), 67; https://doi.org/10.3390/microbiolres16030067 - 14 Mar 2025
Viewed by 1596
Abstract
Microbial metallophores are low-molecular-weight chelating agents produced by microorganisms to acquire essential metal ions. Their biosynthesis, transport, and regulation involve complex processes, specialized enzymatic machinery, and intricate regulatory networks. This review examines the multifaceted roles of metallophores in microbial ecology and their potential [...] Read more.
Microbial metallophores are low-molecular-weight chelating agents produced by microorganisms to acquire essential metal ions. Their biosynthesis, transport, and regulation involve complex processes, specialized enzymatic machinery, and intricate regulatory networks. This review examines the multifaceted roles of metallophores in microbial ecology and their potential applications in sustainable agriculture, emphasizing their key role in trace metal acquisition, nutrient cycling, and plant–microbe interactions. Furthermore, it explores the potential applications of metallophores in agriculture, bioremediation, and biotechnology, connecting their potential to the development of novel strategies for sustainable agriculture. Full article
Show Figures

Figure 1

22 pages, 4731 KiB  
Article
Characterization and Molecular Insights of a Chromium-Reducing Bacterium Bacillus tropicus
by Shanjana Rahman Tuli, Md. Firoz Ali, Tabassum Binte Jamal, Md. Abu Sayem Khan, Nigar Fatima, Irfan Ahmed, Masuma Khatun and Shamima Akhtar Sharmin
Microorganisms 2024, 12(12), 2633; https://doi.org/10.3390/microorganisms12122633 - 19 Dec 2024
Cited by 3 | Viewed by 2558
Abstract
Environmental pollution from metal toxicity is a widespread concern. Certain bacteria hold promise for bioremediation via the conversion of toxic chromium compounds into less harmful forms, promoting environmental cleanup. In this study, we report the isolation and detailed characterization of a highly chromium-tolerant [...] Read more.
Environmental pollution from metal toxicity is a widespread concern. Certain bacteria hold promise for bioremediation via the conversion of toxic chromium compounds into less harmful forms, promoting environmental cleanup. In this study, we report the isolation and detailed characterization of a highly chromium-tolerant bacterium, Bacillus tropicus CRB14. The isolate is capable of growing on 5000 mg/L Cr (VI) in an LB (Luria Bertani) agar plate while on 900 mg/L Cr (VI) in LB broth. It shows an 86.57% reduction ability in 96 h of culture. It can also tolerate high levels of As, Cd, Co, Fe, Zn, and Pb. The isolate also shows plant growth-promoting potential as demonstrated by a significant activity of nitrogen fixation, phosphate solubilization, IAA (indole acetic acid), and siderophore production. Whole-genome sequencing revealed that the isolate lacks Cr resistance genes in their plasmids and are located on its chromosome. The presence of the chrA gene points towards Cr(VI) transport, while the absence of ycnD suggests alternative reduction pathways. The genome harbors features like genomic islands and CRISPR-Cas systems, potentially aiding adaptation and defense. Analysis suggests robust metabolic pathways, potentially involved in Cr detoxification. Notably, genes for siderophore and NRP-metallophore production were identified. Whole-genome sequencing data also provides the basis for molecular validation of various genes. Findings from this study highlight the potential application of Bacillus tropicus CRB14 for bioremediation while plant growth promotion can be utilized as an added benefit. Full article
(This article belongs to the Special Issue Biotechnology for Environmental Remediation)
Show Figures

Figure 1

11 pages, 1712 KiB  
Article
Complete Genome Sequence of the Butirosin-Producing Bacillus vitellinus NBRC 13296 and Its Reclassification to Paenibacillus chitinolyticus
by Kyung-A. Hyun, Seung-Young Kim, Kyung-Hwan Boo, Won-Jae Chi and Chang-Gu Hyun
Microbiol. Res. 2024, 15(3), 1747-1757; https://doi.org/10.3390/microbiolres15030116 - 30 Aug 2024
Cited by 1 | Viewed by 1323
Abstract
Butirosins are naturally occurring aminoglycoside (AG) antibiotics featuring a 4,5-disubstituted 2-deoxystreptamine (2-DOS) with a (2S)-4-amino-2-hydroxybutyrate (AHBA) side chain. This side chain has been shown to confer resistance against AG-modifying enzymes, leading to ongoing studies on the butirosin biosynthetic pathway and the corresponding enzymes. [...] Read more.
Butirosins are naturally occurring aminoglycoside (AG) antibiotics featuring a 4,5-disubstituted 2-deoxystreptamine (2-DOS) with a (2S)-4-amino-2-hydroxybutyrate (AHBA) side chain. This side chain has been shown to confer resistance against AG-modifying enzymes, leading to ongoing studies on the butirosin biosynthetic pathway and the corresponding enzymes. Butirosin is produced by Niallia (formerly Bacillus) circulans and Bacillus vitellinus, with most research focused on the first strain. To date, no whole-genome analysis has been performed on B. vitellinus. In this study, we sequenced the complete genome of B. vitellinus NBRC 13296 and performed a comparative analysis of different butirosin biosyntheric gene clusters (BGCs), including those from N. circulans. The complete genome of B. vitellinus NBRC 13296 comprises a 6,331,192-base circular chromosome with GC content of 52.68%. The annotation revealed the presence of 5605 CDSs, 70 tRNA genes, 30 rRNA genes, and 3 ncRNA genes in NBRC 13296. The highest dDDH and ANI values between NBRC 13296 and the most closely related type strain, Paenibacillus chitinolyticus KCCM 41,400, were 97.8% and 98.66%, respectively. Based on these genome-based comparative analyses, we propose reclassifying B. vitellinus NBRC 13296 as P. chitinolyticus. Genome mining revealed 18 gene clusters encoding the biosynthesis of diverse secondary metabolites in the genome of B. vitellinus NBRC 13296, indicating the enormous biosynthetic potential of this strain. The predicted structural diversity of the secondary metabolites includes aminoglycosides, PKS, NRPS, PKS–NRPS hybrids, metallophores, phosphonates, terpenes, β-lactones, and RiPP peptides. We then comparatively characterized the butirosin BGCs previously studied in several N. circulans strains. Additionally, the comparative genome analysis revealed complete butirosin BGCs identified from P. chitinolyticus KCCM 41,400, P. chitinolyticus NRRL B-23119, P. chitinolyticus NRRL B-23120, P. chitinolyticus B-14908, P. chitinolyticus YSY-3.1, P. chitinolyticus JMW06, Paenibacillus sp. GbtcB18, Paenibacillus sp. HGH0039, and Paenibacillus sp. MZ04-78.2. Finally, we identified the core region consisting of BtrS, BtrN, BtrM, BtrL, BtrA, BtrB, BtrC, BtrD, BtrD, BtrE, BtrF, BtrG, BtrH, BtrI, BtrI, BtrJ, BtrK, BtrO, BtrP, and BtrV, followed by an upstream region organizing BtrQ, BtrW, BtrX, BtrY, and BtrZ in the same transcriptional direction and sequential genetic arrangement, and a downstream region organizing various proteins based on BtrT, BtrR2, BtrU, and BtrR1. Our study provides insights into the reclassification of B. vitellinus NBRC 13296 to P. chitinolyticus and suggests the need for continued studies on butirosin biosynthesis from an enzymatic perspective. Full article
Show Figures

Figure 1

11 pages, 2629 KiB  
Article
In Vitro Screening of Endophytic Micromonospora Strains Associated with White Clover for Antimicrobial Activity against Phytopathogenic Fungi and Promotion of Plant Growth
by Wojciech Sokołowski, Sylwia Wdowiak-Wróbel, Monika Marek-Kozaczuk and Michał Kalita
Agronomy 2024, 14(5), 1062; https://doi.org/10.3390/agronomy14051062 - 17 May 2024
Cited by 2 | Viewed by 1733
Abstract
Bacteria belonging to the genus Micromonospora are recognized as microorganisms with the potential to be used in biotechnology processes, given their beneficial influence on plant growth and the biocontrol of phytopathogens. In this study, nineteen Micromonospora isolates originating from the root nodules of [...] Read more.
Bacteria belonging to the genus Micromonospora are recognized as microorganisms with the potential to be used in biotechnology processes, given their beneficial influence on plant growth and the biocontrol of phytopathogens. In this study, nineteen Micromonospora isolates originating from the root nodules of white clover plants were taxonomically assigned based on the phylogenetic analysis of the 16S rRNA gene and four housekeeping genes. The antifungal properties of the bacteria against phytopathogenic Botrytis cinerea, Fusarium oxysporum, Fusarium equiseti, Sclerotinia sclerotiorum, and Verticillium albo-atrum were tested with the agar plug test and the dual culture test. The ability to produce various metallophores was determined with the agar plug diffusion test on modified chrome azurol S (CAS) agar medium. International Streptomyces Project-2 medium (ISP2) broth amended with 0.2% L-tryptophan was used to indicate the bacterial ability to produce auxins. The strains belonging to M. tulbaghiae, M. inaquosa, and M. violae showed in vitro potential as antimicrobial agents against the tested fungi. M. inaquosa strain 152, M. violae strain 126, M. violae strain 66, and M. violae strain 45 were recognized as the most efficient metallophore producers. M. alfalfae strain 55 and M. lupini strain 5052 were identified as the most promising auxin compound producers and, therefore, show potential as plant-growth-promoting bacteria. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

11 pages, 1320 KiB  
Article
Metallophore Activity toward the Rare Earth Elements by Bacteria Isolated from Acid Mine Drainage Due to Coal Mining
by Stephanie Skeba, Morgan Snyder and Chris Maltman
Microorganisms 2023, 11(11), 2672; https://doi.org/10.3390/microorganisms11112672 - 31 Oct 2023
Cited by 3 | Viewed by 2384
Abstract
The field of microbe–metal interactions has been gaining significant attention. While the direct impact of metal oxyanions on bacteria has been investigated, significantly less attention has been placed on the ability of certain microbes to ‘collect’ such metal ions via secreted proteins. Many [...] Read more.
The field of microbe–metal interactions has been gaining significant attention. While the direct impact of metal oxyanions on bacteria has been investigated, significantly less attention has been placed on the ability of certain microbes to ‘collect’ such metal ions via secreted proteins. Many bacteria possess low-weight molecules called siderophores, which collect Fe from the environment to be brought back to the cell. However, some appear to have additional roles, including binding other metals, termed ‘metallophores’. Microbes can remove/sequester these from their surroundings, but the breadth of those that can be removed is still unknown. Using the Chromeazurol S assay, we identified eight isolates, most belonging to the genus Pseudomonas, possessing siderophore activity, mainly from sites impacted by coal mine drainage, also possessing a metallophore activity toward the rare earth elements that does not appear to be related to ionic radii or previously reported EC50 concentrations for E. coli. We found the strength of metallophore activity towards these elements was as follows: Pr > Sc > Eu > Tm > Tb > Er > Yb > Ce > Lu > Sm > Ho > La > Nd > Dy > Gd > Y. This is the first study to investigate such activity and indicates bacteria may provide a means of removal/recovery of these critical elements. Full article
(This article belongs to the Special Issue Microorganisms around Coal Mines and Their Application)
Show Figures

Figure 1

13 pages, 2332 KiB  
Review
The Different Types of Metallophores Produced by Salmonella enterica: A Review
by Yehya Mohsen, Nathalie Tarchichi, Rana Barakat, Inas Kawtharani, Rayane Ghandour, Zeinab Ezzeddine and Ghassan Ghssein
Microbiol. Res. 2023, 14(3), 1457-1469; https://doi.org/10.3390/microbiolres14030099 - 19 Sep 2023
Cited by 13 | Viewed by 2736
Abstract
Salmonella enterica (S. enterica) serovars Enteritidis and Typhimurium are the main causes of bacterial gastroenteritis worldwide. This Gram-negative rods bacterium possesses several virulence factors that enable it to survive the host’s nutritional immunity. Toxins and metallophores are among these factors. Heavy [...] Read more.
Salmonella enterica (S. enterica) serovars Enteritidis and Typhimurium are the main causes of bacterial gastroenteritis worldwide. This Gram-negative rods bacterium possesses several virulence factors that enable it to survive the host’s nutritional immunity. Toxins and metallophores are among these factors. Heavy metals, in particular, are essential for the survival of all living organisms including bacteria. During infection, S. enterica competes with the host for the available heavy metals by secreting metallophores, which are secondary metabolites. Once produced in the extracellular medium, metallophores complex heavy metals thus allowing Salmonella to acquire metal ions through importing them via channels embedded in their membranes. This review highlights the biosynthesis, export, import, and genetic regulation of different metallophores synthesized by this germ. Full article
Show Figures

Figure 1

14 pages, 2363 KiB  
Article
CH vs. HC—Promiscuous Metal Sponges in Antimicrobial Peptides and Metallophores
by Kinga Garstka, Valentyn Dzyhovskyi, Joanna Wątły, Kamila Stokowa-Sołtys, Jolanta Świątek-Kozłowska, Henryk Kozłowski, Miquel Barceló-Oliver, Denise Bellotti and Magdalena Rowińska-Żyrek
Molecules 2023, 28(10), 3985; https://doi.org/10.3390/molecules28103985 - 9 May 2023
Cited by 8 | Viewed by 2437
Abstract
Histidine and cysteine residues, with their imidazole and thiol moieties that deprotonate at approximately physiological pH values, are primary binding sites for Zn(II), Ni(II) and Fe(II) ions and are thus ubiquitous both in peptidic metallophores and in antimicrobial peptides that may use nutritional [...] Read more.
Histidine and cysteine residues, with their imidazole and thiol moieties that deprotonate at approximately physiological pH values, are primary binding sites for Zn(II), Ni(II) and Fe(II) ions and are thus ubiquitous both in peptidic metallophores and in antimicrobial peptides that may use nutritional immunity as a way to limit pathogenicity during infection. We focus on metal complex solution equilibria of model sequences encompassing Cys–His and His–Cys motifs, showing that the position of histidine and cysteine residues in the sequence has a crucial impact on its coordination properties. CH and HC motifs occur as many as 411 times in the antimicrobial peptide database, while similar CC and HH regions are found 348 and 94 times, respectively. Complex stabilities increase in the series Fe(II) < Ni(II) < Zn(II), with Zn(II) complexes dominating at physiological pH, and Ni(II) ones—above pH 9. The stabilities of Zn(II) complexes with Ac-ACHA-NH2 and Ac-AHCA-NH2 are comparable, and a similar tendency is observed for Fe(II), while in the case of Ni(II), the order of Cys and His does matter—complexes in which the metal is anchored on the third Cys (Ac-AHCA-NH2) are thermodynamically stronger than those where Cys is in position two (Ac-ACHA-NH2) at basic pH, at which point amides start to take part in the binding. Cysteine residues are much better Zn(II)-anchoring sites than histidines; Zn(II) clearly prefers the Cys–Cys type of ligands to Cys–His and His–Cys ones. In the case of His- and Cys-containing peptides, non-binding residues may have an impact on the stability of Ni(II) complexes, most likely protecting the central Ni(II) atom from interacting with solvent molecules. Full article
Show Figures

Graphical abstract

12 pages, 1267 KiB  
Review
Overview of Yersinia pestis Metallophores: Yersiniabactin and Yersinopine
by Taghrid Chaaban, Yehya Mohsen, Zeinab Ezzeddine and Ghassan Ghssein
Biology 2023, 12(4), 598; https://doi.org/10.3390/biology12040598 - 14 Apr 2023
Cited by 17 | Viewed by 5045
Abstract
The pathogenic anaerobic bacteria Yersinia pestis (Y. pestis), which is well known as the plague causative agent, has the ability to escape or inhibit innate immune system responses, which can result in host death even before the activation of adaptive responses. [...] Read more.
The pathogenic anaerobic bacteria Yersinia pestis (Y. pestis), which is well known as the plague causative agent, has the ability to escape or inhibit innate immune system responses, which can result in host death even before the activation of adaptive responses. Bites from infected fleas in nature transmit Y. pestis between mammalian hosts causing bubonic plague. It was recognized that a host’s ability to retain iron is essential in fighting invading pathogens. To proliferate during infection, Y. pestis, like most bacteria, has various iron transporters that enable it to acquire iron from its hosts. The siderophore-dependent iron transport system was found to be crucial for the pathogenesis of this bacterium. Siderophores are low-molecular-weight metabolites with a high affinity for Fe3+. These compounds are produced in the surrounding environment to chelate iron. The siderophore secreted by Y. pestis is yersiniabactin (Ybt). Another metallophore produced by this bacterium, yersinopine, is of the opine type and shows similarities with both staphylopine and pseudopaline produced by Staphylococcus aureus and Pseudomonas aeruginosa, respectively. This paper sheds light on the most important aspects of the two Y. pestis metallophores as well as aerobactin a siderophore no longer secreted by this bacterium due to frameshift mutation in its genome. Full article
Show Figures

Figure 1

14 pages, 13402 KiB  
Review
Current and Future Pathways in Aspergillus Diagnosis
by Radim Dobiáš, David A. Stevens and Vladimír Havlíček
Antibiotics 2023, 12(2), 385; https://doi.org/10.3390/antibiotics12020385 - 13 Feb 2023
Cited by 15 | Viewed by 6221
Abstract
Aspergillus fumigatus has been designated by the World Health Organization as a critical priority fungal pathogen. Some commercially available diagnostics for many forms of aspergillosis rely on fungal metabolites. These encompass intracellular molecules, cell wall components, and extracellular secretomes. This review summarizes the [...] Read more.
Aspergillus fumigatus has been designated by the World Health Organization as a critical priority fungal pathogen. Some commercially available diagnostics for many forms of aspergillosis rely on fungal metabolites. These encompass intracellular molecules, cell wall components, and extracellular secretomes. This review summarizes the shortcomings of antibody tests compared to tests of fungal products in body fluids and highlights the application of β-d-glucan, galactomannan, and pentraxin 3 in bronchoalveolar lavage fluids. We also discuss the detection of nucleic acids and next-generation sequencing, along with newer studies on Aspergillus metallophores. Full article
(This article belongs to the Section Fungi and Their Metabolites)
Show Figures

Figure 1

18 pages, 3626 KiB  
Review
A Review of Pseudomonas aeruginosa Metallophores: Pyoverdine, Pyochelin and Pseudopaline
by Ghassan Ghssein and Zeinab Ezzeddine
Biology 2022, 11(12), 1711; https://doi.org/10.3390/biology11121711 - 25 Nov 2022
Cited by 86 | Viewed by 10851
Abstract
P. aeruginosa is a common Gram-negative bacterium found in nature that causes severe infections in humans. As a result of its natural resistance to antibiotics and the ability of biofilm formation, the infection with this pathogen can be therapeutic challenging. During infection, P. [...] Read more.
P. aeruginosa is a common Gram-negative bacterium found in nature that causes severe infections in humans. As a result of its natural resistance to antibiotics and the ability of biofilm formation, the infection with this pathogen can be therapeutic challenging. During infection, P. aeruginosa produces secondary metabolites such as metallophores that play an important role in their virulence. Metallophores are metal ions chelating molecules secreted by bacteria, thus allowing them to survive in the host under metal scarce conditions. Pyoverdine, pyochelin and pseudopaline are the three metallophores secreted by P. aeruginosa. Pyoverdines are the primary siderophores that acquire iron from the surrounding medium. These molecules scavenge and transport iron to the bacterium intracellular compartment. Pyochelin is another siderophore produced by this bacterium, but in lower quantities and its affinity for iron is less than that of pyoverdine. The third metallophore, pseudopaline, is an opine narrow spectrum ion chelator that enables P. aeruginosa to uptake zinc in particular but can transport nickel and cobalt as well. This review describes all the aspects related to these three metallophore, including their main features, biosynthesis process, secretion and uptake when loaded by metals, in addition to the genetic regulation responsible for their synthesis and secretion. Full article
Show Figures

Figure 1

14 pages, 922 KiB  
Review
The Key Element Role of Metallophores in the Pathogenicity and Virulence of Staphylococcus aureus: A Review
by Ghassan Ghssein and Zeinab Ezzeddine
Biology 2022, 11(10), 1525; https://doi.org/10.3390/biology11101525 - 18 Oct 2022
Cited by 33 | Viewed by 4556
Abstract
The ubiquitous bacterium Staphylococcus aureus causes many diseases that sometimes can be fatal due to its high pathogenicity. The latter is caused by the ability of this pathogen to secrete secondary metabolites, enabling it to colonize inside the host causing infection through various [...] Read more.
The ubiquitous bacterium Staphylococcus aureus causes many diseases that sometimes can be fatal due to its high pathogenicity. The latter is caused by the ability of this pathogen to secrete secondary metabolites, enabling it to colonize inside the host causing infection through various processes. Metallophores are secondary metabolites that enable bacteria to sequester metal ions from the surrounding environment since the availability of metal ions is crucial for bacterial metabolism and virulence. The uptake of iron and other metal ions such as nickel and zinc is one of these essential mechanisms that gives this germ its virulence properties and allow it to overcome the host immune system. Additionally, extensive interactions occur between this pathogen and other bacteria as they compete for resources. Staphylococcus aureus has high-affinity metal import pathways including metal ions acquisition, recruitment and metal–chelate complex import. These characteristics give this bacterium the ability to intake metallophores synthesized by other bacteria, thus enabling it to compete with other microorganisms for the limited nutrients. In scarce host conditions, free metal ions are extremely low because they are confined to storage and metabolic molecules, so metal ions are sequestered by metallophores produced by this bacterium. Both siderophores (iron chelating molecules) and staphylopine (wide- spectrum metallophore) are secreted by Staphylococcus aureus giving it infectious properties. The genetic regulation of the synthesis and export together with the import of metal loaded metallophores are well established and are all covered in this review. Full article
Show Figures

Figure 1

19 pages, 2953 KiB  
Article
Discovery of Siderophore and Metallophore Production in the Aerobic Anoxygenic Phototrophs
by Steven B. Kuzyk, Elizabeth Hughes and Vladimir Yurkov
Microorganisms 2021, 9(5), 959; https://doi.org/10.3390/microorganisms9050959 - 29 Apr 2021
Cited by 20 | Viewed by 5012
Abstract
Aerobic anoxygenic phototrophs have been isolated from a rich variety of environments including marine ecosystems, freshwater and meromictic lakes, hypersaline springs, and biological soil crusts, all in the hopes of understanding their ecological niche. Over 100 isolates were chosen for this study, representing [...] Read more.
Aerobic anoxygenic phototrophs have been isolated from a rich variety of environments including marine ecosystems, freshwater and meromictic lakes, hypersaline springs, and biological soil crusts, all in the hopes of understanding their ecological niche. Over 100 isolates were chosen for this study, representing 44 species from 27 genera. Interactions with Fe3+ and other metal(loid) cations such as Mg2+, V3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Se4+ and Te2+ were tested using a chromeazurol S assay to detect siderophore or metallophore production, respectively. Representatives from 20 species in 14 genera of α-Proteobacteria, or 30% of strains, produced highly diffusible siderophores that could bind one or more metal(loid)s, with activity strength as follows: Fe > Zn > V > Te > Cu > Mn > Mg > Se > Ni > Co. In addition, γ-proteobacterial Chromocurvus halotolerans, strain EG19 excreted a brown compound into growth medium, which was purified and confirmed to act as a siderophore. It had an approximate size of ~341 Da and drew similarities to the siderophore rhodotorulic acid, a member of the hydroxamate group, previously found only among yeasts. This study is the first to discover siderophore production to be widespread among the aerobic anoxygenic phototrophs, which may be another key method of metal(loid) chelation and potential detoxification within their environments. Full article
(This article belongs to the Special Issue Advances in the Biology of Phototrophic Bacteria)
Show Figures

Figure 1

22 pages, 2465 KiB  
Article
Screening for Microbial Metal-Chelating Siderophores for the Removal of Metal Ions from Solutions
by Marika Hofmann, Thomas Heine, Luise Malik, Sarah Hofmann, Kristin Joffroy, Christoph Helmut Rudi Senges, Julia Elisabeth Bandow and Dirk Tischler
Microorganisms 2021, 9(1), 111; https://doi.org/10.3390/microorganisms9010111 - 5 Jan 2021
Cited by 39 | Viewed by 7724
Abstract
To guarantee the supply of critical elements in the future, the development of new technologies is essential. Siderophores have high potential in the recovery and recycling of valuable metals due to their metal-chelating properties. Using the Chrome azurol S assay, 75 bacterial strains [...] Read more.
To guarantee the supply of critical elements in the future, the development of new technologies is essential. Siderophores have high potential in the recovery and recycling of valuable metals due to their metal-chelating properties. Using the Chrome azurol S assay, 75 bacterial strains were screened to obtain a high-yield siderophore with the ability to complex valuable critical metal ions. The siderophore production of the four selected strains Nocardioides simplex 3E, Pseudomonas chlororaphis DSM 50083, Variovorax paradoxus EPS, and Rhodococcus erythropolis B7g was optimized, resulting in significantly increased siderophore production of N. simplex and R. erythropolis. Produced siderophore amounts and velocities were highly dependent on the carbon source. The genomes of N. simplex and P. chlororaphis were sequenced. Bioinformatical analyses revealed the occurrence of an achromobactin and a pyoverdine gene cluster in P. chlororaphis, a heterobactin and a requichelin gene cluster in R. erythropolis, and a desferrioxamine gene cluster in N. simplex. Finally, the results of the previous metal-binding screening were validated by a proof-of-concept development for the recovery of metal ions from aqueous solutions utilizing C18 columns functionalized with siderophores. We demonstrated the recovery of the critical metal ions V(III), Ga(III), and In(III) from mixed metal solutions with immobilized siderophores of N. simplex and R. erythropolis. Full article
(This article belongs to the Special Issue Microorganisms – Minerals Interactions)
Show Figures

Graphical abstract

21 pages, 2210 KiB  
Article
8-Hydroxyquinoline-2-Carboxylic Acid as Possible Molybdophore: A Multi-Technique Approach to Define Its Chemical Speciation, Coordination and Sequestering Ability in Aqueous Solution
by Katia Arena, Giuseppe Brancato, Francesco Cacciola, Francesco Crea, Salvatore Cataldo, Concetta De Stefano, Sofia Gama, Gabriele Lando, Demetrio Milea, Luigi Mondello, Alberto Pettignano, Winfried Plass and Silvio Sammartano
Biomolecules 2020, 10(6), 930; https://doi.org/10.3390/biom10060930 - 18 Jun 2020
Cited by 8 | Viewed by 4186
Abstract
8-hydroxyquinoline-2-carboxylic acid (8-HQA) has been found in high concentrations (0.5–5.0 mmol·dm−3) in the gut of Noctuid larvae (and in a few other lepidopterans), in which it is proposed to act as a siderophore. Since it is known that many [...] Read more.
8-hydroxyquinoline-2-carboxylic acid (8-HQA) has been found in high concentrations (0.5–5.0 mmol·dm−3) in the gut of Noctuid larvae (and in a few other lepidopterans), in which it is proposed to act as a siderophore. Since it is known that many natural siderophores are also involved in the uptake and metabolism of other essential elements than iron, this study reports some results on the investigation of 8-HQA interactions with molybdate (MoO42−, i.e., the main molybdenum form in aqueous environments), in order to understand the possible role of this ligand as molybdophore. A multi-technique approach has been adopted, in order to derive a comprehensive set of information necessary to assess the chemical speciation of the 8-HQA/MoO42− system, as well as the coordination behavior and the sequestering ability of 8-HQA towards molybdate. Chemical speciation studies have been performed in KCl(aq) at I = 0.2 mol·dm−3 and T = 298.15 K by ISE-H+ (glass electrode) potentiometric and UV/Vis spectrophotometric titrations. CV (Cyclic Voltammetry), DP-ASV (Differential Pulse-Anodic Stripping Voltammetry), ESI-MS experiments and quantum mechanical calculations have been also performed to derive information about the nature and possible structure of species formed. These results are also compared with those reported for the 8-HQA/Fe3+ system in terms of chemical speciation and sequestering ability of 8-HQA. Full article
(This article belongs to the Special Issue Toxic and Essential Metals in Human Health and Disease)
Show Figures

Graphical abstract

Back to TopTop