CH vs. HC—Promiscuous Metal Sponges in Antimicrobial Peptides and Metallophores
Abstract
:1. Introduction
2. Results and Discussion
2.1. Protonation Constants of the Ac-AHCA-NH2 and Ac-ACHA-NH2
2.2. Metal Complexes of the Ac-AHCA-NH2 Peptide
2.3. Metal Complexes of the Ac-ACHA-NH2 Peptide
3. Experimental Section
3.1. Materials
3.2. Potentiometric Measurements
3.3. Spectroscopic Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef] [PubMed]
- Csire, G.; Kolozsi, A.; Gajda, T.; Pappalardo, G.; Várnagy, K.; Sóvágó, I.; Fábián, I.; Lihi, N. The ability of the NiSOD binding loop to chelate zinc(II): The role of the terminal amino group in the enzymatic functions. Dalton Trans. 2019, 48, 6217–6227. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, C.C.; Skaar, E.P. Nutritional immunity: The battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 2022, 20, 657–670. [Google Scholar] [CrossRef] [PubMed]
- Pearson, G.R. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 1963, 85, 3533–3539. [Google Scholar] [CrossRef]
- Raics, M.; Lihi, N.; Laskai, A.; Kállay, C.; Várna, K.; Sóvágó, I. Nickel(II), zinc(II) and cadmium(II) complexes of hexapeptides containing separate histidyl and cysteinyl binding sites. New J. Chem. 2016, 40, 5420–5427. [Google Scholar] [CrossRef]
- Zhou, L.; Li, S.; Su, Y.; Yi, X.; Zheng, Z.; Deng, F. Interaction between Histidine and Zn(II) Metal Ions over a Wide pH as Revealed by Solid-State NMR Spectroscopy and DFT Calculations. J. Phys. Chem. B 2013, 117, 8954–8965. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Lin, Y.-F.; Pratihar, S.; Angel, L.A.; Hase, W.L. Direct Dynamics Simulations of Fragmentation of a Zn(II)-2Cys-2His Oligopeptide.Comparison with Mass Spectrometry Collision-Induced Dissociation. J. Phys. Chem. A 2019, 123, 6868–6885. [Google Scholar] [CrossRef] [PubMed]
- Giles, N.M.; Giles, G.I.; Jacob, C. Multiple roles of cysteine in biocatalysis. Biochem. Biophys. Res. Commun. 2003, 300, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Potocki, S.; Rowińska-Żyrek, M.; Witkowska, D.; Pyrkosz, M.; Szebesczyk, A.; Krzywoszynska, K.; Kozlowski, H. Specific Metal Transport and Homeostasis within the Human Body: Toxicity Associated with Transport Abnormalities. Curr. Med. Chem. 2012, 19, 2738–2759. [Google Scholar] [CrossRef] [PubMed]
- Banach, Ł.; Brykczyńska, D.; Gorczyński, A.; Wyrzykiewicz, B.; Skrodzki, M.; Pawluć, P. Markovnikov-selective double hydrosilylation of challenging terminal aryl alkynes under cobalt and iron catalysis. Chem. Commun. 2022, 58, 13763–13766. [Google Scholar] [CrossRef] [PubMed]
- Bocian, A.; Szymańska, M.; Brykczyńska, D.; Kubicki, M.; Wałęsa-Chorab, M.; Roviello, G.N.; Fik-Jaskółka, M.A.; Gorczyński, A.; Patroniak, V. New Artificial Biomimetic Enzyme Analogues based on Iron(II/III) Schiff Base Complexes: An Effect of (Benz)imidazole Organic Moieties on Phenoxazinone Synthase and DNA Reconition. Molecules 2019, 24, 3173. [Google Scholar] [CrossRef] [PubMed]
- Irankunda, R.; Camaño Echavarría, J.A.; Paris, C.; Stefan, L.; Desobry, S.; Katalin Selmeczi, K.; Laurence Muhr, L.; Canabady-Rochelle, L. Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation. Separations 2022, 9, 370. [Google Scholar] [CrossRef]
- Birdsall, R.E.; Kellett, J.; Ippoliti, S.; Ranbaduge, N.; Lauber, M.A.; Yu, Y.-Q.; Chen, W. Reducing metal-ion mediated adsorption of acidic peptides in RPLC-based assays using hybrid silica chromatographic surfaces. J. Chromatogr. B 2021, 1179, 122700. [Google Scholar] [CrossRef]
- Bocian, A.; Skrodzki, M.; Kubicki, M.; Gorczyński, A.; Pawluć, P.; Patroniak, V. The effect of Schiff base ligands on the structure and catalytic activity of cobalt complexes in hydrosilylation of olefins. Appl. Catal. A Gen. 2020, 602, 117665. [Google Scholar] [CrossRef]
- Rowińska-Żyrek, M.; Witkowska, D.; Potocki, S.; Remelli, M.; Kozłowski, H. His-rich sequences—Is plagiarism from nature a good idea? New J. Chem. 2013, 37, 58–70. [Google Scholar] [CrossRef]
- Hastings, J.; Owen, G.; Dekker, A.; Ennis, M.; Kale, N.; Muthukrishnan, V.; Turner, S.; Swainston, N.; Mendes, P. ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res. 2015, 44, D1214–D1219. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, J.R.; Martin, R.B. Interactions of Histidine and Other Imidazole Derivatives with Transition Metal Ions in Chemical and Biological Systems. Chem. Rev. 1974, 74, 471–517. [Google Scholar] [CrossRef]
- Matera, A.; Brasuń, J.; Cebrat, M.; Świątek-Kozłowska, J. The role of the histidine residue in the coordination abilities of peptides with a multi-histidine sequence towards copper(II) ions. Polyhedron 2008, 27, 1539–1555. [Google Scholar] [CrossRef]
- Kozłowski, H.; Bal, W.; Dyba, M.; Kowalik-Jankowska, T. Specific structure—Stability relations in metallopeptides. Coord. Chem. Rev. 1999, 184, 319–346. [Google Scholar] [CrossRef]
- Murariu, M.; Dragan, E.S.; Drochioiu, G. Model peptide-based system used for the investigation of metal ions binding to histidine-containing polypeptides. Biopolymers 2010, 93, 497–508. [Google Scholar] [CrossRef]
- Kołkowska, P.; Hecel, A.; Kędzierska, D.; Ostrowska, M.; Walencik, P.K.; Wątły, J.; Zdyb, K.; Spodzieja, M.; Rodziewicz-Motowidło, S.; Potocki, S.; et al. HENRYK—An endless source of metal coordination surprises. J. Inorg. Biochem. 2016, 163, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, C.; Witkowska, D.; Valensin, D.; Kamysz, W.; Kozlowski, H. Competition between histamine-like and poly-imidazole coordination sites for Cu2+ and Zn2+ ions in zebra-fish peptide of prion-like protein. Dalton Trans. 2010, 37, 8663–8670. [Google Scholar] [CrossRef] [PubMed]
- Török, I.; Gajda, T.; Gyurcsik, B.; Tóth, G.K.; Péter, A. Metal complexes of imidazole ligands containing histamine-like donor sets: Equilibrium, solution structure and hydrolytic activity. J. Chem. Soc. Dalton Trans. 1998, 7, 1205–1212. [Google Scholar] [CrossRef]
- Sóvágó, I.; Várnagy, K.; Lihi, N.; Grenács, Á. Coordinating properties of peptides containing histidyl residues. Coord. Chem. Rev. 2016, 327–328, 43–54. [Google Scholar] [CrossRef]
- Medici, S.; Peana, M.; Nurchi, V.M.; Zoroddu, M.A. The Involvement of Amino Acid Side Chains in Shielding the Nickel Coordination Site: An NMR Study. Molecules 2013, 18, 12396–12414. [Google Scholar] [CrossRef]
- Harford, C.; Sarkar, B. Amino Terminal Cu(II)- and Ni(II)-Binding (ATCUN) Motif of Proteins and Peptides: Metal Binding, DNA Cleavage, and Other Properties. Acc. Chem. Res. 1997, 30, 123–130. [Google Scholar] [CrossRef]
- Witkowska, D.; Szebesczyk, A.; Wątły, J.; Braczkowski, M.; Rowińska-Żyrek, M. A Comparative Study on Nickel Binding to Hpn-like Polypeptides from Two Helicobacter pylori Strains. Int. J. Mol. Sci. 2021, 22, 13210. [Google Scholar] [CrossRef]
- Wątły, J.; Potocki, S.; Rowińska-Żyrek, M. Zinc Homeostasis at the Bacteria/Host Interface—From Coordination Chemistry to Nutritional Immunity. Chemistry 2016, 22, 15992–16010. [Google Scholar] [CrossRef]
- Jongeneel, C.V.; Bouvier, J.; Bairoch, A. A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 1989, 242, 211–214. [Google Scholar] [CrossRef]
- Hooper, N.M. Families of zinc metalloproteases. FEBS Lett. 1994, 354, 1873–3468. [Google Scholar] [CrossRef]
- Remelli, M.; Nurchi, V.M.; Lachowicz, J.I.; Medici, S.; Zoroddu, M.A.; Peana, M. Competition between Cd(II) and other divalent transition metal ions during complex formation with amino acids, peptides, and chelating agents. Coord. Chem. Rev. 2016, 327–328, 55–69. [Google Scholar] [CrossRef]
- Sóvágó, I.; Várnagy, K. Cadmium(II) complexes of amino acids and peptides. Met. Ions Life Sci. 2013, 11, 275–302. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, H.; Potocki, S.; Remelli, M.; Rowińska-Żyrek, M.; Valensin, D. Specific metal ion binding sites in unstructured regions of proteins. Coord. Chem. Rev. 2013, 257, 2625–2638. [Google Scholar] [CrossRef]
- Muskal, S.M.; Holbrook, S.R.; Kim, S.H. Prediction of the disulfide-bonding state of cysteine in proteins. Protein Eng. Des. Sel. 1990, 3, 667–672. [Google Scholar] [CrossRef]
- Shuber, A.P.; Orr, E.C.; Recny, M.A.; Schendel, P.F.; May, H.D.; Schauer, N.L.; Ferry, J.G. Cloning, expression, and nucleotide sequence of the formate dehydrogenase genes from Methanobacterium formicicum. J. Biol. Chem. 1986, 261, 12942–12947. [Google Scholar] [CrossRef] [PubMed]
- Lukács, M.; Pálinkás, D.C.; Szunyog, G.; Várnagy, K. Metal Binding Ability of Small Peptides Containing. Chem. Open 2021, 10, 451–463. [Google Scholar] [CrossRef]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar]
- Penner-Hahn, J.E. Characterization of “spectroscopically quiet” metals in biology. Coord. Chem. Rev. 2005, 249, 161–177. [Google Scholar] [CrossRef]
- Laity, J.H.; Lee, B.M.; Wright, P.E. Zinc finger proteins: New insights into structural and functional diversity. Curr. Opin. Struct. Biol. 2001, 11, 39–46. [Google Scholar] [CrossRef]
- Dudev, T.; Lim, C. Tetrahedral vs Octahedral Zinc Complexes with Ligands of Biological Interest: A DFT/CDM Study. J. Am. Chem. Soc. 2000, 122, 11146–11153. [Google Scholar] [CrossRef]
- Żamojć, K.; Wyrzykowski, D.; Sabatino, G.; Papini, A.M.; Wieczorek, R.; Chmurzyński, L.; Makowska, J. Key role of histidine residues orientation in affinity binding of model pentapeptides with Ni2+ ions: A theoretical supported experimental study. J. Mol. Liq. 2021, 341, 117414. [Google Scholar] [CrossRef]
- Li, Y.; Zamble, D.B. Nickel Homeostasis and Nickel Regulation: An Overview. Chem. Rev. 2009, 109, 4617–4643. [Google Scholar] [CrossRef] [PubMed]
- Alfano, M.; Cavazza, C. Structure, function, and biosynthesis of nickel-dependent enzymes. Protein Sci. 2020, 29, 1071–1089. [Google Scholar] [CrossRef] [PubMed]
- Zdrojewicz, Z.; Popowicz, E.; Winiarski, J. Nickel—Role in human organism and toxic effects. Pol. Merkur. Lek. 2016, 41, 115–118. [Google Scholar]
- Anderson, C.; Shen, M.; Eisenstein, R.; Leibold, E. Mammalian iron metabolism and its control by iron regulatory proteins. Biochim. Biophys. Acta 2012, 1823, 1468–1483. [Google Scholar] [CrossRef] [PubMed]
- Hider, R.C.; Kong, X. Iron speciation in the cytosol: An overview. Dalton Trans. 2013, 42, 3220–3229. [Google Scholar] [CrossRef] [PubMed]
- Garstka, G.; Hecel, A.; Kozłowski, H.; Rowińska-Żyrek, M. Specific Zn(II)-binding site in the C-terminus of Aspf2, a zincophore from Aspergillus fumigatus. Metallomics 2022, 20, mfac042. [Google Scholar] [CrossRef]
- Bal, W.; Lukszo, J.; Jeżowska-Bojczuk, M.; Kasprzak, K.S. Interactions of Nickel(II) with Histones—Stability and Solution Structure of Complexes with CH3CO-Cys-Ala-Ile-His-NH2, a Putative Metal-Binding Sequence of Histone H3. Chem. Res. Toxicol. 1995, 8, 683–692. [Google Scholar] [CrossRef]
- Cherifi, K.; Reverend, B.D.L.; Loucheux, C.; Várna, K.; Kiss, T.; Sóvágó, I.; Kozłowski, H. Transition metal complexes of L-cysteine containing Di- and tripeptides. J. Inorg. Biochem. 1990, 38, 69–80. [Google Scholar] [CrossRef]
- Nemirovskiy, O.V.; Gross, M.L. Complexes of Iron(II) with Cysteine-Containing. Am. Soc. Mass Spectrom. 1996, 7, 977–980. [Google Scholar] [CrossRef]
- Guajardo, R.J.; Chavez, F.; Farinas, E.T.; Mascharak, P.M. Structural Features That Control Oxygen Activation at the Non-Heme Iron Site in Fe(II)-Bleomycin: An Analog Study. J. Am. Chem. Soc. 1995, 117, 3883–3884. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, Version 1.8; Schrödinger, LLC: New York, NY, USA, 2015.
- Kozłowski, H.; Lebkiri, A.; Onindo, C.O.; Pettit, L.D.; Galey, J.F. The Influence of Aspartic or Glutamic-Acid Residues in Tetrapeptides on the Formation of Complexes with Nickel(II) And Zinc(II). Polyhedron 1995, 14, 211–218. [Google Scholar] [CrossRef]
- Martin, R.B. Nickel ion binding to amino acids and peptides. In Metal Ions in Biological Systems; Sigel, H., Sigel, A., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1987; pp. 124–164. [Google Scholar]
- Kowalik-Jankowska, T.; Kozłowski, H.; Farkas, E.; Sóvágó, I. Nickel Ion Complexes of Amino Acids and Peptides. Nickel Surpris. Impact Nat. 2007, 2, 63–107. [Google Scholar] [CrossRef]
- Rowińska-Żyrek, M.; Witkowska, D.; Bielińska, S.; Kamysz, W.; Kozłowski, H. The–Cys–Cys–motif in Helicobacter pylori’s Hpn and HspA proteins is an essential anchoring site for metal ions. Dalton Trans. 2011, 40, 5604–5610. [Google Scholar] [CrossRef] [PubMed]
- Grasso, G.; Magrì, A.; Bellia, F.; Pietropaolo, A.; La Mendola, D.; Rizzarelli, E. The copper(II) and zinc(II) coordination mode of HExxH and HxxEH motif in small peptides: The role of carboxylate location and hydrogen bonding network. J. Inorg. Biochem. 2014, 130, 92–102. [Google Scholar] [CrossRef]
- Kulon, K.; Valensin, D.; Kamysz, W.; Nadolny, R.; Gaggelli, E.; Valensin, G.; Kozłowski, H. Binding of Ni2+ and Cu2+ ions to peptides with a Cys–His motif. Dalton Trans. 2008, 39, 5323–5330. [Google Scholar] [CrossRef]
- Alderighi, L.; Gans, P.; Ienco, A.; Peters, D.; Sabatini, A.; Vacca, A. Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 1999, 184, 311–318. [Google Scholar] [CrossRef]
Ac-AHCA-NH2 | Ac-ACHA-NH2 | |||||
---|---|---|---|---|---|---|
Species | logβ | pKa | logβ | pKa | ||
HL | 8.72 (1) | 8.72 | (C) | 8.76 (1) | 8.76 | (C) |
H2L | 15.14 (2) | 6.42 | (H) | 15.18 (2) | 6.42 | (H) |
Zn(II)-complexes | ||||||
ZnL | 6.22 (1) | 7.84 | (H2O) | 6.43 (1) | 8.05 | (H2O) |
ZnH−1L | −1.62 (1) | 9.98 | (H2O) | −1.62 (1) | 9.82 | (H2O) |
ZnH−2L | −11.60 (2) | −11.44 (2) | ||||
Ni(II)-complexes | ||||||
NiL | 3.86 (1) | 7.39 | (N−) | |||
NiH−1L | −3.53 (2) | 8.05 | (N−) | −3.41 (5) | 8.45 | (N−) |
NiH−2L | −11.58 (2) | 8.56 | (H2O) | −11.86 (2) | 9.63 | (H2O) |
NiH−3L | −20.14 (1) | −21.49 (3) | ||||
NiL2 | 9.85 (4) | |||||
Fe(II)-complexes | ||||||
FeL | 3.71 (3) | 3.55 (6) | ||||
FeH−2L | −13.87 (2) | 10.16 | (H2O) | −14.18 (2) | 9.42 | (H2O) |
FeH−3L | −23.94 (2) | −23.60 (3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garstka, K.; Dzyhovskyi, V.; Wątły, J.; Stokowa-Sołtys, K.; Świątek-Kozłowska, J.; Kozłowski, H.; Barceló-Oliver, M.; Bellotti, D.; Rowińska-Żyrek, M. CH vs. HC—Promiscuous Metal Sponges in Antimicrobial Peptides and Metallophores. Molecules 2023, 28, 3985. https://doi.org/10.3390/molecules28103985
Garstka K, Dzyhovskyi V, Wątły J, Stokowa-Sołtys K, Świątek-Kozłowska J, Kozłowski H, Barceló-Oliver M, Bellotti D, Rowińska-Żyrek M. CH vs. HC—Promiscuous Metal Sponges in Antimicrobial Peptides and Metallophores. Molecules. 2023; 28(10):3985. https://doi.org/10.3390/molecules28103985
Chicago/Turabian StyleGarstka, Kinga, Valentyn Dzyhovskyi, Joanna Wątły, Kamila Stokowa-Sołtys, Jolanta Świątek-Kozłowska, Henryk Kozłowski, Miquel Barceló-Oliver, Denise Bellotti, and Magdalena Rowińska-Żyrek. 2023. "CH vs. HC—Promiscuous Metal Sponges in Antimicrobial Peptides and Metallophores" Molecules 28, no. 10: 3985. https://doi.org/10.3390/molecules28103985
APA StyleGarstka, K., Dzyhovskyi, V., Wątły, J., Stokowa-Sołtys, K., Świątek-Kozłowska, J., Kozłowski, H., Barceló-Oliver, M., Bellotti, D., & Rowińska-Żyrek, M. (2023). CH vs. HC—Promiscuous Metal Sponges in Antimicrobial Peptides and Metallophores. Molecules, 28(10), 3985. https://doi.org/10.3390/molecules28103985