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Abstract: Salmonella enterica (S. enterica) serovars Enteritidis and Typhimurium are the main causes of
bacterial gastroenteritis worldwide. This Gram-negative rods bacterium possesses several virulence
factors that enable it to survive the host’s nutritional immunity. Toxins and metallophores are among
these factors. Heavy metals, in particular, are essential for the survival of all living organisms
including bacteria. During infection, S. enterica competes with the host for the available heavy metals
by secreting metallophores, which are secondary metabolites. Once produced in the extracellular
medium, metallophores complex heavy metals thus allowing Salmonella to acquire metal ions through
importing them via channels embedded in their membranes. This review highlights the biosynthesis,
export, import, and genetic regulation of different metallophores synthesized by this germ.
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1. Introduction

The Gram-negative bacterium Salmonella enterica (S. enterica) is a rod-shaped, intracel-
lular pathogen. This zoonotic pathogen poses a serious threat to both human and animal
health worldwide [1]. It is a major factor in both morbidity and mortality for people all
around the world. Salmonella species can infect a diverse range of birds, reptiles, and
mammals, including humans [2]. Salmonella Typhi (S. Typhi) and S. Paratyphi cause ty-
phoid fever, a systemic febrile illness only affecting humans. The other numerous NTS
serovars such as S. Typhimurium and S. Enteritidis infect many different hosts and result
in diarrheal disease. NTS also causes severe, extra-intestinal, invasive bacteremia, referred
to as invasive NTS (iNTS) disease [3]. Annually, Salmonella causes ~200 million to over
1 billion infections worldwide, with 93 million cases of gastroenteritis and 155,000 deaths,
and 85% of illnesses which are food-linked [4]. Following ingestion, S. enterica (S. enterica
serovar Typhimurium and S. enterica serovar Enteritidis) invade the intestinal epithelium
in the colon and ileum, thus causing sepsis or spreading to systemic locations and cre-
ating a neutrophilic gastroenteritis. In normal adult hosts most serovars do not spread
hematogenously, creating sepsis.

Salmonella is spread via the ingestion of contaminated food or water (fecal–oral trans-
mission) [5]. The symptoms of enteric salmonellosis include fever, nausea, vomiting, and
diarrhea, and they are typically self-limiting. Treatment is required at all ages for enteric
fever caused by S. Typhi, which usually does not cause gastroenteritis. Treatment should
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also be given to infants, malnourished people, and immunosuppressed individuals, to
prevent complications of hematogenous dissemination.

Typhoid fever symptoms include fever, headache, lethargy, and anorexia, with in-
testinal symptoms only occurring in about one third of cases [6]. Sub-Saharan Africa and
people with impaired immune systems are experiencing the emergence of an invasive non-
typhoidal type of illness (iNTS) [7]. Invasive cases may cause potentially fatal bloodstream
infections. Since antibiotic therapy can be life-saving for certain systemic infections, antimi-
crobial resistance is a serious issue. Resistance to antibiotics develops in both pathogenic
and commensal bacteria within the treated host as a result of antibiotics abuse in both
people and animals [8]. When it comes to zoonotic germs that are found in food, humans
get infected when they consume poorly cooked meat from infected animals, and poorly
cooked eggs or from foods that have been contaminated during processing or retail [9].
Only a subset of antibiotics is effective for treating S. enterica infections, as those that do not
achieve adequate concentrations of macrophages are ineffective. Resistance can also spread
through environmental factors like water or wildlife or through direct animal contact (as
with pets) [10]. The potential of antimicrobial resistance (AMR) is a significant issue in
clinical practice. Antimicrobial resistance renders conventional therapies ineffective and
causes infections to linger in the host organism, making pathogens exceedingly dangerous
for the patient’s survival and raising the risk of transmission to others [11,12]. This is why
several nations are striving to implement the usage of antimicrobial drugs monitoring [13].

As cofactors in metalloproteins or structural elements for enzymes, metal ions are
known to be crucial for the physiology of all organisms. Metals are necessary for the
function of about 30% of all proteins [14,15]. However, both a low and a high metal
concentration inside the cell could be stressful, that is why metal ions are essential for
the pathogen’s survival and operate as a part of their virulence factors [16]. By acquir-
ing micronutrients from the local microenvironment while colonizing a host organism,
pathogenic microbes like bacteria and fungi can satiate the physiological metals’ demand.
By withholding and limiting these resources through an inherent immune response known
as “nutritional” immunity, the host restricts access to necessary metal micronutrients in
order to avoid infections [17]. This phenomenon is the first line of defense set up by verte-
brate species to reduce the effectiveness of microbial invaders. In fact, it has been found
that the concentrations of non-bound trace minerals, such as iron and zinc, significantly
decrease during inflammation, which may eventually lead to the development of human
diseases [18,19]. Pathogens disturb the host’s metal homeostasis by using sophisticated
systems to sequester metal micronutrients and circumvent their low bioavailability. Bacte-
ria use a variety of processes, including both active and passive transport through their
membranes, to receive the essential metal nutrients. In the first scenario, pathogens pro-
duce proteins that specifically serve as metal scavengers in order to increase the efficiency
of metal recruitment and compensate for host-mediated metal restrictions [20]. These
so-called “metallophores” are supposed to be specialized extracytoplasmic (extracellular or
periplasmic) chelators that function as metal shuttles. They are able to capture the metal
ions from the host microenvironmental niche and transfer them to the proper target protein,
typically a transmembrane transporter [21,22]. These metallophores are present in different
bacterial species and can be narrow- or broad-spectrum [23]. The study of metallophores is
important for the development of new antibiotics with a different mode of action such as
metalloantibiotics that are metal complexes with antimicrobial activity. Metalloantibiotics
have attracted attention recently, but unfortunately the mechanism of only a few has been
studied in detail such as the Trojan horse strategy. The latter depends on deceiving the
target bacteria into actively internalizing a metallophore–antibiotic conjugate. Once inside
the cell, the antibiotic portion of the compound can act on its target [24,25]. In this review,
we highlight how Salmonella sequesters metal ions via metallophores and we attempt to
summarize and characterize the major systems involved in metal ions uptake from the
periplasmic and/or extracellular region.
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2. Siderophores

Because iron is a cofactor needed for vital processes including energy production and
DNA replication, iron sequestration provides an efficient antimicrobial defense. Salmonella-
infected macrophages enhance iron export, thus Salmonella multiplication is restricted by
low iron levels in macrophages, emphasizing the significance of defining Salmonella’s iron
acquisition mechanisms in these iron-starved environments. Enterobactin and salmochelin,
two catecholate siderophores, are secreted by Salmonella to obtain iron [26].

2.1. Enterochelin (Enterobactin)

It is known that macrophages increase a variety of iron-regulatory proteins (such
as ferroportin) to fight bacterial infection [26]. These proteins prevent pathogens from
accessing the labile iron pool [27]. To sequester iron from the host iron-binding proteins,
Salmonella is prompted by the lack of iron to express enterobactin (Ent), a catecholate
siderophore with a high affinity for ferric iron (Kd of 10−49 M) [23,24]. Siderophores are
small iron chelators that facilitate iron transport into the bacterial cells. A triscatechol
derivative of a cyclic triserine lactone gives rise to the siderophore enterobactin [28]. The
structure of Ent is illustrated in Figure 1.
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Figure 1. Enterobactin’s structural illustration displaying the catechol, amide linkage, and triserine
ring components.

The Biosynthesis of Enterobactin

Thirteen proteins that are present in numerous species of Gram-negative enteric bacte-
ria, including E. coli, S. enterica, Shigella dysenteriae (S. dysenteriae), and Klebsiella pneumoniae
(K. pneumoniae) are encoded by a 24-kb gene cluster [29]. These thirteen proteins work
together to produce, transport, and process the siderophore enterobactin. The operon
entABCDEFH is involved in the biosynthesis of enterobactin from chorismic acid, and EntS
and TolC are involved in Ent export through the cytoplasmic membrane. The two-module
nonribosomal peptide synthetase (NRPS), which consists of EntE, EntB, and EntF, produces
Ent (2,3-dihydroxybenzoylserine trilactone) from 2,3-dihydroxybenzoic acid (DHB) and
serine [30]. EntD catalyzes the post-translational 4′-phosphopantetheinylation of EntB and
EntF, a process necessary for the covalent attachment of assembly line intermediates during
the production of Ent [31,32]. EntC, EntB, and EntA operate sequentially to divert the
principal metabolite chorismate to DHB. Ent is exported across the inner membrane by
EntS [33], a significant facilitator-subfamily exporter, and through the outer membrane by
a TolC-dependent mechanism after being synthesized in the cytoplasm [34].

Given its very high affinity for Fe3+ (Kd = 10−35 M at physiological pH, [35]), Ent
may successfully compete for Fe3+ binding outside of the cell with all known protein and
small-molecule ligands. The Fe3+–Ent complex is then transported into the cell through
the TonB-dependent outer membrane Ent-specific porin FepA [36,37], escorted through
the periplasm by FepB, and pumped into the cytoplasm through the two-protein inner
membrane channel FepDG into the cytoplasm via FepC-catalyzed ATP hydrolysis [38]
(Figure 2). Before the tightly bound ferric iron can be transported to intracellular iron
carriers, Fe3+ from Ent must first be released by the esterase Fes activity [39], which must
also enzymatically degrade its trilactone scaffold to three equivalents of DHB-Ser. The iron-
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dependent repressor Fur (Fe uptake regulation), which acts as a sensor for intracellular iron
by dissociating from its DNA-binding site when iron is deficient [40], regulates transcription
of the entire Ent system. As a result, when iron levels are low, the transcription of the Ent
synthesis, export, and import genes is stimulated, and it is suppressed when iron levels
are high.
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2.2. Interaction between Ent and the Immune System
2.2.1. Effect of Ent on Macrophages

Iron is essential for the redox activity of heme proteins expressed in both immune and
non-immune cells. A study was conducted by Yeoh et al. to investigate the potential impact
of enterobactin’s iron chelation on macrophage nitrosative and immunological responses.
Ent was found to reduce the LPS-induced release of cytokines (such as serum amyloid
A, IL-6, and lipocalin 2) and nitrite in macrophages in a dose-dependent manner [41].
Ent also suppressed the mRNA and protein expression of inducible nitric oxide synthase
(iNOS; a heme protein) that is stimulated by LPS [26]. They also investigated if Ent might
shield the intracellular pathogen Salmonella enterica spp. typhimurium in the gentamycin
protection assay to show the physiological significance of these results. Ent increased
the expression of iNOS (mRNA, protein) and Arginase-1 (mRNA), but it decreased the
nitrite levels in Salmonella-infected macrophages. More critically, Salmonella eradication
by macrophages treated with Ent was compromised. The addition of exogenous Ent
significantly increased the longevity of both strains, and Ent-sufficient Salmonella also
outlived their isogenic Ent-deficient counterparts. However, Ent’s inhibitory activities were
negated when saturated with iron (1:1 ratio), demonstrating that Ent must be in its iron-free
form to effectively inhibit macrophages. These data support the idea that Ent protects
bacteria against immunological reactions from macrophages in addition to facilitating
bacterial iron absorption [42,43].
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2.2.2. The Interaction between Siderocalin and Enterobactin

Withholding necessary iron from invading germs has long been recognized as a
critical host defensive mechanism [44]. Increasing the expression of transferrin, lactoferrin
receptors, and ferritin and decreasing the level of extracellular iron in serum are common
bacteriostatic responses. The mammalian protein Siderocalin (Scn), also known as Lcn2,
neutrophil-gelatinase-associated lipocalin, 24p3, or uterocalin, is used in a more focused
approach [36]. Scn is generated and released in response to the activation of innate immune
receptors, such as Toll-like receptors, in a variety of cell types. Scn is naturally present in
neutrophil granules. Successful pathogens generate alternate or modified siderophores
that Scn does not bind toin order to circumvent this defense. This supplements the overall
antibacterial iron-depletion response and prevents major early bacteremia [45]. Numerous
microbes produce the classic 2,3-catecholate siderophore enterobactin (Ent), which was the
first recognized target of Scn [45]. The protein binds to and sequesters the ferric siderophore
complex with an affinity for [Fe3(Ent)]3−, acting as a growth inhibitor of pathogens that
solely rely on Ent-mediated iron uptake similar to that of FepA, the cognate outer membrane
receptor [46]. Scn is distinct from other host iron-binding proteins in that it is selective for
iron intended for bacterial usage as a ferric siderophore complex and does not chelate iron
directly. Scn has been linked to innate immunity as well as kidney development [47]. As
an iron-donating molecule, it transports iron to the cytoplasm, where it may activate or
repress genes that respond to iron [48]. Therefore, Scn may be a substitute for transferrin in
the transport of iron and be crucial for the development of tissues and organs. Scn may
also function at a stage of development before transferrin circulation and the expression of
transferrin receptors are established [49].

2.3. Salmochelins

In addition to Ent, Salmonella secretes other siderophores salmochelins (SX, S1, S2 and
S4). Lipocalin-2, a siderophore-capturing protein, is secreted by macrophages in response
to gamma interferon (IFN-γ) during infection [50,51]. Enterobactin is bound by lipocalin-2,
while salmochelin is not. The latter is a glycosylated enterobactin derivative that favors
Salmonella’s ability to grow specifically in the intestine [49]. Moreover, Ent is bound to
serum albumin thus its effectiveness decreases [52]. In addition, the hydrophobicity of its
three catechol acyl ‘arms’, which allow Ent to partition into lipid bilayers, further reduces
the amount of Fe3+–Ent available for bacterial cell import [53].

Salmochelin Biosynthesis

Salmochelins are enterobactin-related substances that contain a 5-C-glucosylated 2,3-
dihydroxybenzoyl residue (DHB) (Figure 3). A twofold β-C-glucosylated enterobactin ana-
logue is the main substance of salmochelin S4 [54]. Salmochelin S2 has one unglycosylated
DHB-serine moiety at the C-terminal end. Additionally, salmochelin SX is a monomeric
DHB(glucosyl)-serine molecule, and salmochelin S1 is a dimer with a DBH(glucosyl)-seryl-
DHB-serine constitution [54].

The enterobactin biosynthesis machinery genes and the iro genes, iroBCDE and
iroN [54,55], are needed for salmochelins’ synthesis and transport. IroC is involved in
the cell’s production of salmochelins, while IroB is the glucosyl transferase that attaches the
glucose moieties to enterobactin [56]. Salmochelins must be transported into the cell via the
outer membrane receptor IroN since the enterobactin receptor, FepA, is unable to identify
them [56]. Both the FepBCDG system [57] and IroC [58] have been found to be involved
in the uptake of salmochelin across the cytoplasmic membrane, suggesting that they may
be involved in both the export and import of salmochelin. The siderophore is hydrolyzed
by IroD and IroE [59]. While the periplasmic IroE cleaves the apo-siderophore to yield
linear versions of the salmochelins, the cytosolic IroD prefers the ferric-salmochelins as a
substrate [60].
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The ent genes are arranged in six clusters with three sets of divergent promoters.
These promoter regions include several Fur binding sites, and iron adversely regulates
the operons. The iroBCDE operon [57] and iroN [61] both have overlapping 10-sequence
binding sites for Fur. Additional regulators connect the expression of these genes to the
bacterial cell’s overall metabolism. Between fepA and fes, the oxygen-controlled regulator
FNR has a binding site, and it is anticipated that this site will function as a positive regulator.
This region and the promoter region between fepB and entC both contain Crp binding sites,
which connect expression to carbon metabolism [62].

The ferric uptake regulator (Fur) has control over the expression of the iroB gene. The
promoter region of iroBCDE contains the Fur box. An in vitro transcription test revealed
that Fur inhibited the expression of iroB in the presence of iron. As a result, Salmonella’s
iron uptake system is controlled in a Fur-dependent manner [63].

To summarize, the iroA gene cluster, which consists of five genes called iroB, iroC, iroD,
iroE, and iroN, is necessary for the conversion of Ent into salmochelins like S1, S2, and S4.
The IroN protein was discovered to be an outer membrane receptor for the absorption of
Fe3+-bound salmochelins and shares similarity with the FepA protein. IroN is also capable
of recognizing a number of additional siderophores, just like FepA and Cir. IroC is believed
to be an inner membrane transporter that aids in the apo siderophores’ export (Figure 4). It
has been demonstrated that IroB catalyzes Ent’s C-glucosylation. IroD and IroE, the two
remaining proteins, are similar to Fes. IroE is thought to be periplasmic, whereas IroD has
been anticipated to be cytoplasmic. IroD and IroE are likely salmochelin esterases since
bacteria with an iroA cluster produce less of the hydrolyzed salmochelins (S1, S2, and SX)
than bacteria without them [64]. Salmochelin can be linearized in vitro to the following
compounds: linear trimer (linearized TGE/S3), linear dimer (DGE/S2), MGE trimer, linear
C-glycosylated (DBS)2 (S1), and linear monomer (SX) [41]. Additionally, the researchers
demonstrated that the cytoplasmic esterase IroD can break down salmochelin forms into
their constituent parts (DBS), releasing the iron into the bacterial cytoplasm [42].
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2.4. Aerobactin and Yersiniabactin

Some non-typhoidal Salmonella serovars (Salmonella enterica subsp. enterica serovar
Kentucky) produce aerobactin, a mixed siderophore of the citrate-hydroxamate type
(Figure 5). Enzymes from the iucABCD operon are used in an NRPS (nonribosomal peptide
synthesis) pathway to produce aerobactin. L-lysine is first transformed into N6-acetyl-
N6-hydroxy-l-lysine during synthesis, and then it is complexed into a citric acid back-
bone [43]. Aerobactin has a lower iron complex formation constant (Kf = 1023) than
enterobactin (Kf = 1049) [58]. Similar to catecholate-type siderophores, aerobactin is taken
up by the Iut receptor and transported into the bacterial periplasm in a TonB-dependent
manner. Aerobactin is transported by the binding-protein-dependent ABC transport sys-
tem FhuBCD [65] once it has reached the periplasm. Additionally, FhuBCD mediates the
environment’s energy-dependent absorption of ferrichromes and coprogen.

Phenolate-type siderophores, including yersiniabactin (Ybt) (Figure 5), are a less
frequent class of siderophores that can be detected in Salmonella serovars. The genomic
island known as high pathogenicity island 1 (HPI) encodes Ybt, which is widely generated
by Yersinia species [66]. Its distribution in Salmonella serovars is minimal since HPI 1
is absent from the majority of Salmonella enterica serovar subspecies 1 [66]. In Yersinia
species, the synthesis of Ybt from the precursor isochorismic acid has been characterized as
involving seven proteins (HMWP1, HMWP2, YbtD, YbtE, YbtS, YbtT, and YbtU). Salicylate,
one thiazolidine, and two thiazoline rings make up the end product’s four rings. Ybt
is a powerful iron chelator because it exhibits a higher anisotropy for Fe3+ (Kf = 1036)
than aerobactin does. Yersiniabactin is picked up by the Psn/FyuA receptor in the outer



Microbiol. Res. 2023, 14 1464

membrane and then transported across the inner membrane by the YbtPQ ABC transporter
once it has been loaded with iron [67].
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2.5. The Function of Siderophores

One of the most effective defenses used by innate immune cells to combat bacterial
infection is the production of reactive oxygen species (ROS) by the NADPH membrane
oxidase complex 2 (Nox2). Reactive oxygen species are produced by this enzyme complex
and are discharged by phagocytes into phagosomes as well as the extracellular environ-
ment [68]. Phagocytes create hypochlorous acid, superoxide, and hydrogen peroxide,
which all have the ability to kill microbes [69], though the exact methods by which they
do so are still unclear. Superoxide converts to hydrogen peroxide, which is antibacterial
and can pass bacterial membranes. In the Fenton reaction, H2O2 interacts with intracellular
iron sulfur clusters to create hazardous free radicals, such as hydroxyl radicals [70], which
can harm cellular constituents such as proteins, lipids, and DNA. Bacterial pathogens have
a variety of defenses against and responses to ROS damage. Recently, it was discovered
that catecholate siderophores helped shield S. Typhimurium from oxidative stress [71].
In addition to serving as an iron chelator, siderophores also assist bacterial colonization,
quorum sensing, and the development of biofilms, among other noncanonical roles [72].

3. Zincophores

Because zinc is essential for numerous biological processes, bacteria have developed
a number of strategies to deal with zinc shortages and obtain this metal from their hosts.
The transcriptional regulator Zur in Gram-negative bacteria regulates the expression of
a select few genes (znuABC and zupT) needed to help the cell cope with extreme zinc
deficiency [73]. The zinc-containing version of Zur firmly binds to the promoter region of
the aforementioned genes under zinc-replete circumstances, suppressing their expression.
Conversely, the zinc-deficient version of Zur ceases to inhibit transcription when the
intracellular zinc concentration falls below a crucial threshold [73].

Zur-regulated genes vary between different species of bacteria, but they are always
found to encode one or more paralogs of zinc-containing ribosomal proteins as well as
the various subunits of a high affinity zinc importer (ZnuABC in Gram-negative bacte-
ria) [74,75]. Under various environmental circumstances with low availability of this metal,
ZnuABC considerably improves the capacity of bacteria to recruit zinc. The discovery
that ZnuABC is essential for bacterial pathogenicity suggests that zinc availability in in-
fected hosts is constrained [76]. A periplasmic-binding protein, an ATPase, and an integral
membrane protein are all encoded by the znuA-C operons, respectively. The Zur protein,
a member of the Fur family of metalloregulatory proteins, binds to a nearly complete
palindrome in this region when Zn is present, preventing the transcription of both znuA
and znuCB [77].

Salmonella enterica offers secondary metal binding sites that can bind Zn2+ [78,79].
The N-terminal histidine-rich loop of ZnuA has been shown to play a critical role in the
formation of the protein binary complex between SenZnuA and the periplasmic zinc-
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binding protein SenZinT (a 216-amino acid periplasmic protein), where it embeds into a
structural cavity of the partner protein [77]. The loop can also be involved in specific protein–
protein interactions and potential Zn2+ acquisition from additional metallochaperones [80].

Under zinc-limiting conditions, ZinT transports Zn2+ ions to the ZnuABC transporter.
It is possible that metal transfer from ZinT to ZnuA (Figure 6) occurs during the interaction
of the two proteins through the formation of a binary complex since ZnuA, a periplasmic
component of the ZnuABC transporter, has a higher affinity for Zn2+ than ZinT [81].
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ZnuA gene-deficient strains of S. Typhimurium cause systemic and gastrointestinal
infections in mice that are much less severe [82]. As no additional attenuation is shown in
mutant strains where the full znuABC operon is removed, deletion of the znuA gene, which
encodes for the periplasmic component ZnuA, is sufficient to impair the function of the
ZnuABC transporter [82]. S. Typhimurium avoids the antimicrobial effects of calprotectin,
a zinc-sequestering protein secreted by neutrophils during infection in the intestinal lumen,
by generating the ZnuABC transporter [82]. A strain that lacks a functional ZnuABC
transporter cannot compete with the microbiota in this host environment and is destroyed
by the inflammatory reaction [83].

4. Up Taking Fungal Siderophores

Both the mycobiota (the fungal gut microbiota) and the fungus in food can pro-
vide siderophores. A recent study revealed that Salmonella strains expressing the fungus
siderophore receptors FhuA or FhuE, in vitro and in a mouse model, showed a competitive
growth advantage due to their capacity to utilize fungus siderophores such ferrichrome and
coprogen. The importance of these little-studied components of the gut ecosystem during
bacterial infection elucidates the role of inter-kingdom cross-feeding between fungus and
Salmonella [84,85].

5. Conclusions

For the majority of bacteria, iron is an important micronutrient. Depending on the
availability and source, different Salmonella enterica strains, that cause human and animal
infections have developed methods, sequester iron from the environment. Since Fe3+ is
insoluble, it is frequently bound in complexes (Fe(OH)3) outside the host or sequestered
by host proteins (such as lactoferrin, transferrin, and hemoglobin). Salmonella secretes
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siderophores, high-anity iron-binding molecules, to sequester Fe3+ from the extracellular
medium. Enterobactin and salmochelin are two well-characterized siderophores of the
catecholate type. The ferric ion and enterobactin form an extraordinarily stable combination.
IroB, a glycosyl transferase enzyme, can glycosylate enterobactin to produce salmochelin
which is considered a better iron chelator than enterobactin in presence of serum albumin.
Salmonella serovars also produce yersiniabactin which is another type of siderophore but
less common than enterobactin and salmochelin. Concerning zinc ions, Salmonella produces
periplasmic proteins for zinc uptake through its inner membrane. Finally, some Salmonella
species are capable of taking up fungal siderophores.
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