Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = metal-only antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4646 KiB  
Article
A Wideband Magneto-Electric (ME) Dipole Antenna Enabled by ME Resonance and Aperture-Coupled Excitation
by Hyojin Jang, Seyeon Park, Junghyeon Kim, Kyounghwan Kim and Sungjoon Lim
Micromachines 2025, 16(8), 853; https://doi.org/10.3390/mi16080853 - 24 Jul 2025
Viewed by 375
Abstract
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the [...] Read more.
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the electric dipole and a pair of vertical metal patches forming the magnetic dipole. A key innovation is the aperture-coupled feeding mechanism, where electromagnetic energy is transferred from a tapered microstrip line to the dipole structure through a slot etched in the ground plane. This design not only excites the characteristic ME resonances effectively but also significantly improves impedance matching, delivering a markedly broader impedance bandwidth. To validate the proposed concept, a prototype antenna was fabricated and experimentally characterized. Measurements show an impedance bandwidth of 84.48% (3.61–8.89 GHz) for S11 ≤ −10 dB and a maximum in-band gain of 7.88 dBi. The antenna also maintains a stable, unidirectional radiation pattern across the operating band, confirming its potential for wideband applications such as 5G wireless communications. Full article
(This article belongs to the Special Issue RF Devices: Technology and Progress)
Show Figures

Figure 1

14 pages, 5999 KiB  
Article
Frequency-Selective Surface Based 360-Degree Beam-Steerable Cavity Antenna for UAV Swarm Coordination
by Mashrur Zawad, Chandana Kolluru, Sohel Rana, Kalyan C. Durbhakula and Mohamed Z. M. Hamdalla
Electronics 2025, 14(9), 1725; https://doi.org/10.3390/electronics14091725 - 24 Apr 2025
Viewed by 612
Abstract
A swarm of unmanned aerial vehicles (UAVs) often rely on exceptional wireless coverage of embedded or flush-mounted antennas or arrays, especially in long-range communication. While arrays offer significant range and beam steerability control, they often suffer from size, weight, and power (SWaP) limitations. [...] Read more.
A swarm of unmanned aerial vehicles (UAVs) often rely on exceptional wireless coverage of embedded or flush-mounted antennas or arrays, especially in long-range communication. While arrays offer significant range and beam steerability control, they often suffer from size, weight, and power (SWaP) limitations. On the other hand, achieving a wideband, high-gain, and beam-steerable response from a single antenna is highly desired for its compact SWaP characteristics. In this study, a cube-shaped cavity antenna excited by a monopole feed is designed, fabricated, and measured. The proposed antenna operates from 4.1 to 5.56 GHz with a 30.22% fractional bandwidth and a peak gain of 8 dBi. In addition, a frequency-selective surface (FSS) is developed to replace the metallic faces of the cavity, enabling 360° electronic beam steerability. Thermal analysis of the FSS-based cavity design is conducted to determine its maximum power handling capability, revealing a maximum power handling capability of 1.3 KW continuous. In addition, the maximum rating currents of the FSS diodes can be reached only at 165 W, limiting the maximum power handling to only 165 W in the case of using the diodes used in this analysis. The antenna prototype is successfully fabricated, and the radiation pattern is experimentally measured, showing a strong agreement between the simulated and measured results. The electronic steerability of the proposed antenna indicates its suitability for 5G new radio and UAV applications. Full article
(This article belongs to the Special Issue Control Systems for Autonomous Vehicles)
Show Figures

Figure 1

16 pages, 10336 KiB  
Article
A Design of a Small-Aperture Low-Profile Omnidirectional Conformal Antenna
by Jieying Bai, Xi Li, Ziyu Zhang, Junjun Wu and Lin Yang
Micromachines 2025, 16(2), 217; https://doi.org/10.3390/mi16020217 - 14 Feb 2025
Viewed by 767
Abstract
In this article, a small-aperture, low-profile, and omnidirectional conformal antenna is proposed which can be utilized on space-limited equipment platforms such as airplanes, ships, and vehicles. The antenna consists of an open metal cavity, a discone antenna, a parasitic structure, and a radome. [...] Read more.
In this article, a small-aperture, low-profile, and omnidirectional conformal antenna is proposed which can be utilized on space-limited equipment platforms such as airplanes, ships, and vehicles. The antenna consists of an open metal cavity, a discone antenna, a parasitic structure, and a radome. The small aperture and low-profile design of the metal cavity result in a rapid narrowing of the bandwidth of the discone antenna. Therefore, we introduce a parasitic structure that not only enlarges the impedance bandwidth by adding a resonant point, but can also be used to adjust the unroundness of the horizontal pattern. Meanwhile, the conformal design of the antenna with four surfaces of different curvatures is presented. The simulation and testing results demonstrate that the antenna can achieve a VSWR of less than 2 within a bandwidth of 1.95–2.62 GHz (29.3%), with a minimum aperture of 0.43 omnidirectional radiation pattern, with a gain exceeding −2.2 dBi in the azimuthal plane. This antenna offers the advantages of a small aperture, low profile, and conformal capability. Furthermore, the resonances of high and low frequencies can be adjusted through two different structures, enhancing the flexibility of antenna design. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

14 pages, 3878 KiB  
Article
Fully Metallic Additively Manufactured Monopulse Horn Array Antenna in Ka-Band
by José Rico-Fernández, Álvaro F. Vaquero, Marcos R. Pino and Manuel Arrebola
Appl. Sci. 2024, 14(23), 11065; https://doi.org/10.3390/app142311065 - 28 Nov 2024
Viewed by 1221
Abstract
The Laser Powder-Bed Fusion Additive Manufacturing (LPBF AM) technique is evaluated for the manufacturing of fully metallic monolithic microwave components. To validate the manufacturing technique, a difference pattern array of 4 × 4 horn antennas is designed to operate at mm-Wave frequencies. The [...] Read more.
The Laser Powder-Bed Fusion Additive Manufacturing (LPBF AM) technique is evaluated for the manufacturing of fully metallic monolithic microwave components. To validate the manufacturing technique, a difference pattern array of 4 × 4 horn antennas is designed to operate at mm-Wave frequencies. The antenna is based on H-plane power dividers and a complex structure to obtain a difference radiation pattern by rotating twisted sections in two different orientations. The prototype is manufactured with a monolithic piece of aluminum alloy AlSi10Mg, providing a lightweight single structure that includes both radiating elements and a feeding network consisting of twisters and power dividers in a waveguide. The prototype was experimentally evaluated in an anechoic chamber and the near-field planar acquisition range, obtaining good agreement with full-wave simulations within an operational bandwidth from 34 to 36 GHz. The results demonstrate that the LPBF AM technique is a suitable candidate to produce challenging monolithic metal-only microwave components in the Ka-band, such as monopulse antennas. Full article
(This article belongs to the Special Issue Antenna System: From Methods to Applications)
Show Figures

Figure 1

14 pages, 4952 KiB  
Article
Effect of Microwave Antenna Material and Diameter on the Ignition and Combustion Characteristics of ADN-Based Liquid Propellant Droplets
by Dong Li, Yangyang Hou and Yusong Yu
Energies 2024, 17(17), 4256; https://doi.org/10.3390/en17174256 - 26 Aug 2024
Viewed by 1007
Abstract
Microwave-assisted ignition is an emerging high-performance ignition method with promising future applications in aerospace. In this work, based on a rectangular waveguide resonant cavity test bed, the effects of two parameters (material and diameter) of the microwave antenna on the ignition and combustion [...] Read more.
Microwave-assisted ignition is an emerging high-performance ignition method with promising future applications in aerospace. In this work, based on a rectangular waveguide resonant cavity test bed, the effects of two parameters (material and diameter) of the microwave antenna on the ignition and combustion characteristics of ADN-based liquid propellant droplets were investigated using experimental methods. A high-speed camera was used to record the droplet combustion process in the combustion chamber, the effect of the microwave antenna on the propellant combustion response was analyzed based on the emission spectroscopy method, and finally, the loss of the microwave antenna was evaluated using a scanning electron microscope. The experimental results show that the droplet has the lowest critical ignition power (179 W) when the material of the microwave antenna is tungsten, but the ignition delay time is higher than that of copper. A finer diameter of microwave antenna is more favorable for plasma generation. At a microwave power of 260 W, the ignition delay time of the droplet with a microwave antenna diameter of 0.3 mm is 100 ms lower than that of 0.8 mm, which is about 37.5%. In addition, this study points out the mechanism of microwave discharge in the droplet combustion process. The metallic microwave antenna not only collects the electrons escaping from the gas discharge, but also generates a large amount of metallic vapor, which provides charged particles to the plasma. This study provides the possibility for the application of microwave-assisted liquid fuel ignition. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

15 pages, 7617 KiB  
Article
Design, Fabrication and Testing of a Multifrequency Microstrip RFID Tag Antenna on Si
by Timothea Korfiati, Christos N. Vazouras, Christos Bolakis, Antonis Stavrinidis, Giorgos Stavrinidis and Aggeliki Arapogianni
Computation 2024, 12(6), 122; https://doi.org/10.3390/computation12060122 - 13 Jun 2024
Viewed by 1530
Abstract
A configurable design of a microstrip square spiral RFID tag antenna, for a wide range of microwave frequencies in the S- and C-band, is presented. The design is parameterized in dimensions, and hence changing the design frequency (or frequencies) is easy, by changing [...] Read more.
A configurable design of a microstrip square spiral RFID tag antenna, for a wide range of microwave frequencies in the S- and C-band, is presented. The design is parameterized in dimensions, and hence changing the design frequency (or frequencies) is easy, by changing only an initial value for the spiral geometry. A tag specimen was fabricated using a Cu electroplating technique according to the design for frequencies of interest in the areas of 2.4 and 5.8 GHz. The substrate material is 320 μm high-resistivity Si and the bridge dielectric is 15 μm polyimide PI2525. The steps of the microfabrication process involve metallic structure pattern transfer techniques with optical UV lithography procedures. The reflection coefficient and antenna gain of the specimen were measured inside an anechoic enclosure using a vector network analyzer (VNA) and a TEM horn test antenna over a frequency range of up to 6 GHz. Simulated and measured results, exhibiting reasonable agreement, are presented and discussed. Full article
Show Figures

Figure 1

8 pages, 3108 KiB  
Communication
A High-Gain Metallic-via-Loaded Antipodal Vivaldi Antenna for Millimeter-Wave Application
by Jun Li, Junjie Huang, Hongli He and Yanjie Wang
Electronics 2024, 13(10), 1898; https://doi.org/10.3390/electronics13101898 - 12 May 2024
Cited by 6 | Viewed by 2240
Abstract
This paper presents a miniaturized-structure high-gain antipodal Vivaldi antenna (AVA) operating in the millimeter-wave (mm-wave) band. A gradient-length microstrip-patch-based director is utilized on the flares of the AVA to enhance gain. Additionally, an array of metallic vias is incorporated along the lateral and [...] Read more.
This paper presents a miniaturized-structure high-gain antipodal Vivaldi antenna (AVA) operating in the millimeter-wave (mm-wave) band. A gradient-length microstrip-patch-based director is utilized on the flares of the AVA to enhance gain. Additionally, an array of metallic vias is incorporated along the lateral and horizontal edges of the antenna for further gain enhancement and bandwidth extension. Based on the proposed structure, the AVA can achieve a peak gain of 11.9 dBi over a relative bandwidth of 71.24% within 16.5–36.6 GHz as measured, while the electrical dimension is only 1.54 × 2.69 × 0.07 λc3. The measured results show good agreement with the simulated ones. Owning the characteristics of being high-gain and ultra-wideband, and having a compact size, the proposed AVA can be a competitive candidate for future millimeter-wave communication. Full article
Show Figures

Figure 1

14 pages, 20720 KiB  
Article
A P/X Dual-Band Co-Aperture Array with Dual-Polarized Antenna Based on Forest Biomass Measurement Applications
by Fukun Sun, Xian Wu, Yuchen Luan and Duo Wang
Electronics 2024, 13(8), 1565; https://doi.org/10.3390/electronics13081565 - 19 Apr 2024
Viewed by 1212
Abstract
In this paper, a co-aperture dual-polarized antenna array is proposed. The frequency band covers the P-band (0.4–0.7 GHz) and the X-band (9.3–9.9 GHz). The P-band array is designed in the form of an all-metal Vivaldi, while minimizing the impact of the P-band antenna [...] Read more.
In this paper, a co-aperture dual-polarized antenna array is proposed. The frequency band covers the P-band (0.4–0.7 GHz) and the X-band (9.3–9.9 GHz). The P-band array is designed in the form of an all-metal Vivaldi, while minimizing the impact of the P-band antenna array structure on the X-band electrical performance. The final profile design for the dual-band antenna structure is only 0.12 λ00 corresponds to the wavelength of 0.4 GHz). The X-band design adopts the miniaturized waveguide slot structure, which can be well embedded in the P-band array structure. In order to verify the feasibility of the scheme, prototype processing and testing were carried out, and the test results are consistent with the simulation results. The active VSWRs of the overall design are less than 2.0. Additionally, the dual-band antenna array has favorable radiation performance in each frequency band. It can be used in forest biomass measurements and other interferometric applications. Full article
(This article belongs to the Special Issue RF/Microwave Device and Circuit Integration Technology)
Show Figures

Figure 1

27 pages, 40189 KiB  
Article
Tensor-Free Holographic Metasurface Leaky-Wave Multi-Beam Antennas with Tailorable Gain and Polarization
by Chuan-Kuei Weng, Yu-Zhan Tsai, Artem Vilenskiy and Malcolm Ng Mou Kehn
Sensors 2024, 24(8), 2422; https://doi.org/10.3390/s24082422 - 10 Apr 2024
Cited by 2 | Viewed by 2532
Abstract
Recently, the community has seen a rise in interest and development regarding holographic antennas. The planar hologram is made of subwavelength metal patches printed on a grounded dielectric board, constituting flat metasurfaces. When a known reference wave is launched, the hologram produces a [...] Read more.
Recently, the community has seen a rise in interest and development regarding holographic antennas. The planar hologram is made of subwavelength metal patches printed on a grounded dielectric board, constituting flat metasurfaces. When a known reference wave is launched, the hologram produces a pencil beam towards a prescribed direction. Most earlier works on such antennas have considered only a single beam. For the few later ones that studied multiple beams, they were achieved either by having each beam taken care of by a distinct frequency or by partitioning the hologram, thereby depriving each beam of the directivity it could have had it not shared the holographic aperture with other beams. There have been recent studies related to the use of tensor surface impedance concepts for the synthesis of holograms which have attained control over the polarizations and intensities of the beams. However, this approach is complicated, tedious, and time-consuming. In this paper, we present a method for designing a planar holographic leaky-wave multi-beam metasurface antenna, of which each simultaneous beam radiating at the same frequency towards any designated direction has a tailorable amplitude, phase, and polarization, all without hologram partitioning. Most importantly, this antenna is exempted from the need for the cumbersome technique of tensor impedance. Such features of beam configurability are useful in selective multiple-target applications that require differential gain and polarization control among the various beams. Only a single source is needed, which is another benefit. In addition, effective methods to mitigate sidelobes are also proposed here. Designs by simulations according to the method are herein validated with measurements performed on fabricated prototypes. Full article
(This article belongs to the Special Issue Communication, Sensing and Localization in 6G Systems)
Show Figures

Figure 1

12 pages, 13164 KiB  
Article
Single-Layer Wide-Angle Scanning Linear Phased Arrays Based on Multimode Microstrip Patch Elements
by Dongsheng Li, Jie Yang, Jianing Zhao, Yongzhen Dong, Hao Li, Tianming Li, Haiyang Wang, Biao Hu, Yihong Zhou, Fang Li and Ruoyang Yang
Micromachines 2024, 15(1), 3; https://doi.org/10.3390/mi15010003 - 19 Dec 2023
Viewed by 1614
Abstract
This paper introduces a novel single-layer microstrip patch element designed to achieve a wide beamwidth, in order to address the growing demand for wide-angle scanning capabilities in modern phased array systems. The proposed element, comprising a slot-etched circular patch and an array of [...] Read more.
This paper introduces a novel single-layer microstrip patch element designed to achieve a wide beamwidth, in order to address the growing demand for wide-angle scanning capabilities in modern phased array systems. The proposed element, comprising a slot-etched circular patch and an array of metallized holes arranged in square rings, offers a unique approach to beam shaping. By carefully adjusting parameters such as the slot structure and feeding position, our element is engineered to simultaneously excite both the TM01 and TM21 modes, a key feature that contributes to its wide beamwidth characteristics. Through the constructive interference of these modes, our element demonstrates a remarkable 3 dB beamwidth of approximately 150° in both principal planes, showcasing its potential for wide-angle scanning applications. To validate the practical performance of this proposed element, two linear phased arrays are manufactured and experimentally evaluated. The simulation results confirm the wide-angle scanning capability of the antennas in both the E-plane and H-plane. Furthermore, the experimental assessment demonstrates that these linear phased arrays can effectively generate scanning beams within a frequency range of 25 GHz to 28 GHz, covering a wide angular range from −60° to 60°, while maintaining a gain loss within 3 dB. This innovative design approach not only offers a promising solution for achieving a wide beamwidth in microstrip patch elements, but also holds significant potential for the development of cost-effective phased arrays with wide-angle scanning capabilities, making it a valuable contribution to the advancement of phased array technology. Full article
(This article belongs to the Special Issue Advanced Antenna System: Structural Analysis, Design and Application)
Show Figures

Figure 1

14 pages, 7195 KiB  
Article
A Miniature Eight-Port Antenna Array Based on Split-Ring Resonators for 5G Sub-6 GHz Handset Applications
by Jianlin Huang, Lingrong Shen, Shanshan Xiao, Xiaojing Shi and Gui Liu
Sensors 2023, 23(24), 9734; https://doi.org/10.3390/s23249734 - 10 Dec 2023
Cited by 4 | Viewed by 1378
Abstract
In this article, a miniature eight-port multiple-input multiple-output (MIMO) antenna array is proposed for fifth-generation (5G) sub-6 GHz handset applications. The individual antenna element comprises a radiator shaped like the Chinese character “王” (phonetically represented as “Wang”) and three split-ring resonators (SRR) on [...] Read more.
In this article, a miniature eight-port multiple-input multiple-output (MIMO) antenna array is proposed for fifth-generation (5G) sub-6 GHz handset applications. The individual antenna element comprises a radiator shaped like the Chinese character “王” (phonetically represented as “Wang”) and three split-ring resonators (SRR) on the metal frame. The size of the individual antenna element is only 6.8 × 7 × 1 mm3 (47.6 mm3). The proposed antenna element has a −10 dB impedance bandwidth of 1.7 GHz (from 3.3 GHz to 5 GHz) that can cover 5G New Radio (NR) sub-6 GHz bands N77 (3.3–4.2 GHz), N78 (3.3–3.8 GHz), and N79 (4.4–5 GHz). The evolution design, the current distribution, the effects of single-handed holding, and the analysis of the parameters are deduced to study the approach used to design the featured antenna. The measured total efficiencies are from 40% to 80%, the isolation is better than 12 dB, the calculated envelope correlation coefficient (ECC) is less than 0.12, and the calculated channel capacity (CC) ranges from 35 to 38 bps/Hz. The presented antenna array is a good alternative to 5G mobile handsets with wideband operation, a metal frame, and minimized spacing. Full article
(This article belongs to the Special Issue 5G Antennas)
Show Figures

Figure 1

15 pages, 1755 KiB  
Article
Analysis of Tempering Effects on LDS-MID and PCB Substrates for HF Applications
by Marius Wolf, Kai Werum, Thomas Guenther, Lisa Schleeh, Wolfgang Eberhardt and André Zimmermann
J. Manuf. Mater. Process. 2023, 7(4), 139; https://doi.org/10.3390/jmmp7040139 - 3 Aug 2023
Cited by 1 | Viewed by 1890
Abstract
Mechatronic Integrated Devices or Molded Interconnect Devices (MID) are three-dimensional (3D) circuit carriers. They are mainly fabricated by laser direct structuring (LDS) and subsequent electroless copper plating of an injection molded 3D substrate. Such LDS-MID are used in many applications today, especially antennas. [...] Read more.
Mechatronic Integrated Devices or Molded Interconnect Devices (MID) are three-dimensional (3D) circuit carriers. They are mainly fabricated by laser direct structuring (LDS) and subsequent electroless copper plating of an injection molded 3D substrate. Such LDS-MID are used in many applications today, especially antennas. However, in high frequency (HF) systems in 5G and radar applications, the demand on 3D circuit carriers and antennas increases. Electroless copper, widely used in MID, has significantly lower electrical conductivity compared to pure copper. Its lower conductivity increases electrical loss, especially at higher frequencies, where signal budget is critical. Heat treatment of electroless copper deposits can improve their conductivity and adhesion to the 3D substrates. This paper investigates the effects induced by tempering processes on the metallization of LDS-MID substrates. As a reference, HF Printed Circuit Boards (PCB) substrates are also considered. Adhesion strength and conductivity measurements, as well as permittivity and loss angle measurements up to 1 GHz, were carried out before and after tempering processes. The main influencing factors on the tempering results were found to be tempering temperature, atmosphere, and time. Process parameters like the heating rate or applied surface finishes had only a minor impact on the results. It was found that tempering LDS-MID substrates can improve the copper adhesion and lower their electrical resistance significantly, especially for plastics with a high melting temperature. Both improvements could improve the reliability of LDS-MID, especially in high frequency applications. Firstly, because increased copper adhesion can prevent delamination and, secondly, because the lowered electrical resistance indicates, in accordance with the available literature, a more ductile copper metallization and thus a lower risk of microcracks. Full article
Show Figures

Figure 1

13 pages, 5254 KiB  
Article
Experimental Study on the Compatibility of PD Flexible UHF Antenna Sensor Substrate with SF6/N2
by Xukun Hu, Guozhi Zhang, Guangyu Deng and Xuyu Li
Micromachines 2023, 14(8), 1516; https://doi.org/10.3390/mi14081516 - 28 Jul 2023
Cited by 6 | Viewed by 1493
Abstract
The use of flexible, built-in, ultra-high-frequency (UHF) antenna sensors is an effective method to solve the weak high-frequency electromagnetic wave signal sensing of partial discharge (PD) inside gas-insulated switchgears (GISs), and the compatibility of flexible UHF antenna sensor substrate materials and SF6/N2 mixtures [...] Read more.
The use of flexible, built-in, ultra-high-frequency (UHF) antenna sensors is an effective method to solve the weak high-frequency electromagnetic wave signal sensing of partial discharge (PD) inside gas-insulated switchgears (GISs), and the compatibility of flexible UHF antenna sensor substrate materials and SF6/N2 mixtures is the key to the realization of a flexible UHF antenna sensor inside a GIS. Based on this, this paper builds an experimental platform for the compatibility of a 30% SF6/70% N2 gas mixture and a PD flexible UHF antenna sensor substrate and conducts compatibility experiments between the 30% SF6/70% N2 gas mixture and PD flexible UHF antenna sensor substrate under different temperatures in combination with the actual operating temperature range of the GIS. In this article, a Fourier transform infrared spectrometer, scanning electron microscope and X-ray photoelectron spectrometer were used to test and analyze the gas composition, the surface morphology and the elemental change in the PD flexible UHF antenna sensor substrate, respectively. PET material will be slightly oxidized under the environment of a 30% SF6/70% N2 gas mixture at 110 °C, PI material will generate metal fluoride under the environment of a 30% SF6/70% N2 gas mixture and only PDMS material will remain stable under the environment of a 30% SF6/70% N2 gas mixture; therefore, it is appropriate to use PDMS substrate in the development of flexible UHF antenna sensors. Full article
(This article belongs to the Special Issue Recent Advances in Electromagnetic Devices)
Show Figures

Figure 1

17 pages, 34224 KiB  
Technical Note
Directional and High-Gain Ultra-Wideband Bow-Tie Antenna for Ground-Penetrating Radar Applications
by Shuai Pi, Tianhao Wang and Jun Lin
Remote Sens. 2023, 15(14), 3522; https://doi.org/10.3390/rs15143522 - 12 Jul 2023
Cited by 10 | Viewed by 5977
Abstract
Bow-tie antennas are utilized extensively in ground-penetrating radar (GPR) systems. In order to achieve sufficient penetration depth and resolution, the bow-tie antennas for GPR applications require low operating frequency, high gain, and excellent broadband. A novel ultra-wideband (UWB) bow-tie antenna with gain enhancement [...] Read more.
Bow-tie antennas are utilized extensively in ground-penetrating radar (GPR) systems. In order to achieve sufficient penetration depth and resolution, the bow-tie antennas for GPR applications require low operating frequency, high gain, and excellent broadband. A novel ultra-wideband (UWB) bow-tie antenna with gain enhancement for GPR applications is proposed in this paper. First, a UWB bow-tie antenna with resistive loading is designed. The metal reflector and metamaterial loading make the bow-tie antenna directional, and loading the same metamaterial on the front side of the antenna further improves directional gain. After testing, the lowest frequency of the fabricated antenna is 317 MHz, the relative bandwidth is 98.6%, the peak gain in the frequency range is 9.3 dBi, and the size is only 0.38 λ at the lowest frequency. The proposed compact antenna takes both gain and bandwidth into consideration. Finally, in order to further verify the effectiveness of the proposed antenna in the GPR system, a stepped frequency continuous wave ground-penetrating radar (SFCW-GPR) system was built. The experimental results show that the designed antenna is suitable for the GPR system of deep penetration and high-resolution detection, which is beneficial to the imaging of underground structures. Full article
Show Figures

Figure 1

17 pages, 8683 KiB  
Article
Compact Sub 6 GHz Dual Band Twelve-Element MIMO Antenna for 5G Metal-Rimmed Smartphone Applications
by Chih-Chung Lin, Shao-Hung Cheng, Shu-Chuan Chen and Cheng-Siang Wei
Micromachines 2023, 14(7), 1399; https://doi.org/10.3390/mi14071399 - 9 Jul 2023
Cited by 10 | Viewed by 2346
Abstract
In this paper, a twelve-antenna system is designed for 5G smartphones with metal frames. The system is compact and operates on dual bands within the sub-6 GHz frequency range using multiple-input multiple-output (MIMO) technology. Two sets of six-antenna units are included in the [...] Read more.
In this paper, a twelve-antenna system is designed for 5G smartphones with metal frames. The system is compact and operates on dual bands within the sub-6 GHz frequency range using multiple-input multiple-output (MIMO) technology. Two sets of six-antenna units are included in the system, arranged in a diagonal mirror-image configuration, and positioned at the center of the circuit board’s longer edges. The profile height of each of the six-antenna units is only 3 mm, and the overall array dimensions are 105 × 3 × 3.1 mm3. A single antenna unit is 15 × 3 × 3.1 mm3 (0.173 λ × 0.035 λ × 0.036 λ, where λ equals the free-space wavelength of 3450 MHz). The arrangement of the antennas in the six-antenna units is parallel, with a 3 mm separation between adjacent antennas. The antenna structure comprises of an inverted L-shaped feed branch and two inverted L-shaped short-circuit branches integrated into part of the metal frame. The proposed array can form multiple resonance paths, achieving dual-band operation at 3300–3600 MHz and 4800–5000 MHz. The measured isolation of this twelve-antenna system within the operating frequency band is over 10 dB, and the measured antenna efficiency is greater than 36%. Therefore, the system is suitable for use in smartphones with high screen-to-body ratios and metal frames. Full article
Show Figures

Figure 1

Back to TopTop