Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = metal bipolar plate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2298 KiB  
Review
Degradation and Corrosion of Metal Components in High-Temperature Fuel Cells and Electrolyzers: Review of Protective Approaches
by Pavel Shuhayeu, Olaf Dybiński, Karolina Majewska, Aliaksandr Martsinchyk, Monika Łazor, Katsiaryna Martsinchyk, Arkadiusz Szczęśniak and Jarosław Milewski
Energies 2025, 18(13), 3317; https://doi.org/10.3390/en18133317 - 24 Jun 2025
Viewed by 720
Abstract
High-temperature fuel cells and electrolyzers, particularly molten carbonate fuel cells (MCFCs) and Molten Carbonate Electrolyzers (MCEs), are expected to play a critical role in clean power generation, hydrogen production, and integrated CO2 separation. Unfortunately, despite their potential, these technologies have not yet [...] Read more.
High-temperature fuel cells and electrolyzers, particularly molten carbonate fuel cells (MCFCs) and Molten Carbonate Electrolyzers (MCEs), are expected to play a critical role in clean power generation, hydrogen production, and integrated CO2 separation. Unfortunately, despite their potential, these technologies have not yet reached full commercialization. The main reason for this is material degradation. In particular, the corrosion of metallic components continues to be a leading cause of performance loss and system failure. This review provides a comprehensive assessment of degradation mechanisms in MCFC and MCE systems. It examines key metallic components, such as current collectors and bipolar plates, focusing on the performance of commonly used materials, including stainless steels and advanced alloys, under prolonged exposure to corrosive environments. To address degradation issues, this review evaluates current mitigation strategies and discusses material selection, protective coatings application, and the optimization of operational parameters. Advances in alloy development, coatings, surface treatments, and process controls have been compared in terms of effectiveness, scalability, and long-term stability. The review concludes with a synthesis of current best practices and future directions, emphasizing the need for integrated, multi-functional solutions to achieve the lifetimes required for full commercialization. By linking materials science, electrochemistry, and systems engineering, this review offers directions for the development of corrosion-resistant MCFC and MCE technologies in support of a hydrogen-based, carbon-neutral energy future. Full article
(This article belongs to the Special Issue Advances in Electrochemical Power Sources: Systems and Applications)
Show Figures

Figure 1

15 pages, 4194 KiB  
Article
Performance Enhancement of a-C:Cr Thin Films Deposited on 316L Stainless Steel as Bipolar Plates via a Thin Ti Layer by Mid-Frequency Magnetron Sputtering for PEMFC Application
by Yuxing Zhao, Song Li, Saiqiang Wang, Ming Ma, Ming Chen, Jiao Yang, Chunlei Yang and Weimin Li
Energies 2025, 18(13), 3270; https://doi.org/10.3390/en18133270 - 23 Jun 2025
Viewed by 340
Abstract
Ti/a-C:Cr multilayer films were deposited on 316L stainless steel (SS316L) substrates using medium-frequency alternating current magnetron sputtering, with a single-layer a-C:Cr film also prepared on a titanium substrate. The influence of sputtering pressure on the film’s structure and properties was systematically investigated. Film [...] Read more.
Ti/a-C:Cr multilayer films were deposited on 316L stainless steel (SS316L) substrates using medium-frequency alternating current magnetron sputtering, with a single-layer a-C:Cr film also prepared on a titanium substrate. The influence of sputtering pressure on the film’s structure and properties was systematically investigated. Film morphology and microstructure were analyzed via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM). At a pressure of 1.4 MPa, the interfacial contact resistance (ICR) of SS316L bipolar plates (BPPs) coated with the films reached as low as 3.30 mΩ·cm2, while that of titanium BPPs was 2.90 mΩ·cm2. Under simulated proton exchange membrane fuel cell (PEMFC) cathode conditions (70 °C, 0.6 V vs. SCE, 0.5 M H2SO4, 5 ppm HF solution), the corrosion current density, Icorr, reached optimal values of 0.69 μA·cm−2 for SS316L and 0.62 μA·cm−2 for titanium. These results demonstrate that parameter optimization enables SS316L BPPs to functionally replace titanium counterparts, offering significant cost reductions for metal BPPs and accelerating the commercialization of PEMFC technology. Full article
Show Figures

Figure 1

11 pages, 10009 KiB  
Article
Influence of Welding Speed on the Microstructure and Mechanical Properties of Laser-Welded Joints in 316L Stainless Steel Sheets
by Jianqiang Liu, Yu Nie, Qiaobo Feng, Xiuyu Liang, Haiyang Lei, Sizhe Niu and Ming Lou
Metals 2025, 15(6), 624; https://doi.org/10.3390/met15060624 - 31 May 2025
Viewed by 644
Abstract
This study investigates the effect of welding speed on the microstructure and mechanical properties of pulsed laser lap-welded 0.2 mm 316L stainless steel sheets, commonly used in fuel cell bipolar plates. Welding speeds ranging from 6 to 26 mm/s were tested while other [...] Read more.
This study investigates the effect of welding speed on the microstructure and mechanical properties of pulsed laser lap-welded 0.2 mm 316L stainless steel sheets, commonly used in fuel cell bipolar plates. Welding speeds ranging from 6 to 26 mm/s were tested while other laser parameters remained constant. Results show that increasing welding speed reduces heat input, overlap factor, and weld dimensions. A transition from full to partial penetration occurs beyond 6 mm/s, with no visible heat-affected zone. The weld microstructure features columnar ferrite near fusion boundaries and globular ferrite in the center. Tensile–shear tests reveal that welds maintain higher strength than the base metal up to 22 mm/s, with all fractures occurring in the base material. An optimal speed range of 10–14 mm/s ensures defect-free joints with improved mechanical performance. These findings provide practical guidance for thin-gauge stainless steel welding in fuel cell applications. Full article
(This article belongs to the Special Issue New Welding Materials and Green Joint Technology—2nd Edition)
Show Figures

Figure 1

17 pages, 11207 KiB  
Article
Metallic Bipolar Plate Production Through Additive Manufacturing: Contrasting MEX/M and PBF-LB/M Approaches
by Karim Asami, Sebastian Roth, Jan Hünting, Tim Röver and Claus Emmelmann
J. Exp. Theor. Anal. 2025, 3(2), 12; https://doi.org/10.3390/jeta3020012 - 14 Apr 2025
Viewed by 599
Abstract
Additive manufacturing (AM) technologies have witnessed remarkable advancements, offering opportunities to produce complex components across various industries. This paper explores the potential of AM for fabricating bipolar plates (BPPs) in fuel cell or electrolysis cell applications. BPPs play a critical role in the [...] Read more.
Additive manufacturing (AM) technologies have witnessed remarkable advancements, offering opportunities to produce complex components across various industries. This paper explores the potential of AM for fabricating bipolar plates (BPPs) in fuel cell or electrolysis cell applications. BPPs play a critical role in the performance and efficiency of such cells, and conventional manufacturing methods often face limitations, particularly concerning the complexity and customization of geometries. The focus here lies in two specific AM methods: the laser powder bed fusion of metals (PBF-LB/M) and material extrusion of metals (MEX/M). PBF-LB/M, tailored for high-performance applications, enables the creation of highly complex geometries, albeit at increased costs. On the other hand, MEX/M excels in rapid prototyping, facilitating the swift production of diverse geometries for real-world testing. This approach can facilitate the evaluation of geometries suitable for mass production via sinter-based manufacturing processes. The geometric deviations of different BPPs were identified by evaluating 3D scans. The PBF-LB/M method is more suitable for small features, while the MEX/M method has lower deviations for geometrically less complex BPPs. Through this investigation, the limits of the capabilities of these AM methods became clear, knowledge that can potentially enhance the design and production of BPPs, revolutionizing the energy conversion and storage landscape and contributing to the design of additive manufacturing technologies. Full article
Show Figures

Figure 1

15 pages, 2720 KiB  
Article
Ion Implantation Combined with Heat Treatment Enables Excellent Conductivity and Corrosion Resistance of Stainless Steel Bipolar Plate Anode for Hydrogen Fuel Cells
by Li Ding, Chaoqin Ren, Ruijuan Wang, Meng Yang and Yong Pan
Materials 2025, 18(7), 1483; https://doi.org/10.3390/ma18071483 - 26 Mar 2025
Viewed by 570
Abstract
The broad use of (stainless steel) SS 316 L bipolar plates (BPs) in proton exchange membrane fuel cells relies (PEMFC) on high conductivity and corrosion resistance. To enhance the properties of stainless steel, this study applies ion implantation and heat treatment to form [...] Read more.
The broad use of (stainless steel) SS 316 L bipolar plates (BPs) in proton exchange membrane fuel cells relies (PEMFC) on high conductivity and corrosion resistance. To enhance the properties of stainless steel, this study applies ion implantation and heat treatment to form a non-homogeneous modified layer on SS 316 L. The injection of C and Mo ions on the SS 316 L surface caused irradiation damage, producing holes. But with the heat treatment of the ion-implanted samples, the irradiation-damaged surface will be repaired to a certain extent. The corrosion current density (Icorr) of the 600 °C sample in the kinetic potential test (5.32 × 10−4 A/cm2) was 54% lower than that of the naked SS 316 L (1.17 × 10−3 A/cm2). In the electrostatic potential test, the corrosion current of the 600 °C sample stabilized at a low value (about 0.26 μA/cm2), with the lowest concentration of dissolved metal ions (Fe2+ 2.908 mg/L). After anodic electrostatic potential polarization, the interfacial contact resistance (ICR) of (Mo+C)600-1 was much lower than that of the untreated SS 316 L. Heat treatment experiments show that samples treated at 600 °C for 1 h exhibit significantly higher conductivity and anodic corrosion resistance than naked SS 316 L. This improvement is mainly due to the heat treatment under these conditions, which facilitated the formation of Mo carbides from the implanted C and Mo elements. Ion implantation and heat treatment enhance stainless steel surface conductivity and passive film corrosion resistance. These findings are useful in altering stainless steel BPs. Full article
Show Figures

Figure 1

12 pages, 3213 KiB  
Article
Three-Dimensionally Printed Metal-Coated Flow-Field Plate for Lightweight Polymer Electrolyte Membrane Fuel Cells
by Dasol Kim, Geonhwi Kim, Juho Na, Hyeok Kim, Jaeyeon Kim, Guyoung Cho and Taehyun Park
Energies 2025, 18(6), 1533; https://doi.org/10.3390/en18061533 - 20 Mar 2025
Viewed by 589
Abstract
This study investigates the potential for affordable and lightweight polymer electrolyte membrane fuel cells (PEMFCs) using lightweight flow-field plates, also referred to as bipolar plates. A comparative analysis was conducted on the performance of metal-coated and uncoated three-dimensional (3D)-printed flow-field plates, as well [...] Read more.
This study investigates the potential for affordable and lightweight polymer electrolyte membrane fuel cells (PEMFCs) using lightweight flow-field plates, also referred to as bipolar plates. A comparative analysis was conducted on the performance of metal-coated and uncoated three-dimensional (3D)-printed flow-field plates, as well as that of a conventional graphite flow-field plate. The fabrication of these lightweight flow-field plates involved the application of sputtering and 3D printing technologies. The polarization curves and corresponding electrochemical impedance spectra of PEMFCs with metal-coated 3D-printed, uncoated 3D-printed, and graphite flow-field plates were measured. The results demonstrate that the metal-coated 3D-printed flow-field plate exhibits a gravimetric power density of 5.21 mW/g, while the graphite flow-field plate registers a value of 2.78 mW/g, representing an 87.4% improvement in gravimetric power density for the metal-coated 3D-printed flow-field plate compared to the graphite flow-field plate. These findings suggest the feasibility of reducing the weight of PEMFCs using metal-coated 3D-printed flow-field plates. Full article
(This article belongs to the Special Issue Sustainable Development of Fuel Cells and Hydrogen Technologies)
Show Figures

Graphical abstract

14 pages, 3354 KiB  
Article
Simulation and Analysis of Different Bipolar Plate Geometrical Parameters on the Performance of PEM Fuel Cells Applying the Taguchi Method
by Raquel Busqué, Matias Bossio, Enric Rovira and Albert Brigido
Energies 2025, 18(4), 986; https://doi.org/10.3390/en18040986 - 18 Feb 2025
Cited by 1 | Viewed by 853
Abstract
This study examines the impact of key stamping process parameters on metallic bipolar plates for Proton Exchange Membrane Fuel Cell (PEMFC) performance using computational fluid dynamics (CFD) combined with thermal and electrochemical simulations and applying the design of experiments based on the Taguchi [...] Read more.
This study examines the impact of key stamping process parameters on metallic bipolar plates for Proton Exchange Membrane Fuel Cell (PEMFC) performance using computational fluid dynamics (CFD) combined with thermal and electrochemical simulations and applying the design of experiments based on the Taguchi method. An exhaustive study on this topic is not found in the literature, and this study aims to identify the most influential parameters and their interactions to optimize channel geometries for enhanced PEMFC performance within manufacturing limits. Main effects analysis revealed the BP–GDL contact length-to-pitch ratio as the most influential parameter, achieving the best performance at its higher end (0.4). The external radius showed improved performance at a lower value (0.14 mm), while pitch and channel height had smaller effects, favoring lower values (1 mm and 0.3 mm, respectively). The channel angle exhibited minimal impact but slightly improved performance at 35°. Interaction analysis highlighted a complex relationship between pitch and angle, indicating that their combined effects on current density vary with specific value combinations. A higher pitch (2.5 mm) reduced performance with lower angles, whereas a lower pitch (1 mm) improved performance with reduced angles. Finally, two new geometrical designs derived from these optimized parameter combinations enhanced fuel cell performance by 1.97% and 1.23% over the baseline, demonstrating the Taguchi method’s value in optimizing the geometrical design of metallic bipolar plates in PEMFCs. These findings contribute to advancing more efficient and practical fuel cell technologies. Full article
Show Figures

Figure 1

21 pages, 10698 KiB  
Article
A High-Precision Micro-Roll Forming Facility for Fuel Cell Metal Bipolar Plate Production
by Matthias Weiss, Peng Zhang and Michael Pereira
Micromachines 2025, 16(1), 91; https://doi.org/10.3390/mi16010091 - 14 Jan 2025
Viewed by 1371
Abstract
The metal bipolar plate is a critical component of the hydrogen fuel cell stack used in proton exchange membrane fuel cells. Bipolar plates must have high accuracy micro-channels with a high aspect ratio (AR) between the channel depth and the half [...] Read more.
The metal bipolar plate is a critical component of the hydrogen fuel cell stack used in proton exchange membrane fuel cells. Bipolar plates must have high accuracy micro-channels with a high aspect ratio (AR) between the channel depth and the half periodic width to achieve optimal cell performance. Conventional forming methods, such as micro-stamping, hydroforming, and rubber pad forming, cannot achieve these high ARs given that in these processes, material deformation is dominated by stretch deformation. In micro-roll forming the major deformation mode is bending, and this enables production of channels with higher ARs than is currently possible. However, micro-roll forming uses multiple sets of forming roll stands to form the part and this leads to technological challenges related to tool alignment and roll tool precision that must be overcome before widespread application can be achieved. This study presents a new methodology to achieve tight tool tolerances when producing micro-roll tooling by utilizing wire-EDM and micro-turning techniques. This is combined with a new micro-roll former design that enables high-precision tool alignment across multiple roll stations. Proof of concept is provided through micro-roll forming trials performed on ultra-thin titanium sheets that show that the proposed technology can achieve tight dimensional tolerances in the sub-millimeter scale that suits bipolar plate applications. Full article
(This article belongs to the Special Issue Microforming Technology and Its Applications)
Show Figures

Figure 1

12 pages, 2121 KiB  
Article
Facile Hydrothermal Synthesis and Resistive Switching Mechanism of the α-Fe2O3 Memristor
by Zhiqiang Yu, Qingcheng Wang, Jinhao Jia, Wenbo Kang, Meilian Ou and Zhimou Xu
Molecules 2024, 29(23), 5604; https://doi.org/10.3390/molecules29235604 - 27 Nov 2024
Viewed by 1124
Abstract
Among the transition metal oxides, hematite (α-Fe2O3) has been widely used in the preparation of memristors because of its excellent physical and chemical properties. In this paper, α-Fe2O3 nanowire arrays with a preferred orientation along the [...] Read more.
Among the transition metal oxides, hematite (α-Fe2O3) has been widely used in the preparation of memristors because of its excellent physical and chemical properties. In this paper, α-Fe2O3 nanowire arrays with a preferred orientation along the [110] direction were prepared by a facile hydrothermal method and annealing treatment on the FTO substrate, and then α-Fe2O3 nanowire array-based Au/α-Fe2O3/FTO memristors were obtained by plating the Au electrodes on the as-prepared α-Fe2O3 nanowire arrays. The as-prepared α-Fe2O3 nanowire array-based Au/α-Fe2O3/FTO memristors have demonstrated stable nonvolatile bipolar resistive switching behaviors with a high resistive switching ratio of about two orders of magnitude, good resistance retention (up to 103 s), and ultralow set voltage (Vset = +2.63 V) and reset voltage (Vreset = −2 V). In addition, the space charge-limited conduction (SCLC) mechanism has been proposed to be in the high resistance state, and the formation and destruction of the conductive channels modulated by oxygen vacancies have been suggested to be responsible for the nonvolatile resistive switching behaviors of the Au/α-Fe2O3/FTO memristors. Our results show the potential of the Au/α-Fe2O3/FTO memristors in nonvolatile memory applications. Full article
Show Figures

Figure 1

20 pages, 11517 KiB  
Article
Study on Springback Behavior in Hydroforming of Micro Channels for a Metal Bipolar Plate
by Zonghui Su, Wenlong Xie, Yong Xu, Changsheng Li, Liangliang Xia, Baocheng Yang, Mingyu Gao, Hongwu Song and Shihong Zhang
Materials 2024, 17(21), 5386; https://doi.org/10.3390/ma17215386 - 4 Nov 2024
Cited by 1 | Viewed by 1147
Abstract
Bipolar plates are one of the most important components of proton exchange membrane fuel cells. With the miniaturization of bipolar plate flow channel sizes and the increasing demand for precision, springback has become a key focus of research in the bipolar plate forming [...] Read more.
Bipolar plates are one of the most important components of proton exchange membrane fuel cells. With the miniaturization of bipolar plate flow channel sizes and the increasing demand for precision, springback has become a key focus of research in the bipolar plate forming process. In this paper, the hydroforming process for 316L stainless steel bipolar plates was studied, and an FEM model was built to examine the stress and strain at various locations on the longitudinal section of the plate. Modeling accuracy was validated by the comparison of experimental profile and thickness distribution. The effects of forming pressure and grain size on springback behavior are discussed. The results show that with increasing forming pressure, the springback value decreases initially, followed by an increase, but then again decreases. When the forming pressure is 80 MPa–100 MPa, the deformation of the lower element of the upper rounded corner is not uniform with more elastic regions, and the springback is positively correlated with forming pressure. The springback distribution pattern on the cross-section of the bipolar plate changes from a normal distribution to a distribution of “M” shape with increased pressure. The larger the grain size, the lower the yield strength elastic proportion, resulting in a decrease in springback of the sheet. The maximum amount of springback of the bipolar plate is 3.1 μm when the grain size is 60.7 μm. The research results provide a reference for improving the forming quality of metal bipolar plates with different flow channel shapes. Full article
Show Figures

Figure 1

15 pages, 5839 KiB  
Article
Electrochemical Behavior of Tantalum Nitride Protective Layers for PEMFC Application
by Aurélie Achille, Fabrice Mauvy, Sebastien Fourcade, Dominique Michau, Marjorie Cavarroc and Angéline Poulon-Quintin
Energies 2024, 17(20), 5099; https://doi.org/10.3390/en17205099 - 14 Oct 2024
Cited by 4 | Viewed by 1246
Abstract
Proton Exchange Membrane Fuel Cells (PEMFCs) are promising technology to convert chemical energy from dihydrogen in electrical energy. HT-PEMFCs are working at high temperatures (above 120 °C) and with doped orthophosphoric acid H3PO4 PBI membranes. In such devices, bipolar metallic [...] Read more.
Proton Exchange Membrane Fuel Cells (PEMFCs) are promising technology to convert chemical energy from dihydrogen in electrical energy. HT-PEMFCs are working at high temperatures (above 120 °C) and with doped orthophosphoric acid H3PO4 PBI membranes. In such devices, bipolar metallic plates are used to provide reactive gas inside the fuel cell and collect the electrical current. The metallic elements used as bipolar plates, end plates, and interconnectors in acid electrolyte and gaseous fuel cells are severely damaged by a combination of oxidation (due in particular to the use of oxygen, whether pure or contained in the air) and corrosion (due in particular to acid effluents from the electrolyte). This degradation rapidly leads to the loss of the electrical conductivity of the metallic elements and today requires the use of very specific alloys, possibly coated with pure gold. The solution investigated in the present study is the use of a protective coating based on single-phase nitrides obtained by reactive magnetron sputtering or reactive HiPIMS (High-Power Impulse Magnetron Sputtering). The influence of the microstructure on the physical–chemical properties was studied. The electrochemical properties were quantified following two approaches. First, the corrosion current of the developed coatings was measured at room temperature and at higher temperatures using the Linear Sweep Voltammetry (LSV) technique. Then, Electrochemical Impedance Spectroscopy (EIS) measurements were performed to better identify and evaluate their corrosion-resistance performances. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

11 pages, 18667 KiB  
Article
Corrosion and Interfacial Contact Resistance of NiTi Alloy as a Promising Bipolar Plate for PEMFC
by Yingping Li, Xiaofen Wang, Yuanyuan Li, Zhuo He, Guohong Zhang, Zhen Wang, Shaohua Wang, Fei Hu and Qiongyu Zhou
Molecules 2024, 29(15), 3696; https://doi.org/10.3390/molecules29153696 - 5 Aug 2024
Cited by 1 | Viewed by 2008
Abstract
Titanium (Ti) is generally considered as an ideal bipolar plate (BPP) material because of its excellent corrosion resistance, good machinability and lightweight nature. However, the easy-passivation property, which leads to increased interfacial contact resistance (ICR) and subsequently decreased cell performance, limits its large-scale [...] Read more.
Titanium (Ti) is generally considered as an ideal bipolar plate (BPP) material because of its excellent corrosion resistance, good machinability and lightweight nature. However, the easy-passivation property, which leads to increased interfacial contact resistance (ICR) and subsequently decreased cell performance, limits its large-scale commercial application in proton exchange membrane fuel cells (PEMFCs). In this paper, we proposed a NiTi alloy prepared by suction casting as a promising bipolar plate for PEMFCs. This NiTi alloy exhibits significantly decreased ICR values (16.8 mΩ cm2 at 1.4 MPa) compared with pure Ti (88.6 mΩ cm2 at 1.4 MPa), along with enhanced corrosion resistance compared with pure nickel (Ni). The superior corrosion resistance of NiTi alloy is accredited to the nobler open circuit potential and corrosion potential, coupled with low corrosion current densities and passive current densities. The improved ICR can be interpreted by the existence of high-proportioned metallic Ni in the passive film, which contributes to the reduced capacitance characteristic of the passive film (compared with Ti) and enhances charge conduction. This work provides a feasible option to ameliorate BPP material that may have desirable corrosion resistance and ICR. Full article
(This article belongs to the Special Issue Electroanalysis of Biochemistry and Material Chemistry)
Show Figures

Graphical abstract

34 pages, 12489 KiB  
Review
Design and Manufacturing Challenges in PEMFC Flow Fields—A Review
by Prithvi Raj Pedapati, Shankar Raman Dhanushkodi, Ramesh Kumar Chidambaram, Dawid Taler, Tomasz Sobota and Jan Taler
Energies 2024, 17(14), 3499; https://doi.org/10.3390/en17143499 - 17 Jul 2024
Cited by 9 | Viewed by 3696
Abstract
Proton exchange membrane fuel cells are a prime choice for substitute electricity producers. Membrane electrode assembly (MEA), bipolar electrodes, and current collectors belong to only a limited number of primary parts of the proton exchange membrane fuel cell (PEMFC). Bipolar plates are among [...] Read more.
Proton exchange membrane fuel cells are a prime choice for substitute electricity producers. Membrane electrode assembly (MEA), bipolar electrodes, and current collectors belong to only a limited number of primary parts of the proton exchange membrane fuel cell (PEMFC). Bipolar plates are among the most famous elements in the fuel cell; they are responsible for the electrochemical reaction, as well as the flow of gases from one bipolar plate to another. A bipolar plate is to be a good electro-conducting, non-corrosive, and a high mechanical strength product. The attainability of the specification is achieved by graphite and metallic materials, each one having its own merits and demerits that are discussed in this article. Likewise, making the second pass for the flow pattern is equally important for the cell to have good performance and efficiency. The emergence of innovative and new bipolar plate designs has caused the achievement of high performance of these plates. The present review article principally focuses on the experimental study of diverse flow fields in the design of PEMFC and on the influence of various geometrical properties on the general operation of fuel cells made of PEMFC, and also on the manufacturing procedure utilized for building contemporary fuel cells. Full article
(This article belongs to the Special Issue Sustainable Development of Fuel Cells and Hydrogen Technologies)
Show Figures

Figure 1

16 pages, 1201 KiB  
Review
Performance of Stainless-Steel Bipolar Plates (SS-BPPs) in Polymer Electrolyte Membrane Water Electrolyser (PEMWE): A Comprehensive Review
by Eirini Zagoraiou, Soorya Krishan, Amal Siriwardana, Anastasia Maria Moschovi and Iakovos Yakoumis
Compounds 2024, 4(2), 252-267; https://doi.org/10.3390/compounds4020013 - 29 Mar 2024
Cited by 3 | Viewed by 3717
Abstract
Bipolar Plates (BPPs) play a critical role in Polymer Electrolyte Membrane Water Electrolysers (PEMWEs) for effective hydrogen generation. The performance and longevity of the system can be considerably impacted by choosing the suitable material for these components. Polymer electrolyte membrane water electrolysis technology [...] Read more.
Bipolar Plates (BPPs) play a critical role in Polymer Electrolyte Membrane Water Electrolysers (PEMWEs) for effective hydrogen generation. The performance and longevity of the system can be considerably impacted by choosing the suitable material for these components. Polymer electrolyte membrane water electrolysis technology relies on cost-effective and corrosion-resistant BPPs. Tantalum, niobium, and titanium are low-cost, easy-to-machine materials that have good electrical and thermal conductivity; however, they exhibit low corrosion resistance. Noble metal and metal nitride coatings are usually investigated to minimize corrosion and interfacial contact resistance. Because of its performance-to-cost ratio, Stainless Steel (SS) based materials are among the most popular materials for BPP development. This study recommends material and operating parameters to improve PEMWE systems for sustainable hydrogen production’s efficiency, durability, and economic viability. Full article
Show Figures

Graphical abstract

21 pages, 9015 KiB  
Review
Thermal Sprayed Protective Coatings for Bipolar Plates of Hydrogen Fuel Cells and Water Electrolysis Cells
by Tao Liu, Youkun Tao, Yanli Wang, Mingfeng Wu, Jin Zhang, Yang Yu, Xingfu Wang and Jing Shao
Coatings 2024, 14(3), 307; https://doi.org/10.3390/coatings14030307 - 1 Mar 2024
Cited by 3 | Viewed by 4452
Abstract
As one core component in hydrogen fuel cells and water electrolysis cells, bipolar plates (BPs) perform multiple important functions, such as separating the fuel and oxidant flow, providing mechanical support, conducting electricity and heat, connecting the cell units into a stack, etc. On [...] Read more.
As one core component in hydrogen fuel cells and water electrolysis cells, bipolar plates (BPs) perform multiple important functions, such as separating the fuel and oxidant flow, providing mechanical support, conducting electricity and heat, connecting the cell units into a stack, etc. On the path toward commercialization, the manufacturing costs of bipolar plates have to be substantially reduced by adopting low-cost and easy-to-process metallic materials (e.g., stainless steel, aluminum or copper). However, these materials are susceptible to electrochemical corrosion under harsh operating conditions, resulting in long-term performance degradation. By means of advanced thermal spraying technologies, protective coatings can be prepared on bipolar plates so as to inhibit oxidation and corrosion. This paper reviews several typical thermal spraying technologies, including atmospheric plasma spraying (APS), vacuum plasma spraying (VPS) and high-velocity oxygen fuel (HVOF) spraying for preparing coatings of bipolar plates, particularly emphasizing the effect of spraying processes on coating effectiveness. The performance of coatings relies not only on the materials as selected or designed but also on the composition and microstructure practically obtained in the spraying process. The temperature and velocity of in-flight particles have a significant impact on coating quality; therefore, precise control over these factors is demanded. Full article
Show Figures

Graphical abstract

Back to TopTop