Electrochemical Behavior of Tantalum Nitride Protective Layers for PEMFC Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Deposition Method
2.2. Electrical and Electrochemical Measurements
2.3. Structural, Microstructural, and Surface Analyses
3. Results and Discussion
3.1. Material Characterization
3.2. Electrical Conductivity
3.3. Electrochemical Measurements
3.3.1. Voltammetry
3.3.2. Electrochemical Impedance Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hydrogen Council. Available online: https://hydrogencouncil.com/en/ (accessed on 1 January 2023).
- Hermann, A.; Chaudhuri, T.; Spagnol, P. Bipolar plates for PEM fuel cells: A review. Int. J. Hydrogen. Energy 2005, 30, 1297–1302. [Google Scholar] [CrossRef]
- Antunes, R.A.; Oliveira, M.C.L.; Ett, G.; Ett, V. Corrosion of metal bipolar plates for PEM fuel cells: A review. Int. J. Hydrogen Energy 2010, 35, 3632–3647. [Google Scholar] [CrossRef]
- Cherevko, S.; Topalov, A.; Katsounaros, I.; Mayrhofer, K. Electrochemical dissolution of gold in acidic medium. Electrochem. Commun. 2013, 28, 44–46. [Google Scholar] [CrossRef]
- Cherevko, S.; Topalov, A.A.; Zeradjanin, A.R.; Katsounaros, I.; Mayrhofer, K.J.J. Gold dissolution: Towards understanding of noble metal corrosion. RSC Adv. 2013, 3, 16516–16527. [Google Scholar] [CrossRef]
- Anders, A. Tutorial: Reactive high-power impulse magnetron sputtering (R-HiPIMS). J. Appl. Phys. 2017, 121, 171101. [Google Scholar] [CrossRef]
- United States Driving Research and Innovation for Vehicle et Efficiency and Energy Sustainability, Fuel Cell Technical Team Roadmap. November 2017. Available online: https://www.energy.gov/sites/default/files/2017/11/f46/FCTT_Roadmap_Nov_2017_FINAL.pdf (accessed on 25 September 2024).
- Lundin, D.; Sarakinos, K. An introduction to thin film processing using high-power impulse magnetron sputtering. J. Mater. Res. Focus Issue Plasma Ion-Beam Assist. Mater. Process. 2012, 27, 780–792. [Google Scholar] [CrossRef]
- Michiels, M.; Konstantinidis, S.; Snyders, R.; La pulvérisation cathodique magnétron en régime d’impulsions de haute puissance (HiPIMS). Techniques de l’Ingénieur. Available online: https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/traitements-de-surface-des-metaux-par-voie-seche-et-en-milieu-fondu-42360210/la-pulverisation-cathodique-magnetron-en-regime-d-impulsions-de-haute-puissance-hipims-in207/ (accessed on 25 September 2024).
- Attabi, S.; Himour, A.; Laouar, L.; Motallebzadeh, A. Mechanical and wear behaviors of 316L stainless steel after ball burnishing treatment. J. Mater. Res. Technol. 2021, 15, 3255–3267. [Google Scholar] [CrossRef]
- Giroire, B.; Ahmad, M.A.; Aubert, G.; Teule-Gay, L.; Michau, D.; Watkins, J.J.; Aymonier, C.; Poulon-Quintin, A. A comparative study of copper thin films deposited using magnetron sputtering and supercritical fluid deposition techniques. Thin Solid Film. 2017, 643, 53–59. [Google Scholar] [CrossRef]
- Nieto, A.; Guzmán, M.; Conde-Gallardo, A.; Contreras, O. Synthesis of Superconductive TaN Thin Films by Reactive DC Sputtering. J. Electron. Mater. 2022, 51, 4649–4658. [Google Scholar] [CrossRef]
- Ehiasarian, A.P.; New, R.; Münz, W.-D.; Hultman, L.; Helmersson, U.; Kouznetsov, V. Influence of high-power densities on the composition of pulsed magnetron plasmas. Vacuum 2002, 65, 147–154. [Google Scholar] [CrossRef]
- Bernoulli, D.; Müller, U.; Schwarzenberger, M.; Hauert, R.; Spolenak, R. Magnetron sputter deposited tantalum and tantalum nitride thin films: An analysis of phase, hardness and composition. Thin Solid Film. 2013, 548, 157–161. [Google Scholar] [CrossRef]
- Nazon, J.; Sarradin, J.; Flaud, V.; Tedenac, J.C.; Fréty, N. Effects of processing parameters on the properties of tantalum nitride thin films deposited by reactive sputtering. J. Alloys Compd. 2008, 464, 526–531. [Google Scholar] [CrossRef]
- Vargas, M.; Castillo, H.A.; Restrepo-Parra, E.; De La Cruz, W. Stoichiometry behavior of TaN, TaCN and TaC thin films produced by magnetron sputtering. Appl. Surf. Sci. 2013, 279, 7–12. [Google Scholar] [CrossRef]
- Cheviot, M.; Gouné, M.; Poulon-Quintin, A. Monitoring tantalum nitride thin film structure by reactive RF magnetron sputtering: Influence of processing parameters. Surf. Coat. Technol. 2015, 284, 192–197. [Google Scholar] [CrossRef]
- Sarakinos, K.; Martinu, L. Synthesis of thin films and coatings by high power impulse magnetron sputtering. In High Power Impulse Magnetron Sputtering; Lundin, D., Minea, T., Gudmundsson, J.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 333–374. [Google Scholar] [CrossRef]
- Sarakinos, K.; Alami, J.; Konstantinidis, S. High power pulsed magnetron sputtering: A review on scientific and engineering state of the art. Surf. Coat. Technol. 2010, 204, 1661–1684. [Google Scholar] [CrossRef]
- Chang, C.-C.; Jeng, J.S.; Chen, J.S. Microstructural and electrical characteristics of reactively sputtered Ta-N thin films. Thin Solid Film. 2002, 413, 46–51. [Google Scholar] [CrossRef]
- Matula, R.A. Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 1979, 8, 1147–1298. [Google Scholar] [CrossRef]
- Zaman, A.; Meletis, E. Microstructure and Mechanical Properties of TaN Thin Films Prepared by Reactive Magnetron Sputtering. Coatings 2017, 7, 209. [Google Scholar] [CrossRef]
- Frisk, K. Analysis of the phase diagram and thermochemistry in the Ta–N and the Ta–C–N systems. J. Alloys Compd. 1998, 278, 216–226. [Google Scholar] [CrossRef]
- Lacy, F. Developing a theoretical relationship between electrical resistivity, temperature, and film thickness for conductors. Nanoscale Res. Lett. 2011, 6, 636. [Google Scholar] [CrossRef]
- Umran, U. Resistivity of Steel. In The Physics Factbook; Glenn, E., Ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Kim, D.-K.; Lee, H.; Kim, D.; Kim, Y.K. Electrical and mechanical properties of tantalum nitride thin films deposited by reactive sputtering. J. Cryst. Growth 2005, 283, 404–408. [Google Scholar] [CrossRef]
- Yu, L.; Stampfl, C.; Marshall, D.; Eshrich, T.; Narayanan, V.; Rowell, J.M.; Newman, N.; Freemanand, A.J. Mechanism and control of the metal-to-insulator transition in rock salt tantalum nitride. Phys. Rev. B 2002, 65, 245110. [Google Scholar] [CrossRef]
- Tan, P.; Fu, L.; Teng, J.; Zhu, J.; Yang, W.; Zhou, L. Effect of texture on wear resistance of tantalum nitride film. Tribol. Int. 2019, 133, 126–135. [Google Scholar] [CrossRef]
- Riekkinen, T.; Molarius, J.; Laurila, T.; Nurmela, A.; Suni, I.; Kivilahti, J.K. Reactive sputter deposition and properties of TaxN thin films. Microelectron. Eng. 2002, 64, 289–297. [Google Scholar] [CrossRef]
- Alishahi, M.; Mahboubi, F.; Khoie, S.M.M.; Aparicio, M.; Hübner, R.; Soldera, F.; Gago, R. Electrochemical behavior of nanocrystalline Ta/TaN multilayer on 316L stainless steel: Novel bipolar plates for proton exchange membrane fuel-cells. J. Power Sources 2016, 322, 1–9. [Google Scholar] [CrossRef]
- Wang, L.W.L.; Li, L.; Liu, H.; Wang, S.; Fang, H.; Gao, H.; Gao, K.; Zhang, Y.; Sun, J.; Yan, J. Polylaminate TaN/Ta coating modified ferritic stainless steel bipolar plate for high temperature proton exchange membrane fuel cell. J. Power Sources 2018, 399, 343–349. [Google Scholar] [CrossRef]
- Mendizabal, L.; Oedegaard, A.; Kongstein, O.E.; Lædre, S.; Walmsley, J.; Barriga, J.; Gonzalez, J.J. TaNX coatings deposited by HPPMS on SS316L bipolar plates for polymer electrolyte membrane fuel cells: Correlation between corrosion current, contact resistance and barrier oxide film formation. Int. J. Hydrogen Energy 2017, 42, 3259–3270. [Google Scholar] [CrossRef]
- Hernandez, H.H.H.; Reynoso, A.M.R.; Gonzalez, J.C.T.; Moran, C.O.G.; Hernandez, J.G.M.; Ruiz, A.M.; Hernandez, J.M.; Cruz, R.O. Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels. In Electrochemical Impedance Spectroscopy; El-Azazy, M., Min, M., Annus, P., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Li, Z. EIS Investigation and Structural Characterization of Different Hot-Dipped Zinc-Based Coatings in 3.5% NaCl Solution. Int. J. Electrochem. Sci. 2013, 8, 7753–7767. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Felhősi, I.; Keresztes, Z.; Harsányi, G.; Illés, B.; Medgyes, B. Electrochemical Corrosion of SAC Alloys: A Review. Metals 2020, 10, 1276. [Google Scholar] [CrossRef]
- Iken, H.; Basseguy, R.; Guenbour, A.; Bachir, A.B. Classic and local analysis of corrosion behaviour of graphite and stainless steels in polluted phosphoric acid. Electrochim. Acta 2007, 52, 2580–2587. [Google Scholar] [CrossRef]
Material | fcc-TaN MS | h-TaN MS | fcc-TaN HiPIMS | h-TaN HiPIMS |
---|---|---|---|---|
Ratio N/Ta XPS | 0.80 | 0.69 | 0.81 | 0.93 |
Material | Gold MS (Reference) | fcc-TaN RF-MS | h-TaN RF-MS | fcc-TaN HiPIMS | h-TaN HiPIMS | 316L (Substrate) |
---|---|---|---|---|---|---|
σ (S cm−1) | 1328 ± 23 | 362 ± 14 | 9366 ± 870 | 519 ± 2 | 3989 ± 137 | 14,396 ± 1223 |
ρ (µΩ cm) | 753 ± 13 | 2764 ± 108 | 107 ± 10 | 1929 ± 5 | 251 ± 9 | 70 ± 6 |
Temperature | Material | Gold MS | fcc-TaN MS | fcc-TaN HiPIMS | h-TaN MS | h-TaN HiPIMS |
---|---|---|---|---|---|---|
Room Temperature | Ecorr (V/ENH) | 1.9 ± 0.1 | 1.4 ± 0.2 | 1.4 ± 0.1 | 1.1 ± 0.2 | 1.1 ± 0.1 |
icorr (µA cm−2) | 6.5 ± 1.6 | 0.6 ± 0.1 | 0.5 ± 0.1 | 0.7 ± 0.1 | 0.5 ± 0.1 | |
120 °C | Ecorr (V/ENH) | 1.7 ± 0.1 ↘ | 0.8 ± 0.1 ↘↘ | 0.7 ± 0.1 ↘↘ | 0.9 ± 0.1 ↘ | 1.0 ± 0.2 →↘ |
icorr (µA cm−2) | 5.7 ± 1.1 ↘ | 1.0 ± 0.1 ↗↗ | 0.6 ± 0.1 → | 0.8 ± 0.1 → | 0.5 ± 0.1 → |
Material | Gold MS | fcc-TaN MS | fcc-TaN HiPIMS | h-TaN MS | h-TaN HiPIMS |
---|---|---|---|---|---|
Icathode (µA cm−2) | −565.6 | 0.8 | −1.5 | −2.3 | |
Ianode (µA cm−2) | 610.9 | 12.2 | 8.6 | 5.0 | 7.1 |
Material | 316L | Gold MS | fcc-TaN MS | fcc-TaN HiPIMS | h-TaN MS | h-TaN HiPIMS |
---|---|---|---|---|---|---|
R2 (Ω) | 19,823 | 43,241 | 1271 | 26,137 | 18,080 | 36,627 |
Ceq2 (F) | 6.60 · 10−5 | 2.95 · 10−5 | 1.96 · 10−4 | 4.59 · 10−5 | 6.79 · 10−5 | 2.11 · 10−4 |
Ceq3 (F) | 8.45 · 10−4 | 4.73 · 10−4 | 8.08 · 10−4 | 2.34 · 10−4 | 3.19 · 10−4 | 3.50 · 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achille, A.; Mauvy, F.; Fourcade, S.; Michau, D.; Cavarroc, M.; Poulon-Quintin, A. Electrochemical Behavior of Tantalum Nitride Protective Layers for PEMFC Application. Energies 2024, 17, 5099. https://doi.org/10.3390/en17205099
Achille A, Mauvy F, Fourcade S, Michau D, Cavarroc M, Poulon-Quintin A. Electrochemical Behavior of Tantalum Nitride Protective Layers for PEMFC Application. Energies. 2024; 17(20):5099. https://doi.org/10.3390/en17205099
Chicago/Turabian StyleAchille, Aurélie, Fabrice Mauvy, Sebastien Fourcade, Dominique Michau, Marjorie Cavarroc, and Angéline Poulon-Quintin. 2024. "Electrochemical Behavior of Tantalum Nitride Protective Layers for PEMFC Application" Energies 17, no. 20: 5099. https://doi.org/10.3390/en17205099
APA StyleAchille, A., Mauvy, F., Fourcade, S., Michau, D., Cavarroc, M., & Poulon-Quintin, A. (2024). Electrochemical Behavior of Tantalum Nitride Protective Layers for PEMFC Application. Energies, 17(20), 5099. https://doi.org/10.3390/en17205099