Design and Manufacturing Challenges in PEMFC Flow Fields—A Review
Abstract
:1. Introduction
Function of PEMFC
2. Design Requirements of Bipolar Plates
3. Flow-Field Design
3.1. Pin-Type Flow Field
3.2. Series-Parallel Flow Field
3.3. Serpentine Flow Field
4. Bio-Inspired Design
5. Circular Geometry
5.1. Geometry
5.2. Flow-Field Cross-Section
5.3. Tapered Section
5.4. Channel Width and Land Width
6. Optimized New Design
7. Fishbone Design
8. Baffle Shape Design
9. Blockages
10. Manufacturing and Materials of Flow-Field Plates
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AFF | Advanced Flow Field |
ASFF | Fishbone-Shaped Flow Field |
BP | Bipolar Plates |
CC | Current Conductive layer |
CFD | Computational Fluid Dynamics |
CFF | Convectional Flow Field |
CL | Catalytic Layer |
CPFF | Cathode Parallel Flow Field |
DMFC | Direct Methanol Fuel Cell |
EDM | Electronic Discharge Machine |
EFC | Electrochemical Fuel Cell |
FF | Fluid Field |
FFP | Flow-Field Pattern |
FEP | Fluorinated Ethylene Propylene |
GDL | Digital Layer |
GDM | Gas Diffusion Medium |
LG | Serpentine design |
L1 and L2 | Straight channel configuration |
MEA | Membrane Exchange Assembly |
MPSFF | Micro Porous Substrate Flow Field |
NF | Net-flow Field |
PEFC | Polymer Electrolyte Fuel Cells |
PEMFC | Proton Exchange Membrane Fuel Cell |
PSFP | Parallel Serpentine Flow Pattern |
QC | Quality Control |
S | Integrated flow field design |
SF | Spares-flow Field |
SFF | Serpentine Flow Field |
SOFC | Solid Oxide Fuel Cell |
References
- Dhanushkodi, S.R.; Kundu, S.; Fowler, M.W.; Pritzker, M.D. Study of the effect of temperature on Pt dissolution in polymer electrolyte membrane fuel cells via accelerated stress tests. J. Power Sources 2014, 245, 1035–1045. [Google Scholar] [CrossRef]
- Li, X. Bipolar plates and flow field design. In Fuel Cells for Transportation; Woodhead Publishing: Cambridge, UK, 2023; pp. 305–337. [Google Scholar]
- Fuller, T.F.; Harb, J.N. Electrochemical Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Das, P.K.; Jiao, K.; Wang, Y.; Barbir, F.; Li, X. (Eds.) Fuel Cells for Transportation: Fundamental Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Das, P.K.; Barbir, F.; Jiao, K.; Wang, Y.; Li, X. Fuel cells for transportation—An overview. Fuel Cells Transp. 2023, 1–28. [Google Scholar]
- Talebi-Ghadikolaee, H.; Modanloo, V.; Elyasi, M.; Khatir, F.A. Multiple criteria decision support analysis for manu-facturing process parameters selection of metallic bipolar plates for polymer electrolyte membrane fuel cells. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2024, 238, 929–942. [Google Scholar]
- Zhang, J.; Zhang, H.; Wu, J.; Zhang, J. PEM Fuel Cell Fundamentals. In Pem Fuel Cell Testing and Diagnosis; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–42. [Google Scholar]
- Zhang, L.; Shi, Z. Optimization of serpentine flow field in proton-exchange membrane fuel cell under the effects of external factors. Alex. Eng. J. 2020, 60, 421–433. [Google Scholar] [CrossRef]
- Mayrhofer, K.J.; Arenz, M. Fuel cells: Log on for new catalysts. Nat. Chem. 2009, 1, 518. [Google Scholar] [CrossRef] [PubMed]
- Gröger, O.; Gasteiger, H.A.; Suchsland, J.-P. Electromobility: Batteries or fuel cells? J. Electrochem. Soc. 2015, 162, A2605–A2622. [Google Scholar] [CrossRef]
- Curnick, O.J.; Mendes, P.M.; Pollet, B.G. Enhanced durability of a Pt/C electrocatalyst derived from Nafion-stabilised colloidal platinum nanoparticles. Electrochem. Commun. 2010, 12, 1017–1020. [Google Scholar] [CrossRef]
- Dhanushkodi, S.R.; Tam, M.; Kundu, S.; Fowler, M.W.; Pritzker, M.D. Carbon corrosion fingerprint development and de-convolution of performance loss according to degradation mechanism in PEM fuel cells. J. Power Sources 2013, 240, 114–121. [Google Scholar] [CrossRef]
- Tongsh, C.; Wu, S.; Jiao, K.; Huo, W.; Du, Q.; Park, J.W.; Xuan, J.; Wang, H.; Brandon, N.P.; Guiver, M.D. Fuel cell stack redesign and component integration radically increase power density. Joule 2024, 8, 175–192. [Google Scholar] [CrossRef]
- Baratov, S.; Filonova, E.; Ivanova, A.; Hanif, M.B.; Irshad, M.; Khan, M.Z.; Motola, M.; Rauf, S.; Medvedev, D. Current and further tra-jectories in designing functional materials for solid oxide electrochemical cells: A review of other reviews. J. Energy Chem. 2024, 94, 302–331. [Google Scholar] [CrossRef]
- Guan, D.; Wang, B.; Zhang, J.; Shi, R.; Jiao, K.; Li, L.; Wang, Y.; Xie, B.; Zhang, Q.; Yu, J.; et al. Hydrogen society: From present to future. Energy Environ. Sci. 2023, 16, 4926–4943. [Google Scholar] [CrossRef]
- Li, X.; Sabir, I. Review of bipolar plates in PEM fuel cells: Flow-field designs. Int. J. Hydrogen Energy 2004, 30, 359–371. [Google Scholar] [CrossRef]
- Borup, R.L.; Vanderborgh, N.E. Design and testing criteria for bipolar plate materials for PEM fuel cell applications. MRS Online Proc. Libr. 1995, 393, 151–155. [Google Scholar] [CrossRef]
- Gößling, S.; Klages, M.; Haußmann, J.; Beckhaus, P.; Messerschmidt, M.; Arlt, T.; Kardjilov, N.; Manke, I.; Scholta, J.; Heinzel, A. Analysis of liquid water formation in polymer electrolyte membrane (PEM) fuel cell flow fields with a dry cathode supply. J. Power Sources 2016, 306, 658–665. [Google Scholar] [CrossRef]
- Pozio, A.; Zaza, F.; Masci, A.; Silva, R. Bipolar plate materials for PEMFCs: A conductivity and stability study. J. Power Sources 2008, 179, 631–639. [Google Scholar] [CrossRef]
- Chen, P.; Fang, F.; Zhang, Z.; Zhang, W.; Wang, Y. Self-assembled graphene film to enable highly conductive and corrosion resistant aluminum bipolar plates in fuel cells. Int. J. Hydrogen Energy 2017, 42, 12593–12600. [Google Scholar] [CrossRef]
- Wang, C. Low Cost PEM Fuel Cell Metal Bipolar Plates (No. DOE/EE/463); TreadStone Technologies, Inc.: Princeton, NJ, USA, 2013. [Google Scholar]
- Turhan, A.; Kim, S.; Hatzell, M.; Mench, M.M. Impact of channel wall hydrophobicity on through-plane water distribution and flooding behavior in a polymer electrolyte fuel cell. Electrochim. Acta 2010, 55, 2734–2745. [Google Scholar] [CrossRef]
- Papadias, D.D.; Ahluwalia, R.K.; Thomson, J.K.; Meyer, H.M., III; Brady, M.P.; Wang, H.; Turner, J.A.; Mukundan, R.; Borup, R. Degradation of SS316L bipolar plates in simulated fuel cell environment: Corrosion rate, barrier film formation kinetics and contact resistance. J. Power Sources 2015, 273, 1237–1249. [Google Scholar] [CrossRef]
- Reiser, C.A.; Sawyer, R.D. Solid Polymer Electrolyte Fuel Cell Stack Water Management System; International Fuel Cells Corp.: South Windsor, CT, USA, 1988. [Google Scholar]
- Water and Heat Management in Solid Polymer Fuel Cell Stack. U.S. Patent 4826742, 2 May 1989. Available online: https://patents.google.com/patent/US4826742 (accessed on 25 June 2021).
- Guo, N.; Leu, M.C.; Koylu, U.O. Network based optimization model for pin-type flow field of polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy 2013, 38, 6750–6761. [Google Scholar] [CrossRef]
- Dong-Hui, W.; Lin-Zhi, Y.; Zhong-Yu, P.; Cong-Da, L.; Gang, L.; Qiao-Hui, L. A novel intersectant flow field of metal bipolar plate for proton exchange membrane fuel cell. Int. J. Energy Res. 2017, 41, 2184–2193. [Google Scholar] [CrossRef]
- Bhattacharya, D.; Mukhopadhyay, J.; Biswas, N.; Basu, R.N.; Das, P.K. Performance evaluation of different bipolar plate designs of 3D planar anode-supported SOFCs. Int. J. Heat Mass Transf. 2018, 123, 382–396. [Google Scholar] [CrossRef]
- Zhang, G.; Guan, Z.; Li, D.; Li, G.; Bai, S.; Sun, K.; Cheng, H. Optimization Design of a Parallel Flow Field for PEMFC with Bosses in Flow Channels. Energies 2023, 16, 5492. [Google Scholar] [CrossRef]
- Lim, B.; Majlan, E.; Daud, W.; Rosli, M.; Husaini, T. Numerical analysis of modified parallel flow field designs for fuel cells. Int. J. Hydrogen Energy 2017, 42, 9210–9218. [Google Scholar] [CrossRef]
- Li, X.; Sabir, I.; Park, J. A flow channel design procedure for PEM fuel cells with effective water removal. J. Power Sources 2007, 163, 933–942. [Google Scholar] [CrossRef]
- Spaziante, P.; Pellegri, A. Bipolar Separator for Electrochemical Cells and Method of Preparation Thereof. 1981. Available online: https://patents.google.com/patent/CA1103206A/en-20US4325121.pdf (accessed on 25 June 2021).
- Hossain, M.S.; Shabani, B.; Cheung, C.P. Enhanced gas flow uniformity across parallel channel cathode flow field of Proton Exchange Membrane fuel cells. Int. J. Hydrogen Energy 2017, 42, 5272–5283. [Google Scholar] [CrossRef]
- Chiu, H.-C.; Jang, J.-H.; Yan, W.-M.; Li, H.-Y.; Liao, C.-C. A three-dimensional modeling of transport phenomena of proton exchange membrane fuel cells with various flow fields. Appl. Energy 2012, 96, 359–370. [Google Scholar] [CrossRef]
- Sauermoser, M.; Kizilova, N.; Pollet, B.G.; Kjelstrup, S. Flow Field Patterns for Proton Exchange Membrane Fuel Cells. In Frontiers in Energy Research; Frontiers Media SA: Lausanne, Switzerland, 2020; Volume 8. [Google Scholar] [CrossRef]
- Li, H.; Tang, Y.; Wang, Z.; Shi, Z.; Wu, S.; Song, D.; Zhang, J.; Fatih, K.; Zhang, J.; Wang, H.; et al. A review of water flooding issues in the proton exchange membrane fuel cell. J. Power Sources 2007, 178, 103–117. [Google Scholar] [CrossRef]
- Limjeerajarus, N.; Charoen-Amornkitt, P. Effect of different flow field designs and number of channels on performance of a small PEFC. Int. J. Hydrogen Energy 2015, 40, 7144–7158. [Google Scholar] [CrossRef]
- Cullen, D.A.; Neyerlin, K.C.; Ahluwalia, R.K.; Mukundan, R.; More, K.L.; Borup, R.L.; Weber, A.Z.; Myers, D.J.; Kusoglu, A. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 2021, 6, 462–474. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Liu, S.; Li, H.; Zhu, K. Optimization of reactants relative humidity for high performance of polymer electrolyte membrane fuel cells with co-flow and counter-flow configuration. Energy Convers. Manag. 2020, 205, 112369. [Google Scholar] [CrossRef]
- Nam, J.H.; Lee, K.-J.; Sohn, S.; Kim, C.-J. Multi-pass serpentine flow-fields to enhance under-rib convection in polymer electrolyte membrane fuel cells: Design and geometrical characterization. J. Power Sources 2009, 188, 14–23. [Google Scholar] [CrossRef]
- Saco, S.A.; Raj, R.T.K.; Karthikeyan, P. A study on scaled up proton exchange membrane fuel cell with various flow channels for optimizing power output by effective water management using numerical technique. Energy 2016, 113, 558–573. [Google Scholar] [CrossRef]
- Chilver-Stainer, J.; Elbarghthi, A.F.A.; Wen, C.; Tian, M. Power output optimisation via arranging gas flow channels for low-temperature polymer electrolyte membrane fuel cell (PEMFC) for hydrogen-powered vehicles. Energies 2023, 16, 3722. [Google Scholar] [CrossRef]
- Jin, C.K.; Kang, C.G. Fabrication process analysis and experimental verification for aluminum bipolar plates in fuel cells by vacuum die-casting. J. Power Sources 2011, 196, 8241–8249. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, X.; Liu, G.; Xu, H.; Guan, C.; Wang, H.; Li, H.; He, W.; Qin, Y. Review of flow field designs for polymer electrolyte membrane fuel cells. Energies 2023, 16, 4207. [Google Scholar] [CrossRef]
- Kim, A.-R.; Shin, S.; Um, S. Multidisciplinary approaches to metallic bipolar plate design with bypass flow fields through deformable gas diffusion media of polymer electrolyte fuel cells. Energy 2016, 106, 378–389. [Google Scholar] [CrossRef]
- Rahimi-Esbo, M.; Rahgoshay, S.; Hassani, M.; Firouzjaei, K.D. Novel design and numerical evaluating of a cooling flow field in PEMFC with metallic bipolar plates. Int. J. Hydrogen Energy 2020, in press. [Google Scholar] [CrossRef]
- Iranzo, A.; Gregorio, J.M.; Boillat, P.; Rosa, F. Bipolar plate research using Computational Fluid Dynamics and neutron radiography for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2020, 45, 12432–12442. [Google Scholar] [CrossRef]
- Ouellette, D.; Ozden, A.; Ercelik, M.; Colpan, C.O.; Ganjehsarabi, H.; Li, X.; Hamdullahpur, F. Assessment of different bio-inspired flow fields for direct methanol fuel cells through 3D modeling and experimental studies. Int. J. Hydrogen Energy 2018, 43, 1152–1170. [Google Scholar] [CrossRef]
- Ozden, A.; Ercelik, M.; Ouellette, D.; Colpan, C.O.; Ganjehsarabi, H.; Hamdullahpur, F. Designing, modeling and performance investigation of bio-inspired flow field based DMFCs. Int. J. Hydrogen Energy 2017, 42, 21546–21558. [Google Scholar] [CrossRef]
- Aiyejina, A.; Sastry, M.K.S. PEMFC flow channel geometry optimization: A review. J. Fuel Cell Sci. Technol. 2011, 9, 011011. [Google Scholar] [CrossRef]
- Ghadhban, S.A.; Alawee, W.H.; Dhahad, H.A. Study effects of bio-inspired flow filed design on Polymer Electrolyte Membrane fuel cell performance. Case Stud. Therm. Eng. 2021, 24, 100841. [Google Scholar] [CrossRef]
- Li, Z.; Feng, K.; Wang, Z.; Cai, X.; Yao, C.; Wu, Y. Investigation of single-layer and multilayer coatings for aluminum bipolar plate in polymer electrolyte membrane fuel cell. Int. J. Hydrogen Energy 2014, 39, 8421–8430. [Google Scholar] [CrossRef]
- Roshandel, R.; Arbabi, F.; Moghaddam, G.K. Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells. Renew. Energy 2011, 41, 86–95. [Google Scholar] [CrossRef]
- San, F.G.B.; Tekin, G. A review of thermoplastic composites for bipolar plate applications. Int. J. Energy Res. 2013, 37, 283–309. [Google Scholar] [CrossRef]
- Palumbo, G.; Piccininni, A. Numerical–experimental investigations on the manufacturing of an aluminium bipolar plate for proton exchange membrane fuel cells by warm hydroforming. Int. J. Adv. Manuf. Technol. 2013, 69, 731–742. [Google Scholar] [CrossRef]
- Asadzade, M.; Shamloo, A. Design and simulation of a novel bipolar plate based on lung-shaped bio-inspired flow pattern for PEM fuel cell. Int. J. Energy Res. 2017, 41, 1730–1739. [Google Scholar] [CrossRef]
- James, B.D.; Huya-Kouadio, J.M.; Houchins, C.; DeSantis, D.A. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2018 Update. 2018. Available online: https://www.energy.gov/sites/prod/files/2019/12/f70/fcto-sa-2018-transportation-fuel-cell-cost-analysis.pdf (accessed on 5 April 2021).
- Boddu, R.; Marupakula, U.K.; Summers, B.; Majumdar, P. Development of bipolar plates with different flow channel configurations for fuel cells. J. Power Sources 2009, 189, 1083–1092. [Google Scholar] [CrossRef]
- Kang, H.C.; Jum, K.M.; Sohn, Y.J. Performance of unit PEM fuel cells with a leaf-vein-simulating flow field-patterned bipolar plate. Int. J. Hydrogen Energy 2019, 44, 24036–24042. [Google Scholar] [CrossRef]
- Kloess, J.P.; Wang, X.; Liu, J.; Shi, Z.; Guessous, L. Investigation of bio-inspired flow channel designs for bipolar plates in proton exchange membrane fuel cells. J. Power Sources 2008, 188, 132–140. [Google Scholar] [CrossRef]
- Trogadas, P.; Cho, J.I.S.; Neville, T.P.; Marquis, J.; Wu, B.; Brett, D.J.L.; Coppens, M.-O. A lung-inspired approach to scalable and robust fuel cell design. Energy Environ. Sci. 2017, 11, 136–143. [Google Scholar] [CrossRef]
- Khan, M.J.; Iqbal, M.T. Dynamic modeling, and simulation of a small wind-fuel cell hybrid energy system. Renew Energy 2005, 30, 421–439. [Google Scholar] [CrossRef]
- Perez-Raya, I.; Hernandez-Guerrero, A.; Elizalde-Blancas, F.; Juarez-Robles, D.; Almanza-Huerta, L. 3D analysis of a new radial channel for pemfcs and comparison with a traditional channeled system. In Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition, Vancouver, BC, Canada, 12–18 November 2010; pp. 899–908. [Google Scholar]
- Cano-Andrade, S.; Hernandez-Guerrero, A.; von Spakovsky, M.; Damian-Ascencio, C.; Rubio-Arana, J. Current density and polarization curves for radial flow field patterns applied to PEMFCs (Proton Exchange Membrane Fuel Cells). Energy 2010, 35, 920–927. [Google Scholar] [CrossRef]
- Friess, B.; Hoorfar, M. Development of a novel radial cathode flow field for PEMFC. Int. J. Hydrogen Energy 2012, 37, 7719–7729. [Google Scholar] [CrossRef]
- Juarez-Robles, D.; Herna´ndez-Guerrero, A.; Damia´n-Ascencio, C.E.; Rubio-Arana, C. Three dimensional analysis of a PEM fuel cell with the shape of a fermat spiral for the flow channel configuration. In Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition, Boston, MA, USA, 31 October–6 November 2008; pp. 711–720. [Google Scholar]
- Mench, M.M. Fuel Cell Engines; 2008; pp. 1–515. Available online: https://onlinelibrary.wiley.com/doi/book/10.1002/9780470209769 (accessed on 5 April 2021).
- Ahmed, D.H.; Sung, H.J. Effects of channel geometrical configuration and shoulder width on PEMFC performance at high current density. J. Power Sources 2006, 162, 327–339. [Google Scholar] [CrossRef]
- Kahraman, H.; Orhan, M.F. Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling. Energy Convers. Manag. 2017, 133, 363–384. [Google Scholar] [CrossRef]
- Owejan, J.P.; Trabold, T.A.; Jacobson, D.L.; Arif, M.; Kandlikar, S.G. Effects of flow field and diffusion layer properties on water ac-cumulation in a PEM fuel cell. Int. J. Hydrogen Energy 2007, 32, 4489–4502. [Google Scholar] [CrossRef]
- Kahraman, H.; Haşimoğlu, C.; Çevik, İ.; Murcak, A. A different flow field design approach for performance improvement of a PEMFC. Acta Phys. Pol. A 2017, 131, 484–486. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Q.; Lu, J.; Shen, S.; Yan, X.; Zhu, F.; Cheng, X.; Zhang, J. Effect of height/width-tapered flow fields on the cell performance of polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 2017, 42, 23107–23117. [Google Scholar] [CrossRef]
- Tiss, F.; Chouikh, R.; Guizani, A. A numerical investigation of the effects of membrane swelling in polymer electrolyte fuel cells. Energy Convers. Manag. 2013, 67, 318–324. [Google Scholar] [CrossRef]
- Al-Baghdadi, M.A.R.S.; Al-Janabi, H.A.K.S. Modeling optimizes PEM fuel cell performance using three-dimensional multi-phase computational fluid dynamics model. Energy Convers. Manag. 2007, 48, 3102–3119. [Google Scholar] [CrossRef]
- Shimpalee, S.; Van Zee, J.W. Numerical studies on rib & channel dimension of flow-field on PEMFC performance. Int. J. Hydrog. Energy 2007, 32, 842–856. [Google Scholar]
- Qiu, D.; Peng, L.; Tang, J.; Lai, X. Numerical analysis of air-cooled proton exchange membrane fuel cells with various cathode flow channels. Energy 2020, 198, 117334. [Google Scholar] [CrossRef]
- Chowdhury, M.Z.; Genc, O.; Toros, S. Numerical optimization of channel to land width ratio for PEM fuel cell. Int. J. Hydrogen Energy 2018, 43, 10798–10809. [Google Scholar] [CrossRef]
- Wang, X.-D.; Duan, Y.-Y.; Yan, W.-M.; Lee, D.-J.; Su, A.; Chi, P.-H. Channel aspect ratio effect for serpentine proton exchange membrane fuel cell: Role of sub-rib convection. J. Power Sources 2009, 193, 684–690. [Google Scholar] [CrossRef]
- Wang, Y.; Si, C.; Qin, Y.; Wang, X.; Fan, Y.; Gao, Y. Bio-inspired design of an auxiliary fishbone-shaped cathode flow field pattern for polymer electrolyte membrane fuel cells. Energy Convers. Manag. 2020, 227, 113588. [Google Scholar] [CrossRef]
- Guo, H.; Chen, H.; Ye, F.; Ma, C.F. Baffle shape effects on mass transfer and power loss of proton exchange membrane fuel cells with different baffled flow channels. Int. J. Energy Res. 2019, 43, 2737–2755. [Google Scholar] [CrossRef]
- Heidary, H.; Kermani, M.J.; Dabir, B. Influences of bipolar plate channel blockages on PEM fuel cell performances. Energy Convers. Manag. 2016, 124, 51–60. [Google Scholar] [CrossRef]
- Mehta, V.; Cooper, J.S. Review and analysis of PEM fuel cell design and manufacturing. J. Power Sources 2003, 114, 32–53. [Google Scholar] [CrossRef]
- Cooper, J.S. Design analysis of PEMFC bipolar plates considering stack manufacturing and environment impact. J. Power Sources 2004, 129, 152–169. [Google Scholar] [CrossRef]
- Yeetsorn, R.; Maiket, Y. Metal-insert technique for polypropylene composite bipolar plate manufacturing. J. Polym. Eng. 2020, 41, 72–82. [Google Scholar] [CrossRef]
- Kim, K.H.; Lim, J.W.; Kim, M.; Gil Lee, D. Development of carbon fabric/graphite hybrid bipolar plate for PEMFC. Compos. Struct. 2013, 98, 103–110. [Google Scholar] [CrossRef]
- Pu, N.-W.; Shi, G.-N.; Liu, Y.-M.; Sun, X.; Chang, J.-K.; Sun, C.-L.; Ger, M.-D.; Chen, C.-Y.; Wang, P.-C.; Peng, Y.-Y.; et al. Graphene was grown on stainless steel as a high-performance and eco-friendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates. J. Power Sources 2015, 282, 248–256. [Google Scholar] [CrossRef]
- Lin, K.; Li, X.; Sun, Y.; Luo, X.; Dong, H. Active screen plasma nitriding of 316 stainless steel for the application of bipolar plates in proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2014, 39, 21470–21479. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, L.; Yi, P.; Peng, L. Influence of Cr-C film composition on electrical and corrosion properties of 316L stainless steel as bipolar plates for PEMFCs. Int. J. Hydrogen Energy 2016, 41, 1142–1150. [Google Scholar] [CrossRef]
- Omrani, M.; Habibi, M.; Amrollahi, R.; Khosravi, A. Improvement of corrosion and electrical conductivity of 316L stainless steel as bipolar plate by TiN nanoparticle implantation using plasma focus. Int. J. Hydrogen Energy 2012, 37, 14676–14686. [Google Scholar] [CrossRef]
- Lee, S.; Kakati, N.; Maiti, J.; Jee, S.; Kalita, D.; Yoon, Y. Corrosion and electrical properties of CrN- and TiN-coated 316L stainless steel used as bipolar plates for polymer electrolyte membrane fuel cells. Thin Solid Films 2012, 529, 374–379. [Google Scholar] [CrossRef]
- Antunes, R.A.; Oliveira, M.C.L.; Ett, G.; Ett, V. Corrosion of metal bipolar plates for PEM fuel cells: A review. Int. J. Hydrogen Energy 2010, 35, 3632–3647. [Google Scholar] [CrossRef]
- Yang, G.; Yu, S.; Mo, J.; Kang, Z.; Dohrmann, Y.; List, F.A.; Green, J.B.; Babu, S.S.; Zhang, F.-Y. Bipolar plate development with additive manufacturing and protective coating for durable and high-efficiency hydrogen production. J. Power Sources 2018, 396, 590–598. [Google Scholar] [CrossRef]
- Elyasi, M.; Khatir, F.A.; Hosseinzadeh, M. Manufacturing metallic bipolar plate fuel cells through rubber pad forming process. Int. J. Adv. Manuf. Technol. 2016, 89, 3257–3269. [Google Scholar] [CrossRef]
- Sisan, M.M.; Sereshki, M.A.; Khorsand, H.; Siadati, M. Carbon coating for corrosion protection of SS-316L and AA-6061 as bipolar plates of PEM fuel cells. J. Alloy. Compd. 2014, 613, 288–291. [Google Scholar] [CrossRef]
- Porstmann, S.; Wannemacher, T.; Drossel, W.-G. A comprehensive comparison of state-of-the-art manufacturing methods for fuel cell bipolar plates including anticipated future industry trends. J. Manuf. Process. 2020, 60, 366–383. [Google Scholar] [CrossRef]
- Hermann, A.; Chaudhuri, T.; Spagnol, P. Bipolar plates for PEM fuel cells: A review. Int. J. Hydrogen Energy 2005, 30, 1297–1302. [Google Scholar] [CrossRef]
- Gladczuk, L.; Joshi, C.; Patel, A.; Guiheen, J.; Iqbal, Z.; Sosnowski, M. Corrosion-Resistant Tantalum Coatings for PEM Fuel Cell Bipolar Plates. MRS Proc. 2002, 756, 72. [Google Scholar] [CrossRef]
- Asri, N.F.; Husaini, T.; Sulong, A.B.; Majlan, E.H.; Daud, W.R.W. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review. Int. J. Hydrogen Energy 2017, 42, 9135–9148. [Google Scholar] [CrossRef]
- Stoot, A.C.; Camilli, L.; Spiegelhauer, S.-A.; Yu, F.; Bøggild, P. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell. J. Power Sources 2015, 293, 846–851. [Google Scholar] [CrossRef]
- Barranco, J.; Barreras, F.; Lozano, A.; Lopez, A.M.; Roda, V.; Martin, J.; Maza, M.; Fuentes, G.G.; Almandoz, E. Cr and Zr/Cr nitride CAE-PVD coated aluminum bipolar plates for polymer electrolyte membrane fuel cells. Int. J. Hydrogen Energy 2010, 35, 11489–11498. [Google Scholar] [CrossRef]
- Steele, B.C.H.; Heinzel, A. Materials for fuel cell technologies. In Materials for Sustainable Energy; Nature Publishing Group: London, UK, 2011; pp. 224–231. [Google Scholar]
- Daehn, G.S.; Hatkevich, S.; Shang, J.; Wilkerson, L. Commercialization of fuel cell bipolar plate manufacturing by electromagnetic forming. In Proceedings of the 4th International Conference on High Speed Forming, Columbus, OH, USA, 9–10 March 2010. [Google Scholar]
- Heras, N.d.L.; Roberts, E.P.L.; Langton, R.; Hodgson, D.R. A review of metal separator plate materials suitable for automotive PEMfuel cells. Energy Environ. Sci. 2008, 2, 206–214. [Google Scholar] [CrossRef]
- Deyab, M. Corrosion protection of aluminum bipolar plates with polyaniline coating containing carbon nanotubes in acidic medium inside the polymer electrolyte membrane fuel cell. J. Power Sources 2014, 268, 50–55. [Google Scholar] [CrossRef]
- Sun, L.; Liu, C.; Liang, J.; Zhu, X.; Cui, T. A self-pumping and self-breathing micro direct methanol fuel cell with polymer bipolar plates. J. Power Sources 2011, 196, 7533–7540. [Google Scholar] [CrossRef]
- Huang, N.; Yu, H.; Xu, L.; Zhan, S.; Sun, M.; Kirk, D.W. Corrosion kinetics of 316L stainless steel bipolar plate with chromiumcarbide coating in simulated PEMFC cathodic environment. Results Phys. 2016, 6, 730–736. [Google Scholar] [CrossRef]
Flow-Field Type | Design | Merits | Demerits | Research Needs |
---|---|---|---|---|
Pin-type Flow Field | Utilizes V-shaped pins to create flow channels. | Low pressure drops, reduced frictional resistance for reactants. | Uneven flow distribution, potential stagnant regions affecting reactant distribution. | Focus on improving uniformity of flow and reactant distribution. |
Series-Parallel Flow Field | Combines straight and parallel channels. | Easy process control, low noise, and simple operations. | Reduced fuel/oxidant utilization due to short residence times in straight channels. | Adjusting channel widths to achieve better flow distribution and pressure management. |
Serpentine Flow Field | Features continuous winding channels throughout the flow field. | Effective at preventing flooding, ensures even water transport. | Higher pressure drop compared to other designs. | Studying different configurations (e.g., single-channel serpentine vs. multi-channel parallel in series) for optimal water management and reactant distribution. |
Modified Parallel Flow Field | Varied channel widths and paths to improve flow uniformity. | Better distribution of reactants and water saturation compared to traditional designs. | Unable achieve the uniform flow distribution and efficient water management across the cell. | Experiment with different geometries and configurations to enhance overall efficiency and durability under various operating conditions. |
Focus | Key Findings |
---|---|
Performance differences |
|
Direct Methanol Fuel Cells flow-field configuration |
|
Geometric effects of bio-inspired flow fields |
|
Influence of different flow channel designs |
|
Comparison of bipolar plates with mesa profiles to traditional designs. |
|
Flow-field designs under specific conditions. |
|
Lung structures. |
|
Flow pattern | Concentration Difference at the Anode Side (mol/cm3) | Concentration Difference at the Cathode Side (mol/cm3) |
---|---|---|
Parallel Serpentine | 0.69 | 0.03 |
Lung Shaped | 0.172 | 0.06 |
Leaf | 0.12 | 0.05 |
Interdigitated | 0.091 | 0.04 |
No. | Height (mm) | Total Channel Width (mm) | Channel Numbers | Land Width (mm) | Land Fraction | Properties |
---|---|---|---|---|---|---|
1-H | 1 | 0.9”6 | 30 | 0.79 | 45.2% | - |
2-CH | 1 to 0.5 | 0.9”6 | 30 | 0.79 | 45.2% | Changing height |
3-CW | 1 | 0.9”8 to 0.94” | 30 | 0.79 | 44.4% | Changing height |
Advantages | Disadvantages |
---|---|
Land-to-channel ratio is greater than unity (lands wider than channels) | |
|
|
Land-to-channel ratio is less than unity (channels wider than lands) | |
|
|
Flow-Field Design | Manufacturing Complexity | Suitable Techniques | Applications |
---|---|---|---|
Serpentine |
|
|
|
Parallel |
|
|
|
Interdigitated |
|
|
|
Channel Width |
|
|
|
Aspect/Design Criteria | Graphite Bipolar Plates | Metallic Bipolar Plates | Composite Bipolar Plates | Flow-Field Integrated Plates | Stamped and Formed Plates |
---|---|---|---|---|---|
Cost | Higher | Variable | Variable | Higher | Lower |
Performance | Excellent electrical conductivity Lightweight | Good thermal conductivity, robust | Depends on strengths of materials | High reactant distribution Less pressure drop | Depends on design precision |
Durability | Resistant to corrosion Brittle | Corrosion resistance varies | May offer better corrosion resistance than metals alone | Depends on integrated design | Depends on material and forming quality |
Integration | Standard | Standard | Standard | Optimizes space, streamlines assembly | Customizable and tailored designs |
Forming | Standard | Standard | Standard | Integrated channels, complex manufacturing | Stamping or forming processes |
Corrosion Resistance | High | Varies | Depends on composite formulation | Typically designed for corrosion resistance | Requires proper coatings, materials vary |
Manufacturing | Standard | Standard | Complex | Integrated channels, precision engineering | Cost-effective, scalable |
Innovation and Future Directions | Exploration of advanced materials | Integration with renewable sources | Hybrid materials New composites | Enhanced designs for efficiency | Customizable designs Emerging applications |
Techno-economic Analysis | Higher initial cost, long-term efficiency benefits | Variable cost high operational efficiency | Considerable depending on materials | Optimization of efficiency and cost | Cost-effective, scalable production |
Performance Metrics | Provides acceptable pressure drop Reactant distribution | Provides acceptable pressure drop Conductivity | Provides acceptable trade-off between performance and cost | Yield high efficiency and uniform gas distribution | Channel precision Material durability |
Structural and Material Considerations | Provide high conductivity and material properties | Depends on material strength, conductivity | Depends on combination of properties and weight | Provides integration benefits, material compatibility | Provides customization and material uniformity |
Rib Design | Improves structural integrity and conductivity | Impact flow distribution | Depends on material compatibility and efficiency | Impact the integrated design negatively | Achieves precision in channel layout |
Channel Dimensions | Positive impact on pressure drop, uniformity | Influence the gas distribution | Improve channel efficiency and gas transport | Efficiency in gas distribution | Precision in channel formation |
Flow Path | Efficiency in gas distribution | Impact on gas-flow dynamics | Integration benefits, efficiency | Optimized for reactant distribution | Tailored for specific flow needs |
Water Management | Impact on flooding prevention | Water-removal efficiency | Integration benefits, efficiency | Water-removal efficiency | Consideration in channel design |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pedapati, P.R.; Dhanushkodi, S.R.; Chidambaram, R.K.; Taler, D.; Sobota, T.; Taler, J. Design and Manufacturing Challenges in PEMFC Flow Fields—A Review. Energies 2024, 17, 3499. https://doi.org/10.3390/en17143499
Pedapati PR, Dhanushkodi SR, Chidambaram RK, Taler D, Sobota T, Taler J. Design and Manufacturing Challenges in PEMFC Flow Fields—A Review. Energies. 2024; 17(14):3499. https://doi.org/10.3390/en17143499
Chicago/Turabian StylePedapati, Prithvi Raj, Shankar Raman Dhanushkodi, Ramesh Kumar Chidambaram, Dawid Taler, Tomasz Sobota, and Jan Taler. 2024. "Design and Manufacturing Challenges in PEMFC Flow Fields—A Review" Energies 17, no. 14: 3499. https://doi.org/10.3390/en17143499
APA StylePedapati, P. R., Dhanushkodi, S. R., Chidambaram, R. K., Taler, D., Sobota, T., & Taler, J. (2024). Design and Manufacturing Challenges in PEMFC Flow Fields—A Review. Energies, 17(14), 3499. https://doi.org/10.3390/en17143499