Corrosion and Interfacial Contact Resistance of NiTi Alloy as a Promising Bipolar Plate for PEMFC
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nicoletti, G.; Arcuri, N.; Nicoletti, G.; Bruno, R. A technical and environmental comparison between hydrogen and some fossil fuels. Energy Convers. Manag. 2015, 89, 205–213. [Google Scholar] [CrossRef]
- Lyu, Y.; Liu, Y.; Yu, Z.E.; Su, N.; Liu, Y.; Li, W.; Li, Q.; Guo, B.; Liu, B. Recent advances in high energy-density cathode materials for sodium-ion batteries. Sustain. Mater. Technol. 2019, 21, e00098. [Google Scholar] [CrossRef]
- Guan, D.; Wang, B.; Zhang, J.; Shi, R.; Jiao, K.; Li, L.; Wang, Y.; Xie, B.; Zhang, Q.; Yu, J.; et al. Hydrogen society: From present to future. Energy Environ. Sci. 2023, 16, 4926–4943. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. Review and evaluation of hydrogen production options for better environment. J. Clean. Prod. 2019, 218, 835–849. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Y.; Yang, J.; Zhu, R.; Zhou, Y.; Yuan, Z.; Chu, H.; Hu, P. Corrosion behavior of Ti-0.3Mo-0.8Ni (TA10) alloy in proton exchange membrane fuel cell environment: Experimental and theoretical studies. Int. J. Electrochem. Sci. 2023, 18, 100239. [Google Scholar] [CrossRef]
- Tian, R.; Qin, Z. Bulk metallic glass Zr55Cu30Al10Ni5 bipolar plates for proton exchange membrane fuel cell. Energy Convers. Manag. 2014, 86, 927–932. [Google Scholar] [CrossRef]
- Wang, C.; Wang, S.; Peng, L.; Zhang, J.; Shao, Z.; Huang, J.; Sun, C.; Ouyang, M.; He, X. Recent progress on the key materials and components for proton exchange membrane fuel cells in vehicle applications. Energies 2016, 9, 603. [Google Scholar] [CrossRef]
- Lin, R.; Zhong, D.; Lan, S.; Guo, R.; Ma, Y.; Cai, X. Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer. Appl. Energy 2021, 300, 117306. [Google Scholar] [CrossRef]
- Pan, M.; Pan, C.; Li, C.; Zhao, J. A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability. Renew. Sustain. Energy Rev. 2021, 141, 110771. [Google Scholar] [CrossRef]
- Madadi, F.; Rezaeian, A.; Edris, H.; Zhiani, M. Improving performance in PEMFC by applying different coatings to metallic bipolar plates. Mater. Chem. Phys. 2019, 238, 121911. [Google Scholar] [CrossRef]
- Zhao, J.; Li, X. A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques. Energy Convers. Manag. 2019, 199, 112022. [Google Scholar] [CrossRef]
- Jannat, S.; Rashtchi, H.; Atapour, M.; Golozar, M.A.; Elmkhah, H.; Zhiani, M. Preparation and performance of nanometric Ti/TiN multi-layer physical vapor deposited coating on 316L stainless steel as bipolar plate for proton exchange membrane fuel cells. J. Power Sources 2019, 435, 226818. [Google Scholar] [CrossRef]
- Feng, K.; Wu, G.; Li, Z.; Cai, X.; Chu, P.K. Corrosion behavior of SS316L in simulated and accelerated PEMFC environments. Int. J. Hydrog. Energy 2011, 36, 13032–13042. [Google Scholar] [CrossRef]
- Xu, Z.; Qiu, D.; Yi, P.; Peng, L. Towards mass applications: A review on the challenges and developments in metallic bipolar plates for PEMFC. Prog. Nat. Sci. 2020, 30, 815–824. [Google Scholar] [CrossRef]
- Asri, N.F.; Husaini, T.; Sulong, A.B.; Majlan, E.H.; Daud, W.R.W. Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review. Int. J. Hydrog. Energy 2017, 42, 9135–9148. [Google Scholar] [CrossRef]
- Feng, K.; Li, Z.; Lu, F.; Huang, J.; Cai, X.; Wu, Y. Corrosion resistance and electrical properties of carbon/chromium–titanium–nitride multilayer coatings on stainless steel. J. Power Sources 2014, 249, 299–305. [Google Scholar] [CrossRef]
- Elyasi, M.; Ghadikolaee, H.T.; Hosseinzadeh, M. Fabrication of metallic bipolar plates in PEM fuel cell using semi-stamp rubber forming process. Int. J. Adv. Manuf. Technol. 2017, 92, 765–776. [Google Scholar] [CrossRef]
- Eom, K.S.; Cho, E.A.; Nam, S.W.; Lim, T.H.; Jang, J.H.; Kim, H.J.; Hong, B.K.; Yang, Y.C. Degradation behavior of a polymer electrolyte membrane fuel cell employing metallic bipolar plates under reverse current condition. Electrochim. Acta 2012, 78, 324–330. [Google Scholar] [CrossRef]
- Bi, J.; Yang, J.; Liu, X.; Wang, D.; Yang, Z.; Liu, G.; Wang, X. Development and evaluation of nitride coated titanium bipolar plates for PEM fuel cells. Int. J. Hydrog. Energy 2021, 46, 1144–1154. [Google Scholar] [CrossRef]
- Li, Y.Y.; Cao, S.S.; Ma, X.; Ke, C.B.; Zhang, X.P. Influence of strongly textured microstructure on the all-round shape memory effect of rapidly solidified Ni51Ti49 alloy. Mater. Sci. Eng. A 2017, 705, 273–281. [Google Scholar] [CrossRef]
- Sitepu, H. Texture and structural refinement using neutron diffraction data from molybdite (MoO3) and calcite (CaCO3) powders and a Ni-rich Ni50.7Ti49.30 alloy. Powder Diffr. 2009, 24, 315–326. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, J.; Xie, Z.H.; Munroe, P. Nanocrystalline TaCN coated titanium bipolar plate dedicated to proton exchange membrane fuel cell. Ceram. Int. 2022, 48, 19217–19231. [Google Scholar] [CrossRef]
- Xu, J.; Huang, H.J.; Li, Z.; Xu, S.; Tao, H.; Munroe, P.; Xie, Z.H. Corrosion behavior of a ZrCN coated Ti alloy with potential application as a bipolar plate for proton exchange membrane fuel cell. J. Alloys Compd. 2016, 663, 718–730. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, M.; Lin, G.; Han, Z.; Fu, Y.; Sun, S.; Shao, Z.; Yi, B. Performance of Ti–Ag-deposited titanium bipolar plates in simulated unitized regenerative fuel cell (URFC) environment. Int. J. Hydrog. Energy 2022, 36, 5695–5701. [Google Scholar] [CrossRef]
- Meng, Q.; Yue, X.; Shang, L.; Liu, X.; Wang, F.; Zhang, G. Corrosion behavior of metallic coatings on titanium bipolar plates of proton exchange membrane water electrolysis. Int. J. Hydrog. Energy 2024, 63, 1105–1115. [Google Scholar] [CrossRef]
- Zhou, Q.; Sheikh, S.; Ou, P.; Chen, D.; Hu, Q.; Guo, S. Corrosion behavior of Hf0.5Nb0.5Ta0. 5Ti1.5Zr refractory high-entropy in aqueous chloride solutions. Electrochem. Commun. 2019, 98, 63–68. [Google Scholar] [CrossRef]
- Wang, H.; Sweilart, M.A.; Turner, J.A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells. J. Power Sources 2003, 115, 243–251. [Google Scholar] [CrossRef]
- Sim, Y.; Kwak, J.; Kim, S.Y.; Jo, Y.; Kim, S.; Kim, S.Y.; Kim, J.H.; Lee, C.S.; Jo, J.H.; Kwon, S.Y. Formation of 3D graphene–Ni foam heterostructures with enhanced performance and durability for bipolar plates in a polymer electrolyte membrane fuel cell. J. Mater. 2018, 6, 1504–1512. [Google Scholar] [CrossRef]
- Li, K.; Li, Y.; Huang, X.; Gibson, D.; Zheng, Y.; Liu, J.; Sun, L.; Fu, Y.Q. Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films. Appl. Surf. Sci. 2017, 414, 63–67. [Google Scholar] [CrossRef]
- Zhang, H.; Guan, D.; Gu, Y.; Xu, H.; Wang, C.; Shao, Z.; Guo, Y. Tuning synergy between nickel and iron in Ruddlesden-Popper perovskites through controllable crystal dimensionalities towards enhanced oxygen-evolving activity and stability. Carbon Energy 2024, 6, e465. [Google Scholar] [CrossRef]
- Lee, E.K.; Kim, J.K.; Kim, T.J.; Song, H.; Kim, J.H.; Park, S.A.; Jeong, T.G.; Yun, S.W.; Lee, J.; Goo, J.; et al. Enhanced corrosion resistance and fuel cell performance of Al1050 bipolar plate coated with TiN/Ti double layer. Energy Convers. Manag. 2013, 75, 727–733. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, B.; Fu, Y.; Hu, X.; Cao, X.; Pan, Z.; Wei, Y.; Luo, H.; Li, X. Effect of cold deformation on corrosion behavior of selective laser melted 316L stainless steel bipolar plates in a simulated environment for proton exchange membrane fuel cells. Corros. Sci. 2022, 201, 110257. [Google Scholar] [CrossRef]
- Haider, W.; Munroe, N. Assessment of Corrosion Resistance and Metal Ion Leaching of Nitinol Alloys. J. Mater. Eng. Perform. 2011, 20, 812–815. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Shen, Y.; Liu, D.; Chu, P.K.; Cai, X. Ni–Cr Co-implanted 316L stainless steel as bipolar plate in polymer electrolyte membrane fuel cells. Int. J. Hydrog. Energy 2010, 35, 690–700. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, Y.; Wu, H.; Zhong, Q.; Jiang, J. Preparation of passive Cu–Ni–Fe coating on low-carbon steel for improving corrosion resistance. Surf. Coat. Technol. 2012, 207, 503–507. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, B.; Xie, X.; Brechtl, J.; Dahmen, K.A.; Liaw, P.K. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pitting behavior. Corros. Sci. 2017, 119, 33–45. [Google Scholar] [CrossRef]
Samples | EOCP (V) | Ecorr (V) | icorr (μA cm−2) |
---|---|---|---|
NiTi | 0.095 | 0.082 | 1.13 |
Pure Ti | −0.023 | −0.419 | 28.80 |
Pure Ni | −0.397 | −0.011 | 79.28 |
Samples | Ni 2p (%) | Ti 2p (%) | O2−/OH− | ||
---|---|---|---|---|---|
NiO + Ni(OH)2 | Metallic Ni | TiO2 | Metallic Ti | ||
NiTi | 23.66 | 76.34 | 87.72 | 12.28 | 0.64 |
Pure Ti | / | / | 88.5 | 11.5 | 2.94 |
Pure Ni | 86.99 | 13.01 | / | / | 0.1 |
Before potentiostatic polarization | Elements | CPE1-Y0 (Ω−1 cm−2 sn) | R1 (Ω cm2) | CPE2-Y0 (Ω−1 cm−2 sn) | R2 (Ω cm2) | ∑χ2 |
NiTi | 7.19 × 10−5 | 4.27 | 4.14 × 10−5 | 3.25 × 104 | 1.08 × −103 | |
Pure Ti | 8.49 × 10−5 | 2.71 | 9.06 × 10−5 | 3.42 × 104 | 1.02 × −103 | |
Pure Ni | 5.34 × 10−5 | 8.54 | 2.31 × 10−5 | 219.20 | 2.16 × −103 | |
After potentiostatic polarization | Elements | CPE1-Y0 (Ω−1 cm−2 sn) | R1 (Ω cm2) | CPE2-Y0 (Ω−1 cm−2 sn) | R2 (Ω cm2) | ∑χ2 |
NiTi | 4.59 × 10−5 | 5.64 | 4.54 × 10−5 | 4.14 × 104 | 1.56 × −103 | |
Pure Ti | 2.65 × 10−4 | 6.97 | 1.35× 10−4 | 8.15 × 104 | 1.57 × −103 | |
Pure Ni | 1.04 × 10−4 | 2.87 | 1.18 × 10−4 | 184.95 | 1.97 × −103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, X.; Li, Y.; He, Z.; Zhang, G.; Wang, Z.; Wang, S.; Hu, F.; Zhou, Q. Corrosion and Interfacial Contact Resistance of NiTi Alloy as a Promising Bipolar Plate for PEMFC. Molecules 2024, 29, 3696. https://doi.org/10.3390/molecules29153696
Li Y, Wang X, Li Y, He Z, Zhang G, Wang Z, Wang S, Hu F, Zhou Q. Corrosion and Interfacial Contact Resistance of NiTi Alloy as a Promising Bipolar Plate for PEMFC. Molecules. 2024; 29(15):3696. https://doi.org/10.3390/molecules29153696
Chicago/Turabian StyleLi, Yingping, Xiaofen Wang, Yuanyuan Li, Zhuo He, Guohong Zhang, Zhen Wang, Shaohua Wang, Fei Hu, and Qiongyu Zhou. 2024. "Corrosion and Interfacial Contact Resistance of NiTi Alloy as a Promising Bipolar Plate for PEMFC" Molecules 29, no. 15: 3696. https://doi.org/10.3390/molecules29153696
APA StyleLi, Y., Wang, X., Li, Y., He, Z., Zhang, G., Wang, Z., Wang, S., Hu, F., & Zhou, Q. (2024). Corrosion and Interfacial Contact Resistance of NiTi Alloy as a Promising Bipolar Plate for PEMFC. Molecules, 29(15), 3696. https://doi.org/10.3390/molecules29153696