Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = meta-chloroperoxybenzoic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2419 KiB  
Article
Complete Polar Lipid Profile of Kefir Beverage by Hydrophilic Interaction Liquid Chromatography with HRMS and Tandem Mass Spectrometry
by Giovanni Ventura, Mariachiara Bianco, Ilario Losito, Tommaso R. I. Cataldi and Cosima D. Calvano
Int. J. Mol. Sci. 2025, 26(3), 1120; https://doi.org/10.3390/ijms26031120 - 28 Jan 2025
Viewed by 1008
Abstract
Kefir, a fermented milk product produced using kefir grains, is a symbiotic consortium of bacteria and yeasts responsible for driving the fermentation process. In this study, an in-depth analysis of kefir’s lipid profile was conducted, with a focus on its phospholipid (PL) content, [...] Read more.
Kefir, a fermented milk product produced using kefir grains, is a symbiotic consortium of bacteria and yeasts responsible for driving the fermentation process. In this study, an in-depth analysis of kefir’s lipid profile was conducted, with a focus on its phospholipid (PL) content, employing liquid chromatography with high-resolution mass spectrometry (LC-HRMS). Nearly 300 distinct polar lipids were identified through hydrophilic interaction liquid chromatography (HILIC) coupled with electrospray ionization (ESI) and Fourier-transform orbital-trap MS and linear ion-trap tandem MS/MS. The identified lipids included phosphatidylcholines (PCs), lyso-phosphatidylcholines (LPCs), phosphatidylethanolamines (PEs) and lyso-phosphatidylethanolamines (LPEs), phosphatidylserines (PSs), phosphatidylglycerols (PGs), and phosphatidylinositols (PIs). The presence of lysyl-phosphatidylglycerols (LyPGs) was identified as a key finding, marking a lipid class characteristic of Gram-positive bacterial membranes. This discovery highlights the role of viable bacteria in kefir and underscores its probiotic potential. The structural details of minor glycolipids (GLs) and glycosphingolipids (GSLs) were further elucidated, enriching the understanding of kefir’s lipid complexity. Fatty acyl (FA) composition was characterized using reversed-phase LC coupled with tandem MS. A mild epoxidation reaction with meta-chloroperoxybenzoic acid (m-CPBA) was performed to pinpoint double-bond positions in FAs. The dominant fatty acids were identified as C18:3, C18:2, C18:1, C18:0 (stearic acid), C16:0 (palmitic acid), and significant levels of C14:0 (myristic acid). Additionally, two isomers of FA 18:1 were distinguished: ∆9-cis (oleic acid) and ∆11-trans (vaccenic acid). These isomers were identified using diagnostic ion pairs, retention times, and accurate m/z values. This study provides an unprecedented level of detail on the lipid profile of kefir, shedding light on its complex composition and potential nutritional benefits. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

29 pages, 10636 KiB  
Article
JRM-28, a Novel HDAC2 Inhibitor, Upregulates Plasticity-Associated Proteins in Hippocampal Neurons and Enhances Morphological Plasticity via Activation of CREB: Implications for Alzheimer’s Disease
by A. F. M. Towheedur Rahman, Sarojini Bulbule, Jawad Bin Belayet, Anna Benko, Carl Gunnar Gottschalk, David N. Frick, Leggy A. Arnold, M. Mahmun Hossain and Avik Roy
Cells 2024, 13(23), 1964; https://doi.org/10.3390/cells13231964 - 27 Nov 2024
Cited by 1 | Viewed by 2782
Abstract
Enhancement of neuronal plasticity by small-molecule therapeutics protects cognitive skills and also ameliorates progressive neurodegenerative pathologies like Alzheimer’s disease (AD) and dementia. One such compound, a novel histone deacetylase 2 (HDAC2) inhibitor named JRM-28, was shown here to enhance dendritic strength, augment spine [...] Read more.
Enhancement of neuronal plasticity by small-molecule therapeutics protects cognitive skills and also ameliorates progressive neurodegenerative pathologies like Alzheimer’s disease (AD) and dementia. One such compound, a novel histone deacetylase 2 (HDAC2) inhibitor named JRM-28, was shown here to enhance dendritic strength, augment spine density, and upregulate post-synaptic neurotransmission in hippocampal neurons. The molecular basis for this effect correlates with JRM-28-induced upregulation of the transcription of cAMP response element-binding protein(CREB), induction of its transcriptional activity, and subsequent stimulation of expressions of CREB-dependent plasticity-associated genes, such as those encoding N-methyl-D-aspartate (NMDA) receptor subunit NR2A and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1. Specifically, JRM-28 stimulated the NMDA- and AMPA-receptor-sensitive ionotropic calcium influx in hippocampal neurons. Interestingly, JRM-28 did not induce NMDA- and AMPA-sensitive calcium influx in hippocampal neurons once the expression of CREB was knocked down by creb siRNA, suggesting the critical role of CREB in JRM-28-mediated upregulation of synaptic plasticity. Finally, JRM-28 upregulated CREB mRNA, CREB-dependent plasticity-associated markers, and ionotropic calcium influx in iPSC-derived AD human neurons, indicating its therapeutic implications in the amelioration of AD pathologies. Full article
Show Figures

Figure 1

18 pages, 2104 KiB  
Article
Integrating Epoxidation, High-Resolution Mass Spectrometry and Ultraviolet Spectroscopy to Unravel the Complex Profile of Boswellic Acids and Related Compounds in the Boswellia serrata Gum Resin Extract
by Andrea Castellaneta, Ilario Losito, Stefania Cometa, Francesco Busto, Elvira De Giglio and Tommaso R. I. Cataldi
Molecules 2024, 29(20), 4967; https://doi.org/10.3390/molecules29204967 - 21 Oct 2024
Viewed by 1240
Abstract
The chemical characterization of natural products is often a complex task that demands powerful analytical techniques. Liquid chromatography with high-resolution tandem mass spectrometry (HRMS/MS) is often employed, yet it can face hard challenges when isomeric species are present, and reference standards are lacking. [...] Read more.
The chemical characterization of natural products is often a complex task that demands powerful analytical techniques. Liquid chromatography with high-resolution tandem mass spectrometry (HRMS/MS) is often employed, yet it can face hard challenges when isomeric species are present, and reference standards are lacking. In such cases, the confidence level in compound identification can be significantly improved by the collection of orthogonal information on target analytes. In this work, 23 key compounds in Boswellia serrata extract (BSE), 12 of which correspond to boswellic acids (BAs) and 11 to triterpenoidic acid isomers, were identified by combining RPLC followed by serial UV and ESI(-)-FTMS and FTMS/MS detections with the evaluation of the reactivity towards C=C bond epoxidation with meta-chloroperoxybenzoic acid (m-CPBA), proposed as a fast chemical tool to gather information about C=C bond steric hindrance, a key structural feature of BAs and related compounds. The interpretation of UV spectra acquired after chromatographic separation corroborated the identification of the substitution patterns of enonic and dienic residues in ketoboswellic and dehydroboswellic acids. Moreover, MS/MS based on higher-energy collision-induced dissociation (HCD) unveiled new fragmentation pathways, providing important structural details on target analytes. The integrated approach developed during this study might pave the way for a deeper understanding of the BSE bioactive properties. Moreover, it can be considered an example of a more general strategy for the analysis of complex mixtures of natural compounds including also isomeric species. Full article
Show Figures

Figure 1

6 pages, 1964 KiB  
Short Note
2-Benzoyl-4-phenyl-1,2,5-thiadiazol-3(2H)-one 1,1-Dioxide
by Emmanouil Broumidis, Samuel B. H. Patterson, Georgina M. Rosair, Panayiotis A. Koutentis and Andreas S. Kalogirou
Molbank 2024, 2024(1), M1774; https://doi.org/10.3390/M1774 - 12 Feb 2024
Cited by 1 | Viewed by 2022
Abstract
3,5-Diphenyl-4H-1,2,6-thiadiazin-4-one treated with meta-chloroperoxybenzoic acid undergoes an oxidative ring contraction to give 2-benzoyl-4-phenyl-1,2,5-thiadiazol-3(2H)-one 1,1-dioxide in a 29% yield, the structure of which is supported by single-crystal X-ray diffraction analysis and the available spectroscopic data. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

20 pages, 6196 KiB  
Article
Monodispersed NiO Nanoparticles into SBA-15: An Efficient Nanocatalyst to Produce Ketone-Alcohol (KA) Oil by the Oxidation of Cyclohexane in Mild Conditions
by Mohamed Abboud, Reem S. Alnefaie, Asla A. AL-Zahrani, Nabil Al-Zaqri, Mohammad Abu Haija, Azza Al-Ghamdi, Mabkhoot Alsaiari, Mohammed Jalalah, Omeer Albormani and Mohamed S. Hamdy
Sustainability 2023, 15(7), 5817; https://doi.org/10.3390/su15075817 - 27 Mar 2023
Cited by 2 | Viewed by 2224
Abstract
A simple and efficient approach to preparing highly efficient and reusable NiO@SBA-15 nanocatalysts for the oxidation of cyclohexane to produce ketone-alcohol (KA) oil was reported. These nanocatalysts were prepared by the dispersion of NiO NPs into SBA-15 using a coordination-assisted grafting method. In [...] Read more.
A simple and efficient approach to preparing highly efficient and reusable NiO@SBA-15 nanocatalysts for the oxidation of cyclohexane to produce ketone-alcohol (KA) oil was reported. These nanocatalysts were prepared by the dispersion of NiO NPs into SBA-15 using a coordination-assisted grafting method. In this approach, four commercially available nickel salts were immobilized into amino-functionalized SBA-15. After washing and calcination, four new nanocatalysts were obtained. The high dispersion of NiO NPs into SBA-15 was confirmed by HR-TEM and XRD. Different oxidants such as O2, H2O2, t-butyl hydrogen peroxide (TBHP), and meta-Chloroperoxybenzoic acid (m-CPBA) were evaluated. However, m-CPBA exhibited the highest catalytic activity. Compared to different catalysts reported in the literature, for the first time, 75–99% of cyclohexane was converted to KA oil over NiO@SBA-15. In addition, the cyclohexane conversion and K/A ratio were affected by the reaction time, catalyst dose, Ni content, and NiO dispersion. Moreover, NiO@SBA-15 maintained a high catalytic activity during five successive cycles. Full article
Show Figures

Figure 1

12 pages, 3955 KiB  
Article
Oxidative N-Dealkylation of N,N-Dimethylanilines by Non-Heme Manganese Catalysts
by Bashdar I. Meena, Dóra Lakk-Bogáth, Patrik Török and József Kaizer
Catalysts 2023, 13(1), 194; https://doi.org/10.3390/catal13010194 - 13 Jan 2023
Cited by 4 | Viewed by 2918
Abstract
Non-heme manganese(II) complexes [(IndH)MnIICl2] (1) and [(N4Py*)MnII(CH3CN)](ClO4)2 (2) with tridentate isoindoline and pentadentate polypyridyl ligands (IndH = 1,3-bis(2′-pyridylimino)isoindoline; N4Py* = N,N-bis(2-pyridylmethyl)-1,2- di(2-pyridyl)ethylamine) proved to be [...] Read more.
Non-heme manganese(II) complexes [(IndH)MnIICl2] (1) and [(N4Py*)MnII(CH3CN)](ClO4)2 (2) with tridentate isoindoline and pentadentate polypyridyl ligands (IndH = 1,3-bis(2′-pyridylimino)isoindoline; N4Py* = N,N-bis(2-pyridylmethyl)-1,2- di(2-pyridyl)ethylamine) proved to be suitable to catalyze the oxidative demethylation of N,N-dimethylaniline (DMA) with various oxidants such as tert-butyl hydroperoxide (TBHP), peracetic acid (PAA), and meta-chloroperoxybenzoic acid (mCPBA), resulting N-methylaniline (MA) as a main product with N-methylformanilide (MFA) as a result of a free-radical chain process under air. The effect of electron-donating and electron-withdrawing substituents on the aromatic ring on the relative reactivity of the substrates and on the product composition (MA/MFA) was also studied and showed a significant impact on the catalytic N-demethylation reaction. Based on the Hammett correlation with ρ = −0.38 (PAA), −0.45 (mCPBA), and −0.63 (TBHP) for 1 and ρ = −0.38 (PAA) and −0.37 (mCPBA) for 2, an electrophilic intermediate is suggested as the key oxidant. Furthermore, the spectral investigation (UV-Vis) resulted in direct evidence for the formation of a high-valent oxomanganese(IV) and a transient radical cation intermediate, p-Me-DMA•+, suggesting that the initial step in the manganese-catalyzed oxidations is a fast electron-transfer between the amine and the high valent oxometal species. The mechanisms of the subsequent steps are discussed. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

14 pages, 4719 KiB  
Article
Efficient Oxidation of Cyclohexane over Bulk Nickel Oxide under Mild Conditions
by Reem S. Alnefaie, Mohamed Abboud, Abdullah Alhanash and Mohamed S. Hamdy
Molecules 2022, 27(10), 3145; https://doi.org/10.3390/molecules27103145 - 14 May 2022
Cited by 4 | Viewed by 3891
Abstract
Nickel oxide powder was prepared by simple calcination of nickel nitrate hexahydrate at 500 °C for 5 h and used as a catalyst for the oxidation of cyclohexane to produce the cyclohexanone and cyclohexanol—KA oil. Molecular oxygen (O2), hydrogen peroxide (H [...] Read more.
Nickel oxide powder was prepared by simple calcination of nickel nitrate hexahydrate at 500 °C for 5 h and used as a catalyst for the oxidation of cyclohexane to produce the cyclohexanone and cyclohexanol—KA oil. Molecular oxygen (O2), hydrogen peroxide (H2O2), t-butyl hydrogen peroxide (TBHP) and meta-chloroperoxybenzoic acid (m-CPBA) were evaluated as oxidizing agents under different conditions. m-CPBA exhibited higher catalytic activity compared to other oxidants. Using 1.5 equivalent of m-CPBA as an oxygen donor agent for 24 h at 70 °C, in acetonitrile as a solvent, NiO powder showed exceptional catalytic activity for the oxidation of cyclohexane to produce KA oil. Compared to different catalytic systems reported in the literature, for the first time, about 85% of cyclohexane was converted to products, with 99% KA oil selectivity, including around 87% and 13% selectivity toward cyclohexanone and cyclohexanol, respectively. The reusability of NiO catalyst was also investigated. During four successive cycles, the conversion of cyclohexane and the selectivity toward cyclohexanone were decreased progressively to 63% and 60%, respectively, while the selectivity toward cyclohexanol was increased gradually to 40%. Full article
(This article belongs to the Special Issue Metal-Based Nanocomposite: Synthesis and Applications)
Show Figures

Graphical abstract

27 pages, 11830 KiB  
Review
Catalytic Oxidations with Meta-Chloroperoxybenzoic Acid (m-CPBA) and Mono- and Polynuclear Complexes of Nickel: A Mechanistic Outlook
by Dmytro S. Nesterov and Oksana V. Nesterova
Catalysts 2021, 11(10), 1148; https://doi.org/10.3390/catal11101148 - 25 Sep 2021
Cited by 26 | Viewed by 8573
Abstract
Selective catalytic functionalization of organic substrates using peroxides as terminal oxidants remains a challenge in modern chemistry. The high complexity of interactions between metal catalysts and organic peroxide compounds complicates the targeted construction of efficient catalytic systems. Among the members of the peroxide [...] Read more.
Selective catalytic functionalization of organic substrates using peroxides as terminal oxidants remains a challenge in modern chemistry. The high complexity of interactions between metal catalysts and organic peroxide compounds complicates the targeted construction of efficient catalytic systems. Among the members of the peroxide family, m-chloroperoxybenzoic acid (m-CPBA) exhibits quite complex behavior, where numerous reactive species could be formed upon reaction with a metal complex catalyst. Although m-CPBA finds plenty of applications in fine organic synthesis and catalysis, the factors that discriminate its decomposition routes under catalytic conditions are still poorly understood. The present review covers the advances in catalytic C–H oxidation and olefine epoxidation with m-CPBA catalyzed by mono- and polynuclear complexes of nickel, a cheap and abundant first-row transition metal. The reaction mechanisms are critically discussed, with special attention to the O–O bond splitting route. Selectivity parameters using recognized model hydrocarbon substrates are summarized and important factors that could improve further catalytic studies are outlined. Full article
(This article belongs to the Special Issue Polynuclear Complexes in Oxidation Catalysis)
Show Figures

Graphical abstract

9 pages, 1357 KiB  
Article
Synthesis of Nitroxide Diradical Using a New Approach
by Pavel Fedyushin, Tatyana Rybalova, Nargiz Asanbaeva, Elena Bagryanskaya, Alexey Dmitriev, Nina Gritsan, Maxim Kazantsev and Evgeny Tretyakov
Molecules 2020, 25(11), 2701; https://doi.org/10.3390/molecules25112701 - 11 Jun 2020
Cited by 12 | Viewed by 3892
Abstract
A new synthetic pathway to diradical organic systems is proposed. The effectiveness of this approach was exemplified by the synthesis of a new nitroxide diradical. An interaction of perfluorobiphenyl with lithium tert-butylamide, followed by oxidation of the thusly formed N4,N [...] Read more.
A new synthetic pathway to diradical organic systems is proposed. The effectiveness of this approach was exemplified by the synthesis of a new nitroxide diradical. An interaction of perfluorobiphenyl with lithium tert-butylamide, followed by oxidation of the thusly formed N4,N4′-di-tert-butyl-2,2′,3,3′,5,5′,6,6′-octafluorobiphenyl-4,4′-diamine with meta-chloroperoxybenzoic acid, led to the polyfluorinated nitroxide diradical, N,N′-(perfluorobiphenyl-4,4′-diyl)bis(N-tert-butyl(oxyl)amine), with a good total yield. The polyfluorinated diradical is stable and can be isolated in free form and completely characterized. The structure of the nitroxide diradical was proved by single-crystal X-ray diffraction analysis. According to the X-ray diffraction data, the diradical is considerably twisted: dihedral angles between the planes of the nitroxide groups and aromatic cycles are 65.1° and 69.5°, and between aromatic cycles 52.6°. Quantum chemical calculations predict well-balanced size of both intramolecular and intermolecular exchange interactions with J from −2.65 to −1.14 cm−1. Full article
(This article belongs to the Special Issue Stable Organic Radicals)
Show Figures

Figure 1

13 pages, 2623 KiB  
Article
Formation of Tetrahydrofurano-, Aryltetralin, and Butyrolactone Norlignans through the Epoxidation of 9-Norlignans
by Patrik A. Runeberg, Dominique Agustin and Patrik C. Eklund
Molecules 2020, 25(5), 1160; https://doi.org/10.3390/molecules25051160 - 5 Mar 2020
Cited by 6 | Viewed by 3783
Abstract
Epoxidation of the C=C double bond in unsaturated norlignans derived from hydroxymatairesinol was studied. The intermediate epoxides were formed in up to quantitative conversions and were readily further transformed into tetrahydrofuran, aryltetralin, and butyrolactone products—in diastereomeric mixtures—through ring-closing reactions and intramolecular couplings. For [...] Read more.
Epoxidation of the C=C double bond in unsaturated norlignans derived from hydroxymatairesinol was studied. The intermediate epoxides were formed in up to quantitative conversions and were readily further transformed into tetrahydrofuran, aryltetralin, and butyrolactone products—in diastereomeric mixtures—through ring-closing reactions and intramolecular couplings. For epoxidation, the classical Prilezhaev reaction, using stoichiometric amounts of meta-chloroperbenzoic acid (mCPBA), was used. As an alternative method, a catalytic system using dimeric molybdenum-complexes [MoO2L]2 with ONO- or ONS-tridentate Schiff base ligands and aqueous tert-butyl hydroperoxide (TBHP) as oxidant was used on the same substrates. Although the epoxidation was quantitative when using the Mo-catalysts, the higher temperatures led to more side-products and lower yields. Kinetic studies were also performed on the Mo-catalyzed reactions. Full article
(This article belongs to the Special Issue Lignans II)
Show Figures

Graphical abstract

14 pages, 2060 KiB  
Article
Aromatic SNF-Approach to Fluorinated Phenyl tert-Butyl Nitroxides
by Evgeny Tretyakov, Pavel Fedyushin, Elena Panteleeva, Larisa Gurskaya, Tatyana Rybalova, Artem Bogomyakov, Elena Zaytseva, Maxim Kazantsev, Inna Shundrina and Victor Ovcharenko
Molecules 2019, 24(24), 4493; https://doi.org/10.3390/molecules24244493 - 8 Dec 2019
Cited by 14 | Viewed by 4039
Abstract
The interaction of octafluorotoluene (1a), as well as pentafluorobenzonitrile (1b) with tert-butylamine, followed by the oxidation of thus formed tert-butylanilines (2a,b) with meta-chloroperoxybenzoic acid led to functionalized perfluorinated phenyl tert-butyl nitroxides [...] Read more.
The interaction of octafluorotoluene (1a), as well as pentafluorobenzonitrile (1b) with tert-butylamine, followed by the oxidation of thus formed tert-butylanilines (2a,b) with meta-chloroperoxybenzoic acid led to functionalized perfluorinated phenyl tert-butyl nitroxides [namely, 4-(N-tert-butyl(oxyl)amino)heptafluorotoluene (3a) and 4-(N-tert-butyl(oxyl)amino)tetrafluorobenzonitrile (3b)] with nearly quantitative total yields. The molecular and crystal structures of nitroxide 3a were proved by single crystal X-ray diffraction analysis. The radical nature of both nitroxides was confirmed by ESR data. The interaction of Cu(hfac)2 with the obtained nitroxides 3a,b gave corresponding trans-bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato-κ2O,O′)bis{4-(N-tert-butyl(oxyl)amino)perfluoroarene-κO}copper (II) complexes ([Cu(hfac)2(3a)2] and [Cu(hfac)2(3b)2]). X-ray crystal structure analysis showed square bipyramid coordination of a centrally symmetric Cu polyhedron with the axial positions occupied by oxygen atoms of the nitroxide groups. Magnetic measurements revealed intramolecular ferromagnetic exchange interactions between unpaired electrons of Cu(II) ions and paramagnetic ligands, with exchange interaction parameters JCu–R reaching 53 cm−1. Full article
(This article belongs to the Special Issue Stable Organic Radicals)
Show Figures

Graphical abstract

17 pages, 2808 KiB  
Article
Stereoselective Alkane Oxidation with meta-Chloroperoxybenzoic Acid (MCPBA) Catalyzed by Organometallic Cobalt Complexes
by Georgiy B. Shul’pin, Dmitriy A. Loginov, Lidia S. Shul’pina, Nikolay S. Ikonnikov, Vladislav O. Idrisov, Mikhail M. Vinogradov, Sergey N. Osipov, Yulia V. Nelyubina and Polina M. Tyubaeva
Molecules 2016, 21(11), 1593; https://doi.org/10.3390/molecules21111593 - 22 Nov 2016
Cited by 30 | Viewed by 11112
Abstract
Cobalt pi-complexes, previously described in the literature and specially synthesized and characterized in this work, were used as catalysts in homogeneous oxidation of organic compounds with peroxides. These complexes contain pi-butadienyl and pi-cyclopentadienyl ligands: [(tetramethylcyclobutadiene)(benzene)cobalt] hexafluorophosphate, [(C4Me4)Co(C6H [...] Read more.
Cobalt pi-complexes, previously described in the literature and specially synthesized and characterized in this work, were used as catalysts in homogeneous oxidation of organic compounds with peroxides. These complexes contain pi-butadienyl and pi-cyclopentadienyl ligands: [(tetramethylcyclobutadiene)(benzene)cobalt] hexafluorophosphate, [(C4Me4)Co(C6H6)]PF6 (1); diiodo(carbonyl)(pentamethylcyclopentadienyl)cobalt, Cp*Co(CO)I2 (2); diiodo(carbonyl)(cyclopentadienyl)cobalt, CpCo(CO)I2 (3); (tetramethylcyclobutadiene)(dicarbonyl)(iodo)cobalt, (C4Me4)Co(CO)2I (4); [(tetramethylcyclobutadiene)(acetonitrile)(2,2′-bipyridyl)cobalt] hexafluorophosphate, [(C4Me4)Co(bipy)(MeCN)]PF6 (5); bis[dicarbonyl(B-cyclohexylborole)]cobalt, [(C4H4BCy)Co(CO)2]2 (6); [(pentamethylcyclopentadienyl)(iodo)(1,10-phenanthroline)cobalt] hexafluorophosphate, [Cp*Co(phen)I]PF6 (7); diiodo(cyclopentadienyl)cobalt, [CpCoI2]2 (8); [(cyclopentadienyl)(iodo)(2,2′-bipyridyl)cobalt] hexafluorophosphate, [CpCo(bipy)I]PF6 (9); and [(pentamethylcyclopentadienyl)(iodo)(2,2′-bipyridyl)cobalt] hexafluorophosphate, [Cp*Co(bipy)I]PF6 (10). Complexes 1 and 2 catalyze very efficient and stereoselective oxygenation of tertiary C–H bonds in isomeric dimethylcyclohexanes with MCBA: cyclohexanols are produced in 39 and 53% yields and with the trans/cis ratio (of isomers with mutual trans- or cis-configuration of two methyl groups) 0.05 and 0.06, respectively. Addition of nitric acid as co-catalyst dramatically enhances both the yield of oxygenates and stereoselectivity parameter. In contrast to compounds 1 and 2, complexes 9 and 10 turned out to be very poor catalysts (the yields of oxygenates in the reaction with cis-1,2-dimethylcyclohexane were only 5%–7% and trans/cis ratio 0.8 indicated that the oxidation is not stereoselective). The chromatograms of the reaction mixture obtained before and after reduction with PPh3 are very similar, which testifies that alkyl hydroperoxides are not formed in this oxidation. It can be thus concluded that the interaction of the alkanes with MCPBA occurs without the formation of free radicals. The complexes catalyze oxidation of alcohols with tert-butylhydroperoxide (TBHP). For example, tert-BuOOH efficiently oxidizes 1-phenylethanol to acetophenone in 98% yield if compound 1 is used as a catalyst. Full article
(This article belongs to the Special Issue Reactions of Hydrocarbons and other C‒H Compounds)
Show Figures

Graphical abstract

12 pages, 2027 KiB  
Article
Novel Cage-Like Hexanuclear Nickel(II) Silsesquioxane. Synthesis, Structure, and Catalytic Activity in Oxidations with Peroxides
by Alexey N. Bilyachenko, Alexey I. Yalymov, Lidia S. Shul’pina, Dalmo Mandelli, Alexander A. Korlyukov, Anna V. Vologzhanina, Marina A. Es’kova, Elena S. Shubina, Mikhail M. Levitsky and Georgiy B. Shul’pin
Molecules 2016, 21(5), 665; https://doi.org/10.3390/molecules21050665 - 19 May 2016
Cited by 33 | Viewed by 7551
Abstract
New hexanuclear nickel(II) silsesquioxane [(PhSiO1.5)12(NiO)6(NaCl)] (1) was synthesized as its dioxane-benzonitrile-water complex (PhSiO1,5)12(NiO)6(NaCl)(C4H8O2)13(PhCN)2(H2O)2 and studied by X-ray and [...] Read more.
New hexanuclear nickel(II) silsesquioxane [(PhSiO1.5)12(NiO)6(NaCl)] (1) was synthesized as its dioxane-benzonitrile-water complex (PhSiO1,5)12(NiO)6(NaCl)(C4H8O2)13(PhCN)2(H2O)2 and studied by X-ray and topological analysis. The compound exhibits cylinder-like type of molecular architecture and represents very rare case of polyhedral complexation of metallasilsesquioxane with benzonitrile. Complex 1 exhibited catalytic activity in activation of such small molecules as light alkanes and alcohols. Namely, oxidation of alcohols with tert-butylhydroperoxide and alkanes with meta-chloroperoxybenzoic acid. The oxidation of methylcyclohexane gave rise to the isomeric ketones and unusual distribution of alcohol isomers. Full article
(This article belongs to the Special Issue Metal Mediated Activation of Small Molecules)
Show Figures

Graphical abstract

19 pages, 270 KiB  
Article
Brominated Thiophenes as Precursors in the Preparation of Brominated and Arylated Anthraquinones
by Thies Thiemann, Yasuko Tanaka and Jesus Iniesta
Molecules 2009, 14(3), 1013-1031; https://doi.org/10.3390/molecules14031013 - 4 Mar 2009
Cited by 13 | Viewed by 13025
Abstract
Brominated anthraquinones can be synthesized directly from bromothiophenes when these are reacted with 1,4-naphthoquinones in the presence of meta-chloroperoxybenzoic acid. The bromoanthraquinones are versatile building blocks in the preparation of arylated anthraquinones and of extended π-systems with interspersed anthraquinone units. Full article
Show Figures

Figure 1

1 pages, 92 KiB  
Short Note
8a,9a-Epoxy Nor-31-lanosten-3,4-olactone
by M. Daoubi, A. Benharref, E. Kossareva and M. Pierrot
Molecules 2000, 5(12), M188; https://doi.org/10.3390/M188 - 25 Dec 2000
Cited by 2 | Viewed by 3478
Abstract
To a mixture of (0.85 g, 4.9 mmol) of metachloroperoxybenzoic acid (mCPBA) [1,2] and (1.63 g, 19.6 mmol) of sodium hydrogenocarbonate (NaHCO3) in 20 ml of dichloromethane was added (1 g, 2.42 mmol) of 1 in 10 ml of CH2Cl2.[...] Full article
(This article belongs to the Section Molbank Section of Molecules, 1997-2001)
Back to TopTop