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Abstract: Nickel oxide powder was prepared by simple calcination of nickel nitrate hexahydrate at
500 ◦C for 5 h and used as a catalyst for the oxidation of cyclohexane to produce the cyclohexanone
and cyclohexanol—KA oil. Molecular oxygen (O2), hydrogen peroxide (H2O2), t-butyl hydrogen
peroxide (TBHP) and meta-chloroperoxybenzoic acid (m-CPBA) were evaluated as oxidizing agents
under different conditions. m-CPBA exhibited higher catalytic activity compared to other oxidants.
Using 1.5 equivalent of m-CPBA as an oxygen donor agent for 24 h at 70 ◦C, in acetonitrile as
a solvent, NiO powder showed exceptional catalytic activity for the oxidation of cyclohexane to
produce KA oil. Compared to different catalytic systems reported in the literature, for the first time,
about 85% of cyclohexane was converted to products, with 99% KA oil selectivity, including around
87% and 13% selectivity toward cyclohexanone and cyclohexanol, respectively. The reusability of
NiO catalyst was also investigated. During four successive cycles, the conversion of cyclohexane and
the selectivity toward cyclohexanone were decreased progressively to 63% and 60%, respectively,
while the selectivity toward cyclohexanol was increased gradually to 40%.
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1. Introduction

The oxidation of cyclohexane is an important industrial chemical reaction. The oxida-
tion of cyclohexane affords cyclohexanol and cyclohexanone, which are together known as
ketone–alcohol (KA) oil, the main feedstock for the production of nylon 6,6 fibers (Figure 1).
The further oxidation of KA oil by nitric acid led to the formation of adipic acid, which is
a key monomer for the preparation of very important polymers such as nylon 6,6 [1]. In
addition, adipic acid is an important synthetic intermediate in the chemical industry [2,3].
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1. Introduction 
The oxidation of cyclohexane is an important industrial chemical reaction. The oxi-

dation of cyclohexane affords cyclohexanol and cyclohexanone, which are together 
known as ketone–alcohol (KA) oil, the main feedstock for the production of nylon 6,6 fi-
bers (Figure 1). The further oxidation of KA oil by nitric acid led to the formation of adipic 
acid, which is a key monomer for the preparation of very important polymers such as 
nylon 6,6 [1]. In addition, adipic acid is an important synthetic intermediate in the chem-
ical industry [2,3]. 
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Figure 1. Synthesis pathway of nylon 6,6 from cyclohexane. 
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Figure 1. Synthesis pathway of nylon 6,6 from cyclohexane.

The current industrial process for the oxidation of cyclohexane to produce KA oil
involves the utilization of cobalt or manganese salts as homogenous catalysts. The operating
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conditions consist of high temperature (150–160 ◦C) and high pressure (10–20 atm) of air
or molecular oxygen (O2) due to the stable nature of the cyclohexane. However, since
the desired products, cyclohexanol and cyclohexanone, are less stable than the starting
material, cyclohexane, many by-products are formed during the oxidation of cyclohexane
at high temperature and pressure. Thus, at high conversion of cyclohexane, the KA oil
can be formed with low selectivity, which makes the purification of KA oil difficult with
a high-cost process, in addition to the major issue of the regeneration and reutilization
of the homogeneous catalysts. Therefore, the commercial processes usually operate at a
low cyclohexane conversion of about 4–6% to maintain the high selectivity of KA oil at
70–85% [4].

To improve the process for the oxidation of cyclohexane, the heterogeneous cata-
lysts have been considered as good alternatives to improve the cyclohexane conversion
while maintaining high KA oil selectivity and minimizing the catalyst utilization and
separation costs.

Therefore, many heterogeneous catalytic systems have been developed during the last
two decades. Various supported metal catalysts were prepared, such as metal transition
Au, Ti, Ag, Co, Mo, Fe, Mn, Cr, and V, and even lanthanides such as La, Ce, Sm, Dy, Y,
and Gd, using different type of supports such as silica, alumina, zeolites, graphite, and
aluminophosphates (AlPo) [5]. Air was the preferred oxidant due to its low cost, along
with other oxidants such as molecular oxygen (O2), hydrogen peroxide (H2O2), and t-butyl
hydrogen peroxide (TBHP). However, the utilization of H2O2 and TBHP is not industrially
viable due to their high cost compared to air and O2. Thus, higher attention has been paid
to the liquid phase process using O2 as an oxidation agent.

The high dispersion of some transition metals in high surface-area supports, such as
gold nanoparticles in mesoporous silica, exhibited relatively effective oxidation of cyclohex-
ane. Xu et al. [4] reported the utilization of silica-supported gold catalyst doped with titania
under air at high temperature (150 ◦C) and high pressure (1.5 MPa) to convert the cyclo-
hexane to KA oil. However, the highest conversion was 9.2% with 82.6 selectivity. Similar
results (10–13% conversion, 84–87% selectivity) were obtained by Xu and coworkers when
gold was supported on alumina (Au/Al2O3) under similar conditions, using the molecular
oxygen as an oxidant [6]. Better results (16.6% conversion, 92.4% selectivity) were obtained
with highly dispersed gold nanoparticles on functionalized SBA-15 mesoporous silica,
using molecular oxygen under similar conditions (150 ◦C, 1 MPa) [7]. Similar results (16.9%
conversion, 93% selectivity) were obtained by Wang et al. [8] when bismuth-containing
SBA-15 (Bi-SBA-15) was used as catalyst, with molecular oxygen as oxygen donor.

However, when supported gold was used in mild conditions, both conversion and
selectivity decreased. For example, when Enache et al. used graphite-supported gold
under mild conditions (70 ◦C, 1 atm) the conversion (2–7%) and selectivity (10–23%) were
very low [9]. However, all of these catalytic systems still suffer from low cyclohexane
conversion, expensive and complicated synthesis of the catalyst, and high-cost processes.
Hence, the selective oxidation of cyclohexane with high conversion in mild conditions is
still a challenge. Therefore, there is still great interest among industry and academia for the
development of simple, low-cost, reusable and efficient heterogeneous catalytic systems.

One of the most promising transition metals is nickel. Due to its relative abundance,
nickel is more cost-effective than most metals as a catalyst [10]. Numerous research efforts
have been recently devoted to the preparation of nickel particles with tailored features,
because of their unique electronic, optical, and mechanical properties and their widespread
potential applications in many fields including catalysis, electronics, optoelectronics, ad-
sorption of dyes from industrial water, development of supercapacitors, fabrication of
dye-sensitized solar cells and sensors, and biomedical applications [11–32].

Due to their unique magnetic, chemical, and physical properties, we believe that
Ni particles will gain more attention in future in various technological fields such as
catalysis, battery manufacture, dye-sensitized solar cells, enhanced pseudo-capacitance,
and drug delivery.
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Recently, Ni-based heterogeneous catalysts have been employed for various organic
transformations such as hydrogenation reactions of aromatics [33], oxidation of hydro-
carbons [34–36], production of synthesis gas [37], steam reforming [38], methanation [39],
isomerization of hydrocarbons [40], hydrocracking [41], etc. [42–44]. Ni is considered as
a promising catalyst because it is eco-friendly, inexpensive, easy to prepare, and easily
recoverable and recyclable.

In this work, we report a very simple and highly efficient nickel-based heterogeneous
catalytic system for the oxidation of cyclohexane to KA oil. Surprisingly, the utilization
of bulk nickel oxide as a catalyst with meta-chloroperoxybenzoic acid (m-CPBA) as oxi-
dant in mild conditions allowed us to quantitively convert cyclohexane to KA oil with
99% selectivity.

2. Results
2.1. Characterization of Bulk NiO

The prepared bulk NiO was characterized by SEM, EDX, XRD and TGA.
SEM images (Figure 2) show aggregated microparticles of nickel oxide particles form-

ing worm-like shapes. The particle size distribution was measured using ImageJ software,
and the obtained results are presented in Figure 3. The average NiO particles size was
found to be around 148 nm.
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The prepared NiO was also studied by EDX. Figure 4 shows the EDX spectrum of NiO
particles. Ni and O peaks were clearly observed, and the [Ni]/[O] ratio was 1.13, which is
consistent with NiO molecular structure.



Molecules 2022, 27, 3145 4 of 14

Molecules 2022, 27, x FOR PEER REVIEW 4 of 15 
 

 

The prepared NiO was also studied by EDX. Figure 4 shows the EDX spectrum of 
NiO particles. Ni and O peaks were clearly observed, and the [Ni]/[O] ratio was 1.13, 
which is consistent with NiO molecular structure. 

 
Figure 4. EDX spectra of NiO powder. 

Powder XRD analysis was used to identify the synthesized NiO powder (Figure 5). 
The XRD pattern shows the principal peaks of NiO, which were observed at 2Ɵ = 37.31°, 
43.41°, 62.87°, 75.53°, and 79.46° and assigned to the (111), (200), (220), (311), and (222) 
planes, respectively [45]. This confirmed the formation of pure NiO particles [46,47]. 

30 40 50 60 70 80
2Ɵ (°) / CuKα 

 
 

 NiO powder

 
Figure 5. XRD pattern of NiO powder. 

Figure 6 illustrates the thermal decomposition patterns of nickel nitrate hexahydrate 
precursors under air. The thermogram of Ni(NO3)2 • 6 H2O can be divided into three seg-
ments. The first region from 25 °C to 250 °C with low weight loss of about 2 wt.% corre-
sponds to the elimination of residual solvents and physically absorbed water. The second 
segment from 250 °C to 440 °C, with rapid weight loss of about 28%, is related to water 
separation and decomposition of Ni(NO3)2 and formation of NiO. 

Figure 4. EDX spectra of NiO powder.

Powder XRD analysis was used to identify the synthesized NiO powder (Figure 5).
The XRD pattern shows the principal peaks of NiO, which were observed at 2T = 37.31◦,
43.41◦, 62.87◦, 75.53◦, and 79.46◦ and assigned to the (111), (200), (220), (311), and (222)
planes, respectively [45]. This confirmed the formation of pure NiO particles [46,47].
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Figure 6 illustrates the thermal decomposition patterns of nickel nitrate hexahydrate
precursors under air. The thermogram of Ni(NO3)2·6H2O can be divided into three seg-
ments. The first region from 25 ◦C to 250 ◦C with low weight loss of about 2 wt.% corre-
sponds to the elimination of residual solvents and physically absorbed water. The second
segment from 250 ◦C to 440 ◦C, with rapid weight loss of about 28%, is related to water
separation and decomposition of Ni(NO3)2 and formation of NiO.



Molecules 2022, 27, 3145 5 of 14

Molecules 2022, 27, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 6. TGA thermogram of the decomposition of nickel nitrate hexahydrate under air. 

2.2. The Oxidation of Cyclohexane over NiO Powder 
2.2.1. Effect of Oxidant 

The selective oxidation of cyclohexane in the presence of NiO as a catalyst was inves-
tigated together with the liquid-phase oxidation by using different oxidants at 70 °C for 
24 h, and the obtained results are presented in Figure 7. When molecular oxygen was used 
as an oxidant, only 2.4% of cyclohexane was converted to the oxidized products: cyclo-
hexanone (60%) and cyclohexanol (40%). The use of liquid-phase oxidation in the presence 
of H2O2 and TBHP did not improve the conversion of cyclohexane, and only 2.5% and 
3.1% of KA oil was obtained, respectively. A dramatic increase in cyclohexane oxidation 
was obtained in the liquid-phase system when m-CBPA was applied as an oxidant; 84.8% 
of cyclohexane was oxidized to 99% KA oil, with 87.4% and 12.6% selectivity towards 
cyclohexanone and cyclohexanol, respectively. The obtained results clearly show that the 
catalytic activity of NiO can be severely improved by using a suitable oxidant such as m-
CBPA. 

 
Figure 7. Oxidation of cyclohexane using different types of oxidants. 

Figure 6. TGA thermogram of the decomposition of nickel nitrate hexahydrate under air.

2.2. The Oxidation of Cyclohexane over NiO Powder
2.2.1. Effect of Oxidant

The selective oxidation of cyclohexane in the presence of NiO as a catalyst was investi-
gated together with the liquid-phase oxidation by using different oxidants at 70 ◦C for 24 h,
and the obtained results are presented in Figure 7. When molecular oxygen was used as an
oxidant, only 2.4% of cyclohexane was converted to the oxidized products: cyclohexanone
(60%) and cyclohexanol (40%). The use of liquid-phase oxidation in the presence of H2O2
and TBHP did not improve the conversion of cyclohexane, and only 2.5% and 3.1% of KA
oil was obtained, respectively. A dramatic increase in cyclohexane oxidation was obtained
in the liquid-phase system when m-CBPA was applied as an oxidant; 84.8% of cyclohexane
was oxidized to 99% KA oil, with 87.4% and 12.6% selectivity towards cyclohexanone and
cyclohexanol, respectively. The obtained results clearly show that the catalytic activity of
NiO can be severely improved by using a suitable oxidant such as m-CBPA.
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2.2.2. Effect of Reaction Temperature

The selective oxidation of cyclohexane by using NiO powder as a catalyst and m-
CBPA as an oxidant was investigated under different applied temperatures: 25, 40, 60
and 70 ◦C. The obtained results are presented in Figure 8, which shows that an almost
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negligible amount of cyclohexane was oxidized at room temperature, and less than 5%
conversion was obtained at 40 ◦C or 60 ◦C. However, the best results were observed at
70 ◦C, with 84.8% cyclohexane conversion, with 99% KA selectivity and 87.4% selectivity
towards cyclohexanone.
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2.2.3. Effect of Reaction Time

The selective oxidation of cyclohexane using NiO as a catalyst and m-CPBA as an
oxidant was studied at different reaction times at 70 ◦C. The obtained results are plot-
ted in Figure 9. After 4 h of the reaction, less than 5% conversion of cyclohexane was
obtained. More importantly, the selectivity of cyclohexanol was found to be decreased,
while the selectivity of cyclohexanone increased, which means that m-CPBA could also
oxidize cyclohexanol to cyclohexanone. The obtained results confirm the relatively long
life of the oxidant with high ability to oxidize cyclohexane during the entire reaction time.
Moreover, m-CPBA was not only active in the oxidation of cyclohexane, but also more
selective towards cyclohexanone. The best results were obtained after 24 h with around 85%
conversion, 99% KA oil selectivity, with 87% of cyclohexanone and 12% of cyclohexanol.
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2.2.4. Effect of Catalyst Amount

The catalyst amount was optimized in order to achieve the best substrate/catalyst
ratio. Several amounts of NiO were used in separate experiments to oxidize cyclohexane
at 70 ◦C for 24 h in the presence of 1.5 eq of m-CPBA as an oxidant. The obtained results
are presented in Figure 10. The conversion of cyclohexane was found to be increased by
increasing the amount of NiO catalyst, while the amount of the produced cyclohexanol was
found to be decreased. The best result was obtained when 50 mg of bulk NiO was applied,
and no significant change was observed when the NiO dose was increased to 100 mg. It
should be noted that the reaction proceeded without NiO catalyst and in the presence of
m-CPBA. However, the conversion of cyclohexane to KA oil was very low, about 7.3%,
which shows the importance of the catalyst.
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2.3. Catalyst Recycling

To investigate the stability and reusability of NiO catalyst for the oxidation of cy-
clohexane in the reaction conditions, NiO powder was recycled and reused under the
same conditions mentioned above for four consecutive runs, and the obtained results are
presented in Figure 11. After cycle one of the oxidation reaction of cyclohexane, the NiO
catalyst was separated by filtration using a centrifuge. Then, the recycled NiO was washed
three times with chloroform to remove the reactants, products, and the meta-chlorobenzoic
acid (m-CBA) that were formed after the degradation of the m-CPBA. Then, the obtained
NiO powder was dried in an oven at 100 ◦C for around 15 h. After this treatment, the NiO
powder was ready to be reused in the following cycle. This treatment was repeated after
each cycle, and the final products were detected by GC to calculate the CXE conversion
and the product selectivity according to Equations (1)–(3) (above).

The obtained results show a slight decrease in the activity during four successive
runs. The cyclohexane conversion was decreased from 85% to 63% with constant KA oil
selectivity (99%), and the selectivity of cyclohexanone and cyclohexanol was decreased from
87% and 12% to 60% and 39%, respectively. This decrease in the conversion of cyclohexane
was probably due to diminution of NiO amounts during the four cycles. The amount of
NiO can be decreased by loss during the recycling and washing process, and also by the
degradation (leaching) of NiO particles in the reaction acidic medium.
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3. Materials and Methods
3.1. Materials

Nickel (II) nitrate hexahydrate (≥98.5%), cyclohexane (ACS reagent, ≥99%), cyclohex-
anone (analytical standard), cyclohexanol (analytical standard), meta-chloroperoxybenzoic
acid (m-CPBA) (≤77%), t-butyl hydrogen peroxide (TBHP) 5.0–6.0 M in decane, hydrogen
peroxide (H2O2) 50 wt.% in H2O, stabilized, molecular oxygen O2 cylinder supplied by
Southern Gases, acetonitrile (≥99.5%), n-hexane (≥98%), chloroform (≥99.5%), magnesium
sulphate (anhydrous, reagent grade, ≥97%) were purchased from Sigma Aldrich. All
reagents were of analytical grade and used without further purification.

3.2. Methods
3.2.1. Synthesis of NiO Powder

The bulk NiO particles were prepared via the thermal treatment of nickel (II) nitrate
hexahydrate. In a typical synthesis reported previously [30], 5 g of nickel nitrate was
heated under static conditions in a muffle furnace at 500 ◦C for 5 h with a heating ramp of
5 ◦C min−1. The obtained material was a black-gray powder.

3.2.2. Characterization of NiO Powder

The prepared NiO powder was characterized by X-ray diffraction (XRD), scanning elec-
tron microscopy (SEM), energy dispersive X-ray (EDX), and thermogravimetric analysis (TGA).

The morphology of the obtained NiO powder was observed using SEM Philips EM
300 (Siemens Autoscan, Munchen, Germany). The X-ray diffraction pattern was measured
on a Shimadzu Lab-XRD–6000 with CuKα radiation and a secondary monochromator.
TGA was investigated under air conditions using a Shimadzu thermogravimetric analyzer
operating at a rate of 50 mL min−1 of air. In this process, a 20.0 mg sample was submitted
in a platinum crucible and heated at 15 K min−1 from 30 to 900 ◦C.

The epoxidation reaction was monitored by a Shimadzu GC-17A gas chromatograph
(GC) equipped with flam ionization detector and RTX-5 column, 30 m × 0.25 mm, 1 µm
film thickness. Helium was used as the carrier gas at a flow rate of 0.6 mL/min. Samples
were withdrawn from the reaction mixture periodically. Injection volume was 1 µL, and
total flow was 100 mL/min.
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3.3. Oxidation of Cyclohexane over Bulk NiO

In order to determine the optimal conditions for the oxidation of cyclohexane over
bulk NiO, such as the temperature, reaction time, catalyst dose and the best oxidant, the
extreme conditions of the temperature (70 ◦C), reaction time (24 h) and catalyst amount
as used in the literature [5] were used as the starting point in this study to determine the
best oxidant. Different oxygen donors were used in this study, including H2O2, O2, TBHP
and m-CPBA.

The most promising results were obtained with m-CPBA. Therefore, other parameters
were also investigated using m-CPBA as the oxidant, such as the effect of catalyst dose,
temperature, and reaction time. The following are the experimental conditions used for
each oxidant. Each reaction was run twice. The dodecane was used as internal reference.
The oxidation reaction was monitored by GC, and the average conversion and selectivity
are presented.

3.3.1. Molecular Oxygen (O2)

The oxidation of cyclohexane over bulk NiO using molecular O2 was performed in
a high-pressure reactor vessel. A 100 mg amount of the bulk NiO, 20 mL of cyclohexane
and 0.1 mL of dodecane (internal standard) were added in the reactor. Then, the reactor
was closed and temperature of the mixture was increased to 140–150 ◦C under magnetic
stirring. The pressure inside the reactor was stabilized at about 0.5 MPa. After 24 h, the
temperature was cooled down to room temperature, and a sample (30 µL) was withdrawn
from the reaction mixture, filtered through hydrophobic membrane, and injected into GC.

3.3.2. Using Hydrogen Peroxide (H2O2)

The oxidation of cyclohexane over bulk NiO using H2O2 was performed as follows.
Briefly, in a 50 mL flask equipped with a condenser, 50 mg of bulk NiO was dispersed in
10 mL of acetic acid, then 2 mL of the substrate (cyclohexane) and 0.1 mL of dodecane
(internal reference) were added. After stirring this mixture for 5 min at 70 ◦C, 2.7 mL of
H2O2 was added, wherein the 0 time of the reaction was considered at this moment. After
24 h, the organic phase was extracted by n-hexane and dried over MgSO4. Sample (30 µL)
was withdrawn from the organic phase, filtered through hydrophobic membrane, and
injected into GC.

3.3.3. Tert-Butyl Hydroperoxide (TBHP)

The oxidation of cyclohexane over bulk NiO using TBHP was performed as follows.
Briefly, in a 50 mL flask equipped with a condenser, the appropriate amount of bulk NiO
(50 mg) was dispersed in 10 mL of acetonitrile, then 0.12 mL of substrate (cyclohexane) and
0.1 mL of dodecane (internal reference) were added. After stirring this mixture for 5 min at
70 ◦C, 0.3 mL of TBHP was added, wherein the 0 time of the reaction was considered at this
moment. After 24 h, a sample of about 30 µL was withdrawn from the reaction mixture,
filtered through hydrophobic membrane to remove the solid catalyst, and then injected
into GC.

3.3.4. Meta-Chloroperoxybenzoic Acid (m-CPBA)

The oxidation of cyclohexane over bulk NiO using m-CPBA was performed following
a modified procedure reported by Abboud et al. [34]. Briefly, in a 50 mL flask equipped
with a condenser, 50 mg of bulk NiO was dispersed in 10 mL of acetonitrile, then 0.12 mL
of cyclohexane (substrate) and 0.1 mL of dodecane (internal reference) were added. After
stirring this mixture for 5 min at 70 ◦C, 288 mg of m-CPBA was added, wherein the 0 time
of the reaction was considered at this moment. After 24 h, a sample of about 30 µL was
withdrawn from the reaction mixture, filtered through hydrophobic membrane to remove
the solid catalyst, and then injected into GC.
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3.3.5. The Optimization of the Oxidation of Cyclohexane over Bulk NiO Using m-CPBA

Following the same procedure described in Section 3.4 above, the catalyst dose, tem-
perature, and reaction time were studied, as described in the following Table 1.

Table 1. Parameters investigated in the oxidation reaction of cyclohexane over bulk NiO using
m-CPBA as oxygen donor.

Catalyst Dose (mg) Temperature (◦C) Reaction Time (hours)

5, 10, 30, 50 25, 40, 60, 70 0.5, 1, 2, 4, 24

3.4. The Calculation of Conversion and Selectivity

The conversion and selectivity were calculated according to the following equations:

Conversion (%) = 100 − Peak area o f cyclohexane
Peak areas o f (cyclohexane + all products)

× 100 (1)

Equation (1). Conversion calculation.

Selectivity to CXAON (%) =
Peak area o f cyclohexanone
Peak areas o f all products

× 100 (2)

Equation (2). Selectivity to CXAON calculation.

Selectivity to CXAOL (%) =
Peak area o f cyclohexanol
Peak areas o f all products

× 100 (3)

Equation (3). Selectivity to CXAOL calculation.

3.5. Catalyst Recycling

The bulk NiO was reused in five successive cycles following the same procedure
described in Section 3.4. After 24 h of the first cycle, the mixture was filtered using a
centrifuge to recover the catalyst. The catalyst was washed three times with chloroform
to remove the remaining substrate, products, internal reference, m-CPBA, solvent, and
the meta-chlorobenzoic acid (m-CBA) formed after the degradation of m-CPBA. Then, the
recycled catalyst was dried in the oven at 100 ◦C for around 15 h to be ready for the
following cycle. At the end of each cycle, a sample of about 30 µL was withdrawn from the
reaction mixture, filtered through hydrophobic membrane to remove the solid catalyst, and
then injected into GC.

3.6. Possible Mechanism

m-CPBA is among the most important organic peroxides (ROOH or ROOR’) that have
been used as strong oxidants for various organic transformations. m-CPBA showed high
activity even for the hydroxylation reaction of methane in the presence of iron porphyrin
complex or its enzymatic model P450 [48,49]. m-CPBA also has been used to activate the
C–H bonds of hydrocarbons, which is one of the most challenging chemical reactions
in recent chemistry [50–52]. In contrast to O2, H2O2 and TBHP, m-CPBA is a stable and
selective oxidant, which are important features in organic synthesis. Moreover, m-CPBA can
form selective and highly active intermediates in the presence of auxiliary reagents [53–55].
In addition, m-CPBA is an easy-to-handle and convenient terminal oxidant. However,
m-CPBA may produce a broader mixture of radicals [56–58]. Therefore, the presence of
a catalyst is necessary to activate the O–O bond in a suitable way, and to suppress the
secondary reaction pathways.

According to some theoretical predictions and previous mechanistic investigations for
the oxidation of hydrocarbons catalyzed by transition metals [38,59–64], and based on the
obtained results in the current work, we believe that after homolysis of the O–O bond of
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m-CPBA in the presence of NiO active sites, nickel-oxo (O=NiO) species and m-CBOO• can
be formed (Figure 12, step 1). In the proposed mechanism, m-CBOO• are the cyclohexane-
C-H bond attacking species. After H abstraction by m-CBOO• species, cyclohexane radical
(CXA•) can be formed with the generation of m-CBA (Figure 12, step 2). CXA• reacts with
another molecule of m-CPBA to form CXAOL with the regeneration of m-CBOO• species
(Figure 12, step 3). Then, a portion of CXAOL will be converted to CXAON after further
oxidation over NiO (Figure 12, step 4). The ratio CXAON/CXAOL is related to the catalyst
dose. The low conversion of CXA to CXAON and CXAOL over m-CPBA in the absence
of the catalyst (Figure 10) can be explained by slow conversion of m-CPBA to m-CBOO•
species under heat (Figure 12, step 5). In addition, the formation of a small amount of
CXAON compared to CXAOL in the absence of the catalyst (Figure 10) can be attributed to
the slow conversion of CXAOL to CXAON over m-CPBA (Figure 12, step 6).
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4. Conclusions

This work reported an efficient process for the oxidation of cyclohexane to produce
KA oil (cyclohexanone plus cyclohexanol) catalyzed by bulk NiO powder under mild
conditions using meta-chloroperoxybenzoic acid (m-CPBA) as oxygen donor. NiO powder
was prepared by simple calcination (500 ◦C, 5 h) of nickel (II) nitrate hexahydrate. For
the first time, around 85% of cyclohexane was converted to products, with 99% KA oil
selectivity, including about 87% of cyclohexanone (K) and 13% cyclohexanol (A), using
1.5 eq of m-CPBA as an oxidant, in acetonitrile as a solvent, and under 70 ◦C for 24 h.
This reaction was monitored by gas chromatography (GC) using dodecane as internal
standard. Furthermore, the reusability of NiO catalyst was also evaluated. This catalyst
was easily separable and recyclable up to four cycles, with a slight decrease in the catalytic
activity. After four cycles, the conversion of cyclohexane was decreased gradually to
63% with constant KA selectivity (99%), while the selectivity toward cyclohexanone was
progressively decreased to 60%. Its features as a very efficient catalytic system under
mild conditions, with low cost, easy synthesis, high cyclohexane conversion, high KA oil
selectivity, and superiority to all reported catalysts available in the literature make this
catalytic system very promising for the industrial production of adipic acid and nylon fibers.
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