Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = mesoporous nanopowders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7410 KB  
Article
Novel Catalysts Based on Synthetic Mesoporous Silicates of the MCM-41 Type and Hydroxyapatite for Desulfurization of Model Fuel
by Nadezhda O. Donskaya, Margarita A. Goldberg, Alexander S. Fomin, Anna O. Koptelova, Polina D. Domashkina, Ekaterina A. Eseva, Olga S. Antonova, Anatoliy A. Konovalov, Alexander V. Leonov, Egor A. Kudryavtsev, Fadis F. Murzakhanov, Marat R. Gafurov, Argam V. Akopyan, Sergey M. Barinov and Vladimir S. Komlev
Ceramics 2025, 8(2), 61; https://doi.org/10.3390/ceramics8020061 - 21 May 2025
Viewed by 2190
Abstract
Nanopowders of hydroxyapatite (HA) and Fe-substituted hydroxyapatite (HAFe) were synthesized by wet precipitation on either MCM-41 (a synthetic, mesoporous aluminosilicate material) or an aluminum-containing MCM-41 (AlMCM) support. According to X-ray diffraction data, all of the synthesized materials are composite powders consisting of amorphous [...] Read more.
Nanopowders of hydroxyapatite (HA) and Fe-substituted hydroxyapatite (HAFe) were synthesized by wet precipitation on either MCM-41 (a synthetic, mesoporous aluminosilicate material) or an aluminum-containing MCM-41 (AlMCM) support. According to X-ray diffraction data, all of the synthesized materials are composite powders consisting of amorphous silicate and an HA phase with low crystallinity. The presence of aluminum and iron in the structure of the powders resulted in further amorphization. The obtained samples showed high specific surface areas (SSAs), ranging from 162.3 to 186.6 m2/g for MCM-41-HA and from 112.6 to 127.2 m2/g for AlMCM-HA. The hysteresis loops were found to be of type H3, indicating the formation of slit-like pores in the intercrystalline space, as confirmed by transmission electron microscopy, which revealed the presence of lamellar and flake-like particles. Catalytic activity tests showed that the conversion of dibenzothiophene depended on the iron concentration in the material and the acidity of the support. To further improve the catalytic activity of the materials, they were impregnated with molybdenum compounds. Active molybdenum peroxo complexes formed under these conditions enabled 100% conversion of dibenzothiophene. To our knowledge, this is the first study on the influence of MCM-41-HA- or AlMCM-HA-based materials on dibenzothiophene conversion via oxidative desulfurization using hydrogen peroxide as an oxidant. Full article
Show Figures

Graphical abstract

22 pages, 9418 KB  
Article
A Polyvinylpyrrolidone Nanofibrous Sensor Doubly Decorated with Mesoporous Graphene to Selectively Detect Acetic Acid Vapors
by Paolo Papa, Emiliano Zampetti, Fabricio Nicolas Molinari, Fabrizio De Cesare, Corrado Di Natale, Giovanna Tranfo and Antonella Macagnano
Sensors 2024, 24(7), 2174; https://doi.org/10.3390/s24072174 - 28 Mar 2024
Cited by 4 | Viewed by 2271
Abstract
An original approach has been proposed for designing a nanofibrous (NF) layer using UV-cured polyvinylpyrrolidone (PVP) as a matrix, incorporating mesoporous graphene carbon (MGC) nanopowder both inside and outside the fibers, creating a sandwich-like structure. This architecture is intended to selectively adsorb and [...] Read more.
An original approach has been proposed for designing a nanofibrous (NF) layer using UV-cured polyvinylpyrrolidone (PVP) as a matrix, incorporating mesoporous graphene carbon (MGC) nanopowder both inside and outside the fibers, creating a sandwich-like structure. This architecture is intended to selectively adsorb and detect acetic acid vapors, which are known to cause health issues in exposed workers. The nanocomposite MGC-PVP-NFs layer was fabricated through electrospinning deposition onto interdigitated microelectrodes (IDEs) and stabilized under UV–light irradiation. To enhance the adhesion of MGC onto the surface of the nanocomposite polymeric fibers, the layer was dipped in a suspension of polyethyleneimine (PEI) and MGC. The resulting structure demonstrated promising electrical and sensing properties, including rapid responses, high sensitivity, good linearity, reversibility, repeatability, and selectivity towards acetic acid vapors. Initial testing was conducted in a laboratory using a bench electrometer, followed by validation in a portable sensing device based on consumer electronic components (by ARDUINO®). This portable system was designed to provide a compact, cost-effective solution with high sensing capabilities. Under room temperature and ambient air conditions, both laboratory and portable tests exhibited favorable linear responses, with detection limits of 0.16 and 1 ppm, respectively. Full article
Show Figures

Graphical abstract

29 pages, 7962 KB  
Article
A Study on Poly(ethylene oxide)-Based Supercapacitors Doped with Various Dopants
by Chi-Yuen Hui, Chi-Wai Kan and Kam-Hong Chau
Coatings 2023, 13(8), 1373; https://doi.org/10.3390/coatings13081373 - 4 Aug 2023
Cited by 6 | Viewed by 1521
Abstract
In this study, different concentrations of lithium perchlorate (LiClO4) and various types of nanocarbons were applied to form poly(ethylene oxide) (PEO)-based electrochemical double-layer (EDL) supercapacitors. For samples doped with various concentrations of LiClO4, 1 g/L of LiClO4 was [...] Read more.
In this study, different concentrations of lithium perchlorate (LiClO4) and various types of nanocarbons were applied to form poly(ethylene oxide) (PEO)-based electrochemical double-layer (EDL) supercapacitors. For samples doped with various concentrations of LiClO4, 1 g/L of LiClO4 was prepared and mixed with PEO solution in different ratios for different concentrations of PEO:Li+ mixtures for further solution casting. It was found that the maximum current density and specific capacitance of the sample prepared under the ratio of 100:1 of PEO:Li+ were 1.84 μA/cm2 with a scanning rate of 100 mV/s and 33.56 nF/cm2 at 40 Hz, respectively. These were 10 times and nearly 18 times better than the control capacitor prepared without LiClO4. In addition, nanocarbons with four different structures, including mesoporous carbon nanopowders (Meso) and multi-walled (MW), double-walled (DW) and single-walled (SW) carbon nanotubes, were mixed with PEO solution to prepare samples via solution casting. The comparison of four types of nanocarbons showed that DW contributed the highest maximum current density and the specific capacitance at 10.51 μA/cm2 under a scanning rate of 100 mV/s and 32.798 nF/cm2 at 40 Hz, 60 times and 17 times higher than that of the control sample casted without any dopants. Full article
(This article belongs to the Special Issue New Trends in Functional Materials and Devices)
Show Figures

Figure 1

22 pages, 6326 KB  
Article
Piezoelectric Biocomposites for Bone Grafting in Dentistry
by Cristina Rodica Dumitrescu, Ionela Andreea Neacsu, Roxana Trusca, Roxana Cristina Popescu, Iuliana Raut, Mariana Constantin and Ecaterina Andronescu
Polymers 2023, 15(11), 2446; https://doi.org/10.3390/polym15112446 - 25 May 2023
Cited by 13 | Viewed by 3356
Abstract
In this research, Hydroxyapatite—Potassium, Sodium Niobate—Chitosan (HA-KNN-CSL) biocomposites were synthesized, both as hydrogel and ultra-porous scaffolds, to offer two commonly used alternatives to biomaterials in dental clinical practice. The biocomposites were obtained by varying the content of low deacetylated chitosan as matrix phase, [...] Read more.
In this research, Hydroxyapatite—Potassium, Sodium Niobate—Chitosan (HA-KNN-CSL) biocomposites were synthesized, both as hydrogel and ultra-porous scaffolds, to offer two commonly used alternatives to biomaterials in dental clinical practice. The biocomposites were obtained by varying the content of low deacetylated chitosan as matrix phase, mesoporous hydroxyapatite nano-powder, and potassium–sodium niobate (K0.47Na0.53NbO3) sub-micron-sized powder. The resulting materials were characterized from physical, morpho-structural, and in vitro biological points of view. The porous scaffolds were obtained by freeze-drying the composite hydrogels and had a specific surface area of 18.4—24 m2/g and a strong ability to retain fluid. Chitosan degradation was studied for 7 and 28 days of immersion in simulated body fluid without enzymatic presence. All synthesized compositions proved to be biocompatible in contact with osteoblast-like MG-63 cells and showed antibacterial effects. The best antibacterial effect was shown by the 10HA-90KNN-CSL hydrogel composition against Staphylococcus aureus and the fungal strain Candida albicans, while a weaker effect was observed for the dry scaffold. Full article
(This article belongs to the Special Issue Advanced Biodegradable Polymer Scaffolds for Tissue Engineering)
Show Figures

Graphical abstract

11 pages, 3238 KB  
Article
Preparation of Mesoporous Si Nanoparticles by Magnesiothermic Reduction for the Enhanced Reactivity
by Xinwen Ma, Weiduo Fei, Xiandie Zhang, Jie Ji and Xiang Zhou
Molecules 2023, 28(7), 3274; https://doi.org/10.3390/molecules28073274 - 6 Apr 2023
Cited by 5 | Viewed by 3391
Abstract
In this study, mesoporous silicon nanoparticles (M-Si) were successfully prepared by a magnesiothermic reduction of mesoporous silica nanoparticles, which were synthesized by a templated sol-gel method and used as the precursors. M-Si exhibited a uniform size distribution with an average diameter of about [...] Read more.
In this study, mesoporous silicon nanoparticles (M-Si) were successfully prepared by a magnesiothermic reduction of mesoporous silica nanoparticles, which were synthesized by a templated sol-gel method and used as the precursors. M-Si exhibited a uniform size distribution with an average diameter of about 160 nm. The measured BET surface area was 93.0 m2 g−1, and the average pore size calculated by the BJH method was 16 nm. The large internal surface area provides rich reaction sites, resulting in unique interfacial properties and reduced mass diffusion limitations. The mechanism of the magnesiothermic reduction process was discussed. The reactivity of prepared M-Si was compared with that of commercially available non-porous Si nanopowder (with the average diameter of about 30 nm) by performing simultaneous thermogravimetry and differential scanning calorimetry in the air. The results showed that the reaction onset temperature indicated by weight gain was advanced from 772 °C to 468 °C, indicating the promising potential of M-Si as fuel for metastable intermolecular composites. Full article
(This article belongs to the Special Issue Research and Application of Nanoenergetic Materials)
Show Figures

Figure 1

17 pages, 11717 KB  
Article
Artemisinin Loaded Cerium-Doped Nanopowders Improved In Vitro the Biomineralization in Human Periodontal Ligament Cells
by Ioannis Tsamesidis, Anna Theocharidou, Anastasia Beketova, Maria Bousnaki, Iason Chatzimentor, Georgia K. Pouroutzidou, Dimitrios Gkiliopoulos and Eleana Kontonasaki
Pharmaceutics 2023, 15(2), 655; https://doi.org/10.3390/pharmaceutics15020655 - 15 Feb 2023
Cited by 6 | Viewed by 2662
Abstract
Background: A promising strategy to enhance bone regeneration is the use of bioactive materials doped with metallic ions with therapeutic effects and their combination with active substances and/or drugs. The aim of the present study was to investigate the osteogenic capacity of human [...] Read more.
Background: A promising strategy to enhance bone regeneration is the use of bioactive materials doped with metallic ions with therapeutic effects and their combination with active substances and/or drugs. The aim of the present study was to investigate the osteogenic capacity of human periodontal ligament cells (hPDLCs) in culture with artemisinin (ART)-loaded Ce-doped calcium silicate nanopowders (NPs); Methods: Mesoporous silica, calcium-doped and calcium/cerium-doped silicate NPs were synthesized via a surfactant-assisted cooperative self-assembly process. Human periodontal ligament cells (hPDLCs) were isolated and tested for their osteogenic differentiation in the presence of ART-loaded and unloaded NPs through alkaline phosphatase (ALP) activity and Alizarine red S staining, while their antioxidant capacity was also evaluated; Results: ART promoted further the osteogenic differentiation of hPDLCs in the presence of Ce-doped NPs. Higher amounts of Ce in the ART-loaded NPs inversely affected the mineral deposition process by the hPDLCs. ART and Ce in the NPs have a synergistic role controlling the redox status and reducing ROS production from the hPDLCs; Conclusions: By monitoring the Ce amount and ART concentration, mesoporous NPs with optimum properties can be developed towards bone tissue regeneration demonstrating also potential application in periodontal tissue regeneration strategies. Full article
Show Figures

Figure 1

21 pages, 4112 KB  
Article
Effect of Artemisinin-Loaded Mesoporous Cerium-Doped Calcium Silicate Nanopowder on Cell Proliferation of Human Periodontal Ligament Fibroblasts
by Ioannis Tsamesidis, Dimitrios Gkiliopoulos, Georgia K. Pouroutzidou, Evgenia Lymperaki, Chrysanthi Papoulia, Karine Reybier, Pierre Perio, Konstantinos M. Paraskevopoulos, Eleana Kontonasaki and Anna Theocharidou
Nanomaterials 2021, 11(9), 2189; https://doi.org/10.3390/nano11092189 - 26 Aug 2021
Cited by 23 | Viewed by 4169
Abstract
Ion doping has rendered mesoporous structures important materials in the field of tissue engineering, as apart from drug carriers, they can additionally serve as regenerative materials. The purpose of the present study was the synthesis, characterization and evaluation of the effect of artemisinin [...] Read more.
Ion doping has rendered mesoporous structures important materials in the field of tissue engineering, as apart from drug carriers, they can additionally serve as regenerative materials. The purpose of the present study was the synthesis, characterization and evaluation of the effect of artemisinin (ART)-loaded cerium-doped mesoporous calcium silicate nanopowders (NPs) on the hemocompatibility and cell proliferation of human periodontal ligament fibroblasts (hPDLFs). Mesoporous NPs were synthesized in a basic environment via a surfactant assisted cooperative self-assembly process and were characterized using Scanning Electron Microscopy (SEM), X-ray Fluorescence Spectroscopy (XRF), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction Analysis (XRD) and N2 Porosimetry. The loading capacity of NPs was evaluated using Ultrahigh Performance Liquid Chromatography/High resolution Mass Spectrometry (UHPLC/HRMS). Their biocompatibility was evaluated with the MTT assay, and the analysis of reactive oxygen species was performed using the cell-permeable ROS-sensitive probe 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA). The synthesized NPs presented a mesoporous structure with a surface area ranging from 1312 m2/g for undoped silica to 495 m2/g for the Ce-doped NPs, excellent bioactivity after a 1-day immersion in c-SBF, hemocompatibility and a high loading capacity (around 80%). They presented ROS scavenging properties, and both the unloaded and ART-loaded NPs significantly promoted cell proliferation even at high concentrations of NPs (125 μg/mL). The ART-loaded Ce-doped NPs with the highest amount of cerium slightly restricted cell proliferation after 7 days of culture, but the difference was not significant compared with the control untreated cells. Full article
Show Figures

Graphical abstract

22 pages, 8911 KB  
Article
High Efficient and Cost Effective Titanium Doped Tin Dioxide Based Photocatalysts Synthesized via Co-precipitation Approach
by Hanen Letifi, Donia Dridi, Yousra Litaiem, Salah Ammar, Wissem Dimassi and Radhouane Chtourou
Catalysts 2021, 11(7), 803; https://doi.org/10.3390/catal11070803 - 30 Jun 2021
Cited by 33 | Viewed by 4986
Abstract
High efficient and large surface area of titanium doped tin dioxide (SnO2) based photocatalysts with various titanium doping contents varying from 0 to 4 mol% have been successfully prepared via a facile, low cost and eco-friendly co-precipitation method. Structural, morphological, textural, [...] Read more.
High efficient and large surface area of titanium doped tin dioxide (SnO2) based photocatalysts with various titanium doping contents varying from 0 to 4 mol% have been successfully prepared via a facile, low cost and eco-friendly co-precipitation method. Structural, morphological, textural, microstructural and optical properties of the prepared Ti-SnO2 nanoparticles (NPs) have been investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), the Brunauer–Emmett-Teller (BET) method, Raman spectroscopy, Fourier transform infrared (FTIR), UV-Vis spectroscopy and photoluminescence (PL) spectroscopy. It was found that both undoped and Ti doped SnO2 NPs were crystallized in tetragonal structure and the crystallite sizes have been reduced from 19.9 nm for undoped SnO2 NPs to 13.1 nm for SnO2: Ti 4%. As compared to pure SnO2, a decrease in size and a uniform distribution of spherical aggregates for 4% Ti doped SnO2 sample have been noticed. Nitrogen (N2) adsorption-desorption isotherms of all synthesized NPs indicate that each nanopowder showed a IV type- isotherm with a hysteresis loop resulted in a typical porous materials containing macropores and mesopores. The raman spectra was marked with the appearance of three well resolved peaks including one intense peak centered at 633 cm−1 and two other peaks at about 475 cm−1 and 772 cm−1 which might be ascribed to the characteristic modes of of the SnO2 rutile-type. FTIR spectra of Ti doped SnO2 NPs show a broad band situated in the region from 630 cm−1 to 625 cm−1 for all Ti–SnO2 samples which could be assigned to the stretching vibrations of Sn–O–Sn. Optical studies revealed that the absorption edge of SnO2: Ti NPs showed a redshift with rising titanium concentration. This redshift resulted in a decrease in the optical band gap from 3.31 eV for pure SnO2 to 2.87 eV for 4% Ti doped SnO2 nanoparticles respectively. Rhodamine B dye (RhB) has been adopted to study the photocatalytic degradation of all synthesized Ti–SnO2 NPs. Pure SnO2 NPs has an intrinsic large band gap and it was sensitive to UV light. Thus, pure SnO2 NPs display higher UV photocatalytic performance for decomposing the RhB. Titanium incorporation into SnO2 has widely improved its photocatalytic performance towards RhB photodegradation under UV and Visible light irradiations. Precisely, the 4% Ti–SnO2 based photocatalyst display the highest photacatalytic activity and can degrade both of 95% and 52% of RhB dye within 120 min respectively under UV and visible light irradiations. The enhanced photocatalytic activity of the 4% doped SnO2 photocatalyst was further proved with the minimum PL intensity. The homogeneous incorporation of low Ti contents into the SnO2 matrix allow to a significant reduce in the band gap leading to an efficient separation of photogenerated electron-hole pairs and consequently improves the absorption capability in the visible light. Full article
(This article belongs to the Special Issue Nanotechnology in Catalysis)
Show Figures

Figure 1

21 pages, 30687 KB  
Article
Mesoporous Iron(III)-Doped Hydroxyapatite Nanopowders Obtained via Iron Oxalate
by Margarita A. Goldberg, Marat R. Gafurov, Fadis F. Murzakhanov, Alexander S. Fomin, Olga S. Antonova, Dinara R. Khairutdinova, Andrew V. Pyataev, Olga N. Makshakova, Anatoliy A. Konovalov, Alexander V. Leonov, Suraya A. Akhmedova, Irina K. Sviridova, Natalia S. Sergeeva, Sergey M. Barinov and Vladimir S. Komlev
Nanomaterials 2021, 11(3), 811; https://doi.org/10.3390/nano11030811 - 22 Mar 2021
Cited by 34 | Viewed by 5235
Abstract
Mesoporous hydroxyapatite (HA) and iron(III)-doped HA (Fe-HA) are attractive materials for biomedical, catalytic, and environmental applications. In the present study, the nanopowders of HA and Fe-HA with a specific surface area up to 194.5 m2/g were synthesized by a simple precipitation [...] Read more.
Mesoporous hydroxyapatite (HA) and iron(III)-doped HA (Fe-HA) are attractive materials for biomedical, catalytic, and environmental applications. In the present study, the nanopowders of HA and Fe-HA with a specific surface area up to 194.5 m2/g were synthesized by a simple precipitation route using iron oxalate as a source of Fe3+ cations. The influence of Fe3+ amount on the phase composition, powders morphology, Brunauer–Emmett–Teller (BET) specific surface area (S), and pore size distribution were investigated, as well as electron paramagnetic resonance and Mössbauer spectroscopy analysis were performed. According to obtained data, the Fe3+ ions were incorporated in the HA lattice, and also amorphous Fe oxides were formed contributed to the gradual increase in the S and pore volume of the powders. The Density Functional Theory calculations supported these findings and revealed Fe3+ inclusion in the crystalline region with the hybridization among Fe-3d and O-2p orbitals and a partly covalent bond formation, whilst the inclusion of Fe oxides assumed crystallinity damage and rather occurred in amorphous regions of HA nanomaterial. In vitro tests based on the MG-63 cell line demonstrated that the introduction of Fe3+ does not cause cytotoxicity and led to the enhanced cytocompatibility of HA. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

19 pages, 22448 KB  
Article
Hydrothermal Treatment of Tannin: A Route to Porous Metal Oxides and Metal/Carbon Hybrid Materials
by Flavia L. Braghiroli, Vanessa Fierro, Andrzej Szczurek, Philippe Gadonneix, Jaafar Ghanbaja, Julien Parmentier, Ghouti Medjahdi and Alain Celzard
Inorganics 2017, 5(1), 7; https://doi.org/10.3390/inorganics5010007 - 24 Jan 2017
Cited by 19 | Viewed by 9005
Abstract
In the present paper, porous materials were prepared from the hydrothermal treatment of aqueous solutions of tannin, a renewable phenolic resource extracted from tree barks, containing dissolved salts of transition metals: V, Cr, Ni and Fe. Hydrothermal treatment produced carbonaceous particles doped with [...] Read more.
In the present paper, porous materials were prepared from the hydrothermal treatment of aqueous solutions of tannin, a renewable phenolic resource extracted from tree barks, containing dissolved salts of transition metals: V, Cr, Ni and Fe. Hydrothermal treatment produced carbonaceous particles doped with the aforementioned metals, and such materials were treated according to two different routes: (i) calcination in air in order to burn the carbon and to recover porous oxides; (ii) pyrolysis in inert atmosphere so as to recover porous metal/carbon hybrid materials. The nature of the metal salt was found to have a dramatic impact on the structure of the materials recovered by the first route, leading either to nano-powders (V, Cr) or to hollow microspheres (Ni, Fe). The second route was only investigated with iron, leading to magnetic Fe-loaded micro/mesoporous carbons whose texture, pore volumes and surface areas gradually changed with the iron content. Full article
(This article belongs to the Special Issue Mesoporous Materials)
Show Figures

Figure 1

15 pages, 1729 KB  
Article
The Influence of Carbonaceous Matrices and Electrocatalytic MnO2 Nanopowders on Lithium-Air Battery Performances
by Alessandro Minguzzi, Gianluca Longoni, Giuseppe Cappelletti, Eleonora Pargoletti, Chiara Di Bari, Cristina Locatelli, Marcello Marelli, Sandra Rondinini and Alberto Vertova
Nanomaterials 2016, 6(1), 10; https://doi.org/10.3390/nano6010010 - 6 Jan 2016
Cited by 17 | Viewed by 6491
Abstract
Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO2 nanoparticles are finely characterized in terms of structural (X-ray [...] Read more.
Here, we report new gas diffusion electrodes (GDEs) prepared by mixing two different pore size carbonaceous matrices and pure and silver-doped manganese dioxide nanopowders, used as electrode supports and electrocatalytic materials, respectively. MnO2 nanoparticles are finely characterized in terms of structural (X-ray powder diffraction (XRPD), energy dispersive X-ray (EDX)), morphological (SEM, high-angle annular dark field (HAADF)-scanning transmission electron microscopy (STEM)/TEM), surface (Brunauer Emmet Teller (BET)-Barrett Joyner Halenda (BJH) method) and electrochemical properties. Two mesoporous carbons, showing diverse surface areas and pore volume distributions, have been employed. The GDE performances are evaluated by chronopotentiometric measurements to highlight the effects induced by the adopted materials. The best combination, hollow core mesoporous shell carbon (HCMSC) with 1.0% Ag-doped hydrothermal MnO2 (M_hydro_1.0%Ag) allows reaching very high specific capacity close to 1400 mAh·g−1. Considerably high charge retention through cycles is also observed, due to the presence of silver as a dopant for the electrocatalytic MnO2 nanoparticles. Full article
(This article belongs to the Special Issue Nanoparticles for Catalysis)
Show Figures

Graphical abstract

16 pages, 1992 KB  
Article
Synthesis of Spongy-Like Mesoporous Hydroxyapatite from Raw Waste Eggshells for Enhanced Dissolution of Ibuprofen Loaded via Supercritical CO2
by Abdul-Rauf Ibrahim, Xiangyun Li, Yulan Zhou, Yan Huang, Wenwen Chen, Hongtao Wang and Jun Li
Int. J. Mol. Sci. 2015, 16(4), 7960-7975; https://doi.org/10.3390/ijms16047960 - 9 Apr 2015
Cited by 54 | Viewed by 8692
Abstract
The use of cheaper and recyclable biomaterials (like eggshells) to synthesize high purity hydroxyapatite (HAp) with better properties (small particle size, large surface area and pore volume) for applications (in environmental remediation, bone augmentation and replacement, and drug delivery systems) is vital since [...] Read more.
The use of cheaper and recyclable biomaterials (like eggshells) to synthesize high purity hydroxyapatite (HAp) with better properties (small particle size, large surface area and pore volume) for applications (in environmental remediation, bone augmentation and replacement, and drug delivery systems) is vital since high-purity synthetic calcium sources are expensive. In this work, pure and mesoporous HAp nanopowder with large pore volume (1.4 cm3/g) and surface area (284.1 m2/g) was produced from raw eggshells at room temperature using a simple two-step procedure. The control of precursor droplets could stabilize the pH value of the reaction solution, because of the size of the needle (of the syringe pump used for precursor additions) leading to production of HAp with high surface area and pore size. The as-produced HAp revealed high ibuprofen (as a model drug) loading (1.38 g/g HAp), enhanced dissolution and controllable release of the drug via solute-saturated supercritical carbon dioxide. Full article
(This article belongs to the Special Issue Biomaterials for Tissue Engineering)
Show Figures

Graphical abstract

Back to TopTop