Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (825)

Search Parameters:
Keywords = mesenchymal stem/stromal stem cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4195 KB  
Article
When Fat Talks: How Adipose-Derived Extracellular Vesicles Fuel Breast Cancer
by Maria Pia Cavaleri, Tommaso Pusceddu, Lucia Sileo, Luna Ardondi, Ilaria Vitali, Ilenia Pia Cappucci, Laura Basile, Giuseppe Pezzotti, Francesco Fiorica, Letizia Ferroni and Barbara Zavan
Int. J. Mol. Sci. 2025, 26(19), 9666; https://doi.org/10.3390/ijms26199666 - 3 Oct 2025
Viewed by 350
Abstract
Adipose tissue plays a crucial role in the tumor microenvironment (TME), where its secreted extracellular vesicles (EVs) are involved in the complex signaling between tumor cells and surrounding stromal components. This study aims to unravel the mechanisms through which adipocyte-derived EVs influence breast [...] Read more.
Adipose tissue plays a crucial role in the tumor microenvironment (TME), where its secreted extracellular vesicles (EVs) are involved in the complex signaling between tumor cells and surrounding stromal components. This study aims to unravel the mechanisms through which adipocyte-derived EVs influence breast cancer (BC) progression. Human mesenchymal stem cells (hMSCs) were differentiated into adipocytes following a 21-day induction protocol that led to significant accumulation of lipid droplets within the cells. EVs were isolated from the conditioned medium of both hMSC-derived adipocytes and BC cells. Particle size distribution, morphology, and uptake into the recipient cell were investigated via nanoparticle tracking analysis, transmission electron microscopy, and fluorescence microscopy, respectively. Our results show that BC-derived EVs notably impaired cell viability and modulated the expression of key genes involved in apoptosis resistance within stromal cells. On the other hand, stromal-derived EVs significantly altered tumor cell behavior, indicating a dynamic, bidirectional exchange of bioactive signals. These findings underscore the pivotal role of EV-mediated communication in the tumor-stroma interplay, suggesting that adipocyte-cancer cell EV crosstalk contributes to the remodeling of the TME, potentially facilitating tumor progression. Full article
Show Figures

Figure 1

14 pages, 444 KB  
Article
Long-Term Effectiveness of Intradiscal Culture-Expanded Mesenchymal Stem Cells (MSCs) with Platelet Products for Discogenic Low Back Pain
by Nicholas Hooper, Joseph Ierulli, Chase Demarest, John Pitts, Oluseun A. Olufade and Christopher Williams
Biomedicines 2025, 13(10), 2365; https://doi.org/10.3390/biomedicines13102365 - 26 Sep 2025
Viewed by 608
Abstract
Background/Objectives: Low back pain (LBP) remains one of the leading causes of disability globally and contributes significantly to healthcare expenditures. Discogenic LBP, a subtype stemming from intervertebral disc degeneration, often provesrefractory to conventional treatment modalities. Regenerative orthobiologic therapies, including platelet-rich plasma (PRP), [...] Read more.
Background/Objectives: Low back pain (LBP) remains one of the leading causes of disability globally and contributes significantly to healthcare expenditures. Discogenic LBP, a subtype stemming from intervertebral disc degeneration, often provesrefractory to conventional treatment modalities. Regenerative orthobiologic therapies, including platelet-rich plasma (PRP), platelet lysate (PL), and mesenchymal stem cells (MSCs), have emerged as promising alternatives, though long-term outcomes and safety profiles are not yet well understood. Methods: This case series reports 13 patients treated between 2015 and 2016 at an outpatient interventional pain center who received intradiscal culture-expanded MSC injections with or without additional injections to other surrounding vertebral structures. There was no control group. Inclusion required patients to have discogenic LBP with or without radiculopathy and at least six years of completed follow-up data. Outcomes were assessed using Numeric Rating Scale (NRS), Functional Rating Index (FRI), and modified Single Assessment Numeric Evaluation (SANE) scores at multiple time points up to 10 years post treatment. Results: Thirteen patients met the inclusion criteria. Significant reductions in NRS and FRI scores were observed at 6 months, 3 years, and 6 years (p < 0.01). At 6 years, the average NRS score decreased by 2.50 points, FRI by 24.14 points, and SANE showed a 60% improvement. At 10 years, among the seven patients who responded, average SANE improvement was 78.1%. No adverse events were reported. Conclusions: This study presents the longest known follow-up data for intradiscal MSC therapy for discogenic LBP, demonstrating sustained improvements in pain and function. These findings support further investigation into combination orthobiologic therapies as a viable long-term treatment option for chronic LBP. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

9 pages, 647 KB  
Brief Report
Mesenchymal Stromal Cell-Derived Extracellular Vesicles for Oral Mucosal Engraftment in Urethral Reconstruction: Influence of Tissue Origin and Culture Growth Phase (Log vs. Stationary) on miRNA Content
by Daisuke Watanabe, Akio Mizushima and Akio Horiguchi
Int. J. Mol. Sci. 2025, 26(19), 9412; https://doi.org/10.3390/ijms26199412 - 26 Sep 2025
Viewed by 301
Abstract
Urethral stricture involves fibrotic narrowing of the urethral mucosa and spongiosum. Although urethroplasty using oral mucosal grafts is the gold standard for complex cases due to its high success rate, technical complexity limits its broader adoption. To address this, endoscopic transplantation of oral [...] Read more.
Urethral stricture involves fibrotic narrowing of the urethral mucosa and spongiosum. Although urethroplasty using oral mucosal grafts is the gold standard for complex cases due to its high success rate, technical complexity limits its broader adoption. To address this, endoscopic transplantation of oral mucosal tissue has been proposed. While feasibility has been demonstrated, clinical efficacy remains suboptimal. Developing adjunctive factors that facilitate mucosal engraftment may improve outcomes of endoscopic transplantation. Extracellular vesicles (EVs)—membrane-bound nanoparticles secreted by cells that deliver miRNAs and other bioactive molecules—have recently emerged as promising candidates. We investigated EVs derived from four mesenchymal stromal cell (MSC) sources—stem cells from human exfoliated deciduous teeth (SHED), adipose tissue, umbilical cord, and bone marrow (BM)—isolated during both logarithmic (log) and stationary culture phases. miRNA profiling revealed distinct phase- and origin-specific signatures. SHED-derived EVs from the log phase and bone marrow-derived EVs from the stationary phase expressed miR-31, the let-7 family, and miR-205, suggesting early wound healing potential. In contrast, stationary-phase SHED-EVs and log-phase BM-MSC-EVs were enriched in the miR-99 family and miR-31, indicating potential roles in epithelial stabilization and fibrosis modulation. These findings support phase-specific application of MSC-EVs to optimize mucosal engraftment in transurethral reconstruction. Full article
Show Figures

Figure 1

27 pages, 2143 KB  
Review
Targeting the CXCR4/CXCL12 Axis to Overcome Drug Resistance in Triple-Negative Breast Cancer
by Desh Deepak Singh, Dharmendra Kumar Yadav and Dongyun Shin
Cells 2025, 14(18), 1482; https://doi.org/10.3390/cells14181482 - 22 Sep 2025
Viewed by 654
Abstract
Triple-negative breast cancer (TNBC) remains one of the most aggressive and treatment-resistant forms. TNBC is an aggressive and therapeutically resistant subtype of breast cancer, marked by the absence of estrogen, progesterone, and HER2 receptors. The lack of defined molecular targets significantly limits treatment [...] Read more.
Triple-negative breast cancer (TNBC) remains one of the most aggressive and treatment-resistant forms. TNBC is an aggressive and therapeutically resistant subtype of breast cancer, marked by the absence of estrogen, progesterone, and HER2 receptors. The lack of defined molecular targets significantly limits treatment options and contributes to high recurrence rates. Among the key pathways involved in TNBC progression and resistance, the CXCR4/CXCL12 chemokine axis has emerged as a critical player. CXCR4, a G-protein-coupled receptor, binds specifically to its ligand CXCL12, promoting tumour cell proliferation, metastasis, immune evasion, and stromal remodelling. Its overexpression is frequently associated with poor prognosis, disease progression, and resistance to conventional therapies in TNBC. This review explores how the chemokine receptor type 4 (CXCR4/CXCL12) axis facilitates drug resistance through mechanisms such as epithelial–mesenchymal transition (EMT), cancer stemness, and microenvironmental interactions. Notably, CXCR4 antagonists like plerixafor, balixafortide, and POL5551 have shown encouraging preclinical and clinical results, particularly when combined with chemotherapy or immunotherapy. Additionally, innovative strategies, including radiopharmaceuticals, peptide inhibitors, and nanotechnology-based delivery platforms, offer expanded therapeutic avenues. Despite persistent challenges such as tumour heterogeneity and potential toxicity, growing clinical evidence supports the translational relevance of this axis. This manuscript provides an in-depth analysis of CXCR4/CXCL12-mediated drug resistance in TNBC and evaluates current and emerging therapeutic interventions. Full article
(This article belongs to the Special Issue Unlocking the Secrets Behind Drug Resistance at the Cellular Level)
Show Figures

Figure 1

22 pages, 1536 KB  
Review
Unlocking MSC Potential: Metabolic Reprogramming via Synthetic Biology Approaches
by Natalia Trufanova, Oleh Trufanov and Oleksandr Petrenko
SynBio 2025, 3(3), 13; https://doi.org/10.3390/synbio3030013 - 17 Sep 2025
Viewed by 408
Abstract
Metabolic engineering of mesenchymal stem/stromal cells (MSCs) represents a compelling frontier for advanced cellular therapies, enabling the precise tuning of their biological outputs. This feature paper examines the critical role of engineered culture microenvironments, specifically 3D platforms, hypoxic preconditioning, and other priming approaches, [...] Read more.
Metabolic engineering of mesenchymal stem/stromal cells (MSCs) represents a compelling frontier for advanced cellular therapies, enabling the precise tuning of their biological outputs. This feature paper examines the critical role of engineered culture microenvironments, specifically 3D platforms, hypoxic preconditioning, and other priming approaches, which are synthetic biology strategies used to guide and optimize MSC metabolic states for desired functional outcomes. We show that these non-genetic approaches can significantly enhance MSC survival, immunomodulatory capacity, and regenerative potential by shifting their metabolism toward a more glycolytic phenotype. Furthermore, we propose a new paradigm of “designer” MSCs, which are programmed with synthetic circuits to sense and respond to the physiological cues of an injured microenvironment. This approach promises to transform regenerative medicine from an inconsistent field into a precise, predictable, and highly effective therapeutic discipline. Full article
Show Figures

Figure 1

30 pages, 1944 KB  
Review
Interactions of Hematopoietic and Associated Mesenchymal Stem Cell Populations in the Bone Marrow Microenvironment, In Vivo and In Vitro Model
by Darina Bačenková, Marianna Trebuňová, Erik Dosedla, Jana Čajková and Jozef Živčák
Int. J. Mol. Sci. 2025, 26(18), 9036; https://doi.org/10.3390/ijms26189036 - 17 Sep 2025
Viewed by 714
Abstract
Multipotent hematopoietic stem cells (HSC) reside in specialized niches of the bone marrow (BM). The maintenance of their stemness requires a precisely regulated bone marrow microenvironment (BMM), supported by mesenchymal stem cells (MSCs), stromal reticular cells, and endothelial and nerve cells located within [...] Read more.
Multipotent hematopoietic stem cells (HSC) reside in specialized niches of the bone marrow (BM). The maintenance of their stemness requires a precisely regulated bone marrow microenvironment (BMM), supported by mesenchymal stem cells (MSCs), stromal reticular cells, and endothelial and nerve cells located within the vascular and endosteal niches. The heterogeneity of the niche environment is caused by the diversity of cell populations from HSCs to more mature hematopoietic cell types and MSCs, which collectively influence the complex intercellular interactions involved in hematopoiesis. MSC subclusters in BM are characterized by the phenotypes of CXC-chemokine ligand 12, leptin receptor, neuron-glial antigen 2, and Nestin+ cells. The article presents a detailed characterization of individual stem cell types in the BM, their reciprocal interaction, and the possibility of in vitro simulation of the bone marrow niche as a dynamic structure. Development of a suitable simulation of the BMM is essential for advancing research into both physiological and pathological processes of hematopoiesis. The main goal is to simulate 3D cell culture using biomaterials that mimic the BM niche in the form of hydrogels and scaffolds, in combination with extracellular matrix components. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 1998 KB  
Article
Isolation of Porcine Umbilical Cord Cells by Mechanical Tissue Dissociation Using a Tissue Grinder
by Katja Stange, Tessa Wolter, Zhenpei Fu, Gregor Burdeos, Yonatan Mideksa, Andreas Friese and Monika Röntgen
Cells 2025, 14(18), 1425; https://doi.org/10.3390/cells14181425 - 11 Sep 2025
Viewed by 541
Abstract
Primary cells better reflect the physiological situation, and mesenchymal stromal cells (MSCs), especially, are promising candidates for biomedical applications. MSCs from the umbilical cord (UC) can be collected easily, non-invasively, and painlessly and do not involve ethical problems. The derived cell products harbor [...] Read more.
Primary cells better reflect the physiological situation, and mesenchymal stromal cells (MSCs), especially, are promising candidates for biomedical applications. MSCs from the umbilical cord (UC) can be collected easily, non-invasively, and painlessly and do not involve ethical problems. The derived cell products harbor great potential in stem cell technology and agricultural applications. A tissue grinder (TIGR) was used to homogenize porcine UC tissue and to dissociate the UC cells, thereby testing different tissue-to-medium ratios. Cells were cultivated until passage 3, and the proliferation rate, metabolic activity, colony forming ability, surface marker expression, and multi-lineage differentiation potential were assessed. Tissue grinding could be successfully used to isolate UC-derived porcine cells with a high yield and viability, as well as an increasing proliferation rate during cultivation. Isolated cells showed MSC-like features: the expression of CD73, CD90, and CD105, ability to form colonies, and adipogenic, chondrogenic, and osteogenic differentiation. Tissue grinding is highly suitable for isolating high-quality cells from whole UC tissue of pigs in a fast and reproducible way. Cells might be used in a wide range of therapeutical and biotechnological applications, such as understanding and treating severe disorders, drug screening, or tissue engineering. Cells from supposedly waste tissues like UC will be especially useful in transplantation medicine. Full article
(This article belongs to the Section Cell Methods)
Show Figures

Figure 1

11 pages, 2314 KB  
Communication
The Extracellular Matrix Influences the miRNA Landscape of Human Mesenchymal Stromal/Stem Cells
by Roman Ushakov and Elena Burova
Int. J. Mol. Sci. 2025, 26(18), 8830; https://doi.org/10.3390/ijms26188830 - 10 Sep 2025
Viewed by 387
Abstract
Mesenchymal stromal/stem cells (MSCs) are known to secrete a wide range of pleiotropic molecules promoting tissue repair and regeneration. Recent advances in cell sheet technology have demonstrated significant improvements in the regenerative capacity of MSCs within the sheet, retaining appropriate microenvironmental cues, and [...] Read more.
Mesenchymal stromal/stem cells (MSCs) are known to secrete a wide range of pleiotropic molecules promoting tissue repair and regeneration. Recent advances in cell sheet technology have demonstrated significant improvements in the regenerative capacity of MSCs within the sheet, retaining appropriate microenvironmental cues, and have suggested an instructing role of extracellular matrix (ECM). We previously found that the secretome of MSCs cultured on a decellularized MSC-derived ECM (dECM) was significantly enriched in dozens of cytokines, chemokines and growth factors compared to the secretome of MSCs grown on standard plastic dishes. The enriched secretome has been shown to have enhanced chemotactic and angiogenic properties, stimulate C2C12 myoblast proliferation and promote skeletal muscle regeneration in a murine in vivo model. Here, we report novel findings about dECM-induced changes in the miRNA profile of MSCs. We performed miRNA-seq and found 17 differentially expressed miRNAs in endometrial MSCs (MESCs) with miR-146a-5p being the most upregulated. Additionally, we investigated miR-146a-5p expression in MSCs of various origins after exposure to dECM, and found a correlation between miR-146a-5p upregulation and the general dECM-induced paracrine response. Furthermore, we demonstrated that miR-146a-5p mimics, transfected into C2C12 myoblasts, promoted their proliferation, suggesting a role for miR-146a-5p in myotropic effects mediated by the enriched secretome. These findings provide new insights into how ECM as a component of the MSC niche influences the secretory phenotype and modulates therapeutic properties of MSCs. Full article
Show Figures

Figure 1

13 pages, 2571 KB  
Article
Exploratory Analysis of Differentially Expressed Genes for Distinguishing Adipose-Derived Mesenchymal Stroma/Stem Cells from Fibroblasts
by Masami Kanawa, Katsumi Fujimoto, Tania Saskianti, Ayumu Nakashima and Takeshi Kawamoto
Appl. Sci. 2025, 15(18), 9881; https://doi.org/10.3390/app15189881 - 9 Sep 2025
Viewed by 430
Abstract
Adipose-derived mesenchymal stromal/stem cells (AT-MSCs) can be typically isolated from adipose tissue using a minimally invasive procedure. However, since AT-MSCs are usually obtained from subcutaneous tissue, there is a risk of contamination with fibroblasts (FBs), which can reduce the differentiation potential of AT-MSCs. [...] Read more.
Adipose-derived mesenchymal stromal/stem cells (AT-MSCs) can be typically isolated from adipose tissue using a minimally invasive procedure. However, since AT-MSCs are usually obtained from subcutaneous tissue, there is a risk of contamination with fibroblasts (FBs), which can reduce the differentiation potential of AT-MSCs. To avoid this contamination, it is crucial to identify specific markers to effectively distinguish AT-MSCs from FBs. Analysis of microarray data obtained from three studies (GSE9451, GSE66084, GSE94667, and GSE38947) revealed 123 genes expressed at levels more than 1.5-fold higher in AT-MSCs compared to FBs. Using STRING, a protein-protein interaction (PPI) network consisting of 80 nodes and 197 edges was identified within the 123 genes. Further investigation using Molecular Complex Detection in Cytoscape identified a module of 12 genes: COL3A1, FBN1, COL4A1, COL5A2, POSTN, CTGF, SPARC, HSPG2, FSTL1, LAMA2, LAMC1, COL16A1. Gene Ontology analysis revealed that these genes were enriched in extracellular region (GO: 0005576). Additionally, these 12 genes corresponded to the top 12 of the 15 hub genes calculated using the Maximal Clique Centrality algorithm. The results of this study suggest that these 12 genes may serve as markers for distinguishing AT-MSCs from FBs, offering potential applications in regenerative medicine. Full article
Show Figures

Figure 1

27 pages, 1868 KB  
Article
Bidirectional Interaction Between PGE2-Preconditioned Mesenchymal Stem Cells and Myofibroblasts Mediates Anti-Fibrotic Effects: A Proteomic Investigation into Equine Endometrial Fibrosis Reversal
by Lidice Méndez-Pérez, Yat Sen Wong, Belén O. Ibáñez, Ioanna Martinez-Hormaza, Lleretny Rodríguez-Álvarez and Fidel Ovidio Castro
Proteomes 2025, 13(3), 41; https://doi.org/10.3390/proteomes13030041 - 8 Sep 2025
Viewed by 634
Abstract
Background: Endometrosis is a prevalent fibrotic condition in mares that impairs reproductive efficiency by inducing transdifferentiation of endometrial stromal cells into myofibroblasts, leading to excessive ECM deposition. Methods: To elucidate the molecular mechanisms underlying fibrosis resolution, this study employed comprehensive proteomic techniques, including [...] Read more.
Background: Endometrosis is a prevalent fibrotic condition in mares that impairs reproductive efficiency by inducing transdifferentiation of endometrial stromal cells into myofibroblasts, leading to excessive ECM deposition. Methods: To elucidate the molecular mechanisms underlying fibrosis resolution, this study employed comprehensive proteomic techniques, including LC-MS/MS and SILAC, to analyze the interaction between myofibroblasts and mesenchymal stem cells derived from the endometrium (ET-eMSCs) preconditioned with PGE2. An in vitro co-culture system was used, with samples collected at baseline and after 48 h. Results: Proteomic analysis identified significant alterations in proteins associated with ECM remodeling, immune regulation, and cellular stress response. Notably, proteins involved in collagen degradation, antioxidant defense, and growth factor signaling pathways were differentially abundant. Network analyses demonstrated robust interactions among these proteins, suggesting coordinated modulatory effects. The data indicate that PGE2-primed ET-eMSCs induce a shift in myofibroblast secretory profiles, promoting a reduction in ECM stiffness, tissue reorganization, and activation of resolution pathways. Data are available via ProteomeXchange with identifier PXD067551. Conclusions: These findings reinforce the therapeutic potential of mesenchymal stem cell-based interventions for fibrotic diseases of the endometrium, opening avenues for regenerative strategies to restore reproductive function in mares. Full article
Show Figures

Figure 1

32 pages, 2411 KB  
Review
Stem Cell Niche Concept: Search for Current Expert Consensus
by Igor Khlusov, Larisa Litvinova and Anastasia Efimenko
Int. J. Mol. Sci. 2025, 26(17), 8422; https://doi.org/10.3390/ijms26178422 - 29 Aug 2025
Viewed by 1069
Abstract
Postnatal stem cells are crucial for tissue homeostasis and repair and are regulated by specialized microenvironmental microterritories known as “stem cell niches”. Proposed by R. Schofield in 1978 for hematopoietic stem cells, niches maintain self-renewal, guide differentiation and maturation, and can even revert [...] Read more.
Postnatal stem cells are crucial for tissue homeostasis and repair and are regulated by specialized microenvironmental microterritories known as “stem cell niches”. Proposed by R. Schofield in 1978 for hematopoietic stem cells, niches maintain self-renewal, guide differentiation and maturation, and can even revert progenitor cells to an undifferentiated state. Niches respond to injury, oxygen levels, mechanical cues, and signaling molecules. While the niche concept has advanced regenerative medicine, bioengineering, and 3D bioprinting, further progress is hindered by inconsistent interpretations of its core principles. To address this, we proposed a consensus-building initiative among experts in regenerative medicine and bioengineering. We have developed a questionnaire covering the niche topography, hierarchy, dimension, geometry, composition, regulatory mechanisms, and specifically the mesenchymal stem cell niches. This pilot survey, being conducted under the auspices of the National Society for Regenerative Medicine in the Russian Federation, aims to establish a standardized framework on the eve of the 50th anniversary of Schofield’s hypothesis. The resulting consensus will guide future research and innovation in this pivotal field. Full article
Show Figures

Figure 1

15 pages, 4019 KB  
Article
Impact of Acute Myeloid Leukemia Cells on the Metabolic Function of Bone Marrow Mesenchymal Stem Cells
by Helal Ahmed, Pradeep Kumar Patnana, Yahya S. Al-Matary, Maren Fiori, Jan Vorwerk, Marah H. Ahmad, Eva Dazert, Lorenz Oelschläger, Axel Künstner, Bertram Opalka, Nikolas von Bubnoff and Cyrus Khandanpour
Int. J. Mol. Sci. 2025, 26(17), 8301; https://doi.org/10.3390/ijms26178301 - 27 Aug 2025
Viewed by 874
Abstract
Acute myeloid leukemia (AML) proliferation is significantly influenced by the interactions between leukemia blasts and the bone marrow (BM) microenvironment. Specifically, bone marrow mesenchymal stem cells (BMSCs) derived from AML patients (AML-MSCs) are known to support leukemia growth and facilitate disease progression. Studies [...] Read more.
Acute myeloid leukemia (AML) proliferation is significantly influenced by the interactions between leukemia blasts and the bone marrow (BM) microenvironment. Specifically, bone marrow mesenchymal stem cells (BMSCs) derived from AML patients (AML-MSCs) are known to support leukemia growth and facilitate disease progression. Studies have demonstrated that the transfer of mitochondria from MSCs to AML blasts not only aids in disease progression but also contributes to chemotherapy resistance. Furthermore, BM stromal cells can trigger a metabolic shift in malignant cells from mitochondrial respiration to glycolysis, which enhances both growth and chemo-resistance. This study focuses on identifying transcriptional and metabolic alterations in AML-MSCs to uncover potential targeted therapies for AML. We employed RNA sequencing and microarray analysis on MSCs cocultured with leukemic cells (MLL-AF9) and on MSCs isolated from both non-leukemic and MLL-AF9 leukemic mice. The Gene Set Enrichment Analysis (GSEA) indicated a significant downregulation of gene sets associated with oxidative phosphorylation and glycolysis in AML-MSCs. Furthermore, coculture of MSCs from wild-type mice (WT-MSCs) and a healthy donor individual (HD-MSCs) with AML cells demonstrated reduced oxidative phosphorylation and glycolysis. These metabolic changes were consistent in AML-MSCs derived from both leukemic mice and patients. Our results indicate that AML cells diminish the metabolic capacity of MSCs, specifically targeting oxidative phosphorylation and glycolysis. These findings suggest potential metabolic vulnerabilities that could be exploited to develop more effective therapeutic strategies for AML. Full article
(This article belongs to the Special Issue Immunotherapy Versus Immune Modulation of Leukemia)
Show Figures

Figure 1

20 pages, 72348 KB  
Article
Integrated Fluidic Platform for Washing and Mechanical Processing of Lipoaspirate for Downstream Fat Grafting and Regenerative Applications
by David Zalazar, Jiayi Feng, Derek A. Banyard, Marzieh Aliaghaei, Alan D. Widgerow and Jered B. Haun
Bioengineering 2025, 12(9), 918; https://doi.org/10.3390/bioengineering12090918 - 26 Aug 2025
Viewed by 914
Abstract
Autologous fat grafting of human lipoaspirate (LA) is increasingly used in reconstructive and cosmetic surgery for lipofilling and stem cell-rich “nanofat” reinjection for regenerative medicine. While commercial devices (e.g., REVOLVE and Puregraft) are available, many surgeons use non-standardized manual washing techniques, leading to [...] Read more.
Autologous fat grafting of human lipoaspirate (LA) is increasingly used in reconstructive and cosmetic surgery for lipofilling and stem cell-rich “nanofat” reinjection for regenerative medicine. While commercial devices (e.g., REVOLVE and Puregraft) are available, many surgeons use non-standardized manual washing techniques, leading to inconsistent graft retention (20–80%). Moreover, no system can unite washing directly with mechanical processing to produce a nanofat-like product directly from raw LA. We developed a novel preparation device (PD) that is designed for peristaltic pump-driven washing of LA and can be seamlessly combined with our previously developed Emulsification and Micronization Device (EMD) into an automated closed-loop platform. Human LA samples were washed with the PD and compared to standard manual washing via visual colorimetric analysis. We then evaluated the mechanical processing of PD-washed LA using our EMD and assessed cell count, viability, and stromal vascular fraction-derived subpopulations (i.e., mesenchymal stem cells, endothelial progenitor cells (EPCs), pericytes, transit-amplifying (TA) progenitor cells, and supra-adventitial adipose stromal cells). Recirculating LA through the PD for at least one minute resulted in sufficient mixing, producing LA with equivalent color and quality to manual washing. Integrating the EMD within a platform enabled both washing and mechanical processing under peristaltic flow, enriching key subpopulations compared to manual methods. Thus, our fluidic platform effectively washes LA in a closed-loop system, minimizing LA tissue manipulation and opportunity for contamination while also simplifying the workflow for mechanical processing. Further refinement and automation of this platform would enhance the reproducibility and quality of small-volume fat grafts, cell-assisted lipotransfer, and stem/progenitor cell injections to promote wound healing and angiogenesis. Full article
(This article belongs to the Special Issue Regenerative Technologies in Plastic and Reconstructive Surgery)
Show Figures

Figure 1

17 pages, 2956 KB  
Article
Impact of Photobiomodulation on the Pro-Osteogenic Activity of Dental Pulp Mesenchymal Stem/Stromal Cells
by Marcella Rodrigues Ueda Fernandes, Gabriella Teti, Valentina Gatta, Aurora Longhin, Ana Cecilia Corrêa Aranha and Mirella Falconi
Int. J. Mol. Sci. 2025, 26(17), 8174; https://doi.org/10.3390/ijms26178174 - 22 Aug 2025
Viewed by 721
Abstract
Photobiomodulation (PBM) consists of applying low-level laser light to biological tissues, leading to modulation of cellular functions. PBM has recently gained much attention in the field of regenerative dentistry thanks to its powerful effect on tissue repair and regeneration. Dental pulp mesenchymal stem/stromal [...] Read more.
Photobiomodulation (PBM) consists of applying low-level laser light to biological tissues, leading to modulation of cellular functions. PBM has recently gained much attention in the field of regenerative dentistry thanks to its powerful effect on tissue repair and regeneration. Dental pulp mesenchymal stem/stromal cells (DP-MSCs) represent the ideal targets in regenerative dentistry due to their ability to stimulate the regeneration of mineralized and soft tissues and the paracrine factors that they produce. Although there have been several studies evaluating the influence of PBM on DP-MSCs’ regenerative capacity, the results are conflicting, and there are few studies on the influence of PBM on the paracrine factors released by DP-MSCs. Therefore, the aim of this study was to investigate the effect of PBM, using different energy doses of laser irradiation, on the osteogenic capacity of DP-MSCs, focusing on changes in gene expression, mineralizing ability, and release of pro-osteogenic factors. DP-MSCs were irradiated in vitro and differentiated into an osteogenic phenotype. A cell viability assay, alizarin red staining, and TEM analysis were carried out to evaluate the effect of PBM on cell activity, morphology, and mineralization ability. The expression of the main osteogenesis-related markers Runx2, Col1A1, ALP, and BMP was measured to evaluate the influence of PBM on the ability of DP-MSCs to differentiate toward an osteogenic phenotype. The release of IL-6 and IL-8, which are mainly involved in bone remodeling processes, was investigated in the cell medium following PBM irradiation. The results showed a high level of cell viability, suggesting a lack of phototoxicity under the tested conditions. Furthermore, PBM had a significant effect on mineral deposition, IL-6 and IL-8 release, and expression of osteogenic markers. TEM analysis showed intracellular modifications linked mainly to mitochondria, the endoplasmic reticulum, and autophagic vesicles after PBM treatment. These findings demonstrated that the impact of PBM on the osteogenic potential of DP-MSCs is energy dose-dependent, supporting its potential as an effective strategy in regenerative dentistry, particularly for enhancing bone remodeling. Full article
(This article belongs to the Special Issue Application of Biotechnology to Dental Treatment)
Show Figures

Figure 1

17 pages, 2471 KB  
Article
Canine Endometrial Mesenchymal Stem Cells: Characterization and Functional Assessment for Cartilage Repair
by Zuzana Vikartovska, Marcela Maloveska, Natalia Nosalova, Lubica Hornakova, Mykhailo Huniadi, Nikola Hudakova, Slavomir Hornak, Blazej Kalinaj, Peter Kubatka and Dasa Cizkova
Int. J. Mol. Sci. 2025, 26(16), 8091; https://doi.org/10.3390/ijms26168091 - 21 Aug 2025
Viewed by 546
Abstract
Endometrial mesenchymal stem cells (eMSCs) are a novel and biologically potent source of multipotent stromal cells with potential beyond reproductive medicine. This study explored their phenotypic profile, trilineage differentiation, and the cytoprotective effects of their conditioned media (eMSCCM) on oxidatively stressed neonatal and [...] Read more.
Endometrial mesenchymal stem cells (eMSCs) are a novel and biologically potent source of multipotent stromal cells with potential beyond reproductive medicine. This study explored their phenotypic profile, trilineage differentiation, and the cytoprotective effects of their conditioned media (eMSCCM) on oxidatively stressed neonatal and adult chondrocytes. Canine eMSCs displayed typical fibroblast-like morphology and expressed high levels of mesenchymal surface markers CD29 and CD44, low hematopoietic markers CD34/CD45, and variable CD90, confirming a mesenchymal identity. Differentiation assays revealed osteogenic and chondrogenic differentiation, whereas adipogenic activity was limited. Using eMSCCM at 25% and 50% concentrations, chondrocyte viability was assessed after exposure to 200 µM H2O2. eMSCCM significantly enhanced the viability of H2O2-stressed chondrocytes in a dose-dependent manner, particularly at 50%, with marked effects at 24 and 48 h. Although metabolic activity declined at 72 h, the treated cells remained more metabolically active than untreated controls. These findings suggest that eMSCCM offers promising cytoprotective effects for cartilage-related oxidative stress conditions. Full article
Show Figures

Graphical abstract

Back to TopTop