Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = menthol mint oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2039 KiB  
Article
Quality and Physiology of Selected Mentha Genotypes Under Coloured Shading Nets
by Charlotte Hubert-Schöler, Saskia Tsiaparas, Katharina Luhmer, Marcel D. Moll, Maike Passon, Matthias Wüst, Andreas Schieber and Ralf Pude
Agronomy 2025, 15(7), 1735; https://doi.org/10.3390/agronomy15071735 - 18 Jul 2025
Viewed by 324
Abstract
Improving the quality of compounds in medicinal and aromatic plants is crucial due to their uses in the pharmaceutical, cosmetics, and food sectors. One way of influencing plant composition is through exposure to different light conditions. Therefore, a two-year field study (2023–2024) was [...] Read more.
Improving the quality of compounds in medicinal and aromatic plants is crucial due to their uses in the pharmaceutical, cosmetics, and food sectors. One way of influencing plant composition is through exposure to different light conditions. Therefore, a two-year field study (2023–2024) was conducted to investigate the impact of coloured shading nets on the physiology, essential oil (EO) content, and composition of three Mentha genotypes: Mentha × piperita ‘Multimentha’, Mentha × piperita ‘Fränkische Blaue’, and Mentha rotundifolia ‘Apfelminze’. In addition to an unshaded control, the Mentha plants were grown under red and blue shading nets. Plant height and vegetation indices were collected weekly. Biomass accumulation, EO content, and composition were determined for each harvest. Both red and blue shading were found to influence the physiological responses and EO compositions of the plants, with red shading promoting slightly higher p-menthone levels in ‘Fränkische Blaue’ and ‘Multimentha’, while blue shading slightly increased carvone levels in ‘Apfelminze’. While EO content varied across harvest seasons (spring, summer, and autumn), ‘Fränkische Blaue’ responded to red shading, demonstrating an increased EO content. The findings suggest that targeted use of coloured shading nets can modulate EO quality. However, genotype-specific responses highlight the necessity of further research to define shading applications for different species and genotypes. Full article
(This article belongs to the Special Issue Cultivation and Utilization of Herbal and Aromatic Plants)
Show Figures

Figure 1

17 pages, 4013 KiB  
Article
Sustainable Agrivoltaic Farming: The Role of Mycorrhiza in Promoting Mint Cultivation and High-Quality Essential Oil Production
by Bihter Çolak Esetlili, M. Tolga Esetlili, Kaan Emir and Murat Eröz
Sustainability 2025, 17(12), 5516; https://doi.org/10.3390/su17125516 - 16 Jun 2025
Viewed by 588
Abstract
Agriphotovoltaic (Agri-PV) systems are a dual-purpose solution for resolving land utilization conflicts through combining agricultural practices and photovoltaic power generation. However, the reduced light intensities and altered microclimatic conditions under PV modules may have negative effects on the productivity of crops. This study [...] Read more.
Agriphotovoltaic (Agri-PV) systems are a dual-purpose solution for resolving land utilization conflicts through combining agricultural practices and photovoltaic power generation. However, the reduced light intensities and altered microclimatic conditions under PV modules may have negative effects on the productivity of crops. This study investigated whether incorporating arbuscular mycorrhizal fungi (AMF) inoculation into Agri-PV systems could mitigate such limitations for mint cultivation (Mentha arvensis and Mentha × piperita). A field trial was conducted in Bandırma, Türkiye, where both mint species were grown under and between PV panels, with and without AMF. The photosynthetically active radiation (PAR), temperature, fresh biomass, nutrient uptake, and essential oil content were evaluated. PAR was reduced by more than 90% under panels, while air temperatures were 1.0–1.6 °C lower than those in the between-panel areas. AMF inoculation significantly improved the yield and quality. In Mentha arvensis, the fresh herb yield increased by 43.4% (from 10,620 to 15,230 kg ha−1), and the essential oil content reached 10.08% under between-panel mycorrhizal conditions. For Mentha × piperita, the highest menthol concentration (30.38%) was observed exclusively in between-panel plots with AMF. In contrast, the highest oil content (4.50%) was achieved under shaded, mycorrhizal conditions, indicating that both light exposure and microbial interactions shape biochemical responses. This is the first study to demonstrate the synergistic impact of AMF inoculation and agrivoltaic shading on essential oil crops. This paper presents a novel and sustainable model that enhances crop productivity and biochemical quality in solar-integrated agriculture. Full article
Show Figures

Figure 1

9 pages, 1219 KiB  
Proceeding Paper
Patent Landscape and Applications of Organic Menthol Crystals: An In-Depth Analysis of Emerging Trends and Industrial Applications
by Reda El Boukhari and Ahmed Fatimi
Chem. Proc. 2024, 15(1), 2; https://doi.org/10.3390/chemproc2024015002 - 28 Nov 2024
Cited by 1 | Viewed by 2291
Abstract
Menthol, a cyclic monoterpene alcohol commonly derived from mint essential oils, is widely utilized across the pharmaceutical, cosmetic, and personal care industries due to its cooling, analgesic, and aromatic properties. This study presents a comprehensive patent landscape analysis of organic menthol crystals and [...] Read more.
Menthol, a cyclic monoterpene alcohol commonly derived from mint essential oils, is widely utilized across the pharmaceutical, cosmetic, and personal care industries due to its cooling, analgesic, and aromatic properties. This study presents a comprehensive patent landscape analysis of organic menthol crystals and their derivatives, with a focus on identifying current trends and emerging applications. Patent data were retrieved from The Lens and Google Patents, and 23,515 relevant patents were analyzed using international patent classification codes. The results revealed significant applications in pharmaceuticals, personal care, and drug delivery systems, with notable innovations in controlled-release formulations, cancer treatments, and pain relief products. Emerging trends include the combination of menthol with other natural compounds, advances in microencapsulation for controlled drug delivery, and its use as flavor enhancement in the tobacco industry. The United States leads in menthol-related patents, followed by China and the European Union. This analysis provides valuable insights into the future of menthol applications, suggesting that its role in therapeutic and cosmetic industries will continue to grow, driven by technological advancements and regulatory factors. Full article
(This article belongs to the Proceedings of The 4th International Online Conference on Crystals)
Show Figures

Figure 1

22 pages, 4280 KiB  
Article
Essential Oil Composition and Physiology of Three Mentha Genotypes Under Shaded Field Conditions
by Charlotte Hubert-Schöler, Saskia Tsiaparas, Katharina Luhmer, Marcel Dieter Moll, Maike Passon, Matthias Wüst, Andreas Schieber and Ralf Pude
Plants 2024, 13(22), 3155; https://doi.org/10.3390/plants13223155 - 9 Nov 2024
Cited by 1 | Viewed by 2215
Abstract
Mentha spp. are commonly used for the production of tea and for the extraction of essential oils (EOs). The key factor of mint quality is the content and composition of the EO. Health-promoting compounds such as menthol are desirable, whereas the presence of [...] Read more.
Mentha spp. are commonly used for the production of tea and for the extraction of essential oils (EOs). The key factor of mint quality is the content and composition of the EO. Health-promoting compounds such as menthol are desirable, whereas the presence of potentially health-damaging compounds such as menthofuran should be avoided. This study examines the effect of shading on the EO content and composition of three Mentha genotypes (Mentha × piperita ‘Multimentha’, Mentha × piperita ‘Fränkische Blaue’ and Mentha rotundifolia ‘Apfelminze’). The Mentha genotypes were cultivated in field trials for two years (2022–2023). Each genotype was shaded with a shading net (50% photosynthetic active radiation (PAR) reduction), and a control without shading was prepared. EO content was determined by steam distillation and EO composition was characterized by GC-MS analysis. Furthermore, biomass, vegetation indices (VIs) and the electron transport rate (ETR) were analyzed. While shading led to higher plant heights, higher EO content and a slightly reduced amount of undesired EO compounds, the unshaded control yielded a higher biomass accumulation. Significant genotypic differences were determined. In conclusion, the benefits of shading depend on the intended use and genotype selection. Full article
Show Figures

Figure 1

22 pages, 1090 KiB  
Review
Aerobiology of the Family Lamiaceae: Novel Perspectives with Special Reference to Volatiles Emission
by Robert Adrian Haas, Ioana Crișan, Dan Vârban and Rodica Vârban
Plants 2024, 13(12), 1687; https://doi.org/10.3390/plants13121687 - 18 Jun 2024
Cited by 2 | Viewed by 3356
Abstract
Lamiaceae is a botanical family rich in aromatic species that are in high demand such as basil, lavender, mint, oregano, sage, and thyme. It has great economical, ecological, ethnobotanical, and floristic importance. The aim of this work is to provide an updated view [...] Read more.
Lamiaceae is a botanical family rich in aromatic species that are in high demand such as basil, lavender, mint, oregano, sage, and thyme. It has great economical, ecological, ethnobotanical, and floristic importance. The aim of this work is to provide an updated view on the aerobiology of species from the family Lamiaceae, with an emphasis on novelties and emerging applications. From the aerobiology point of view, the greatest interest in this botanical family is related to the volatile organic compounds emitted by the plants and, to a much lesser extent, their pollen. Research has shown that the major volatile organic compounds emitted by the plants from this botanical family are monoterpenes and sesquiterpenes. The most important monoterpenes reported across studies include α-pinene, β-pinene, 1,8-cineole, menthol, limonene, and γ-terpinene. Most reports tend to cover species from the subfamily Nepetoideae. Volatile oils are produced by glandular trichomes found on aerial organs. Based on general morphology, two main types are found in the family Lamiaceae, namely peltate and capitate trichomes. As a result of pollinator-mediated transfer of pollen, Lamiaceae species present a reduced number of stamens and quantity of pollen. This might explain the low probability of pollen presence in the air from these species. A preliminary synopsis of the experimental evidence presented in this work suggests that the interplay of the organic particles and molecules released by these plants and their environment could be leveraged for beneficial outcomes in agriculture and landscaping. Emerging reports propose their use for intercropping to ensure the success of fructification, increased yield of entomophilous crops, as well as in sensory gardens due to the therapeutic effect of volatiles. Full article
(This article belongs to the Topic Plants Volatile Compounds)
Show Figures

Figure 1

14 pages, 1977 KiB  
Article
Essential Oils of Mentha arvensis and Cinnamomum cassia Exhibit Distinct Antibacterial Activity at Different Temperatures In Vitro and on Chicken Skin
by Iglė Vepštaitė-Monstavičė, Bazilė Ravoitytė, Jurga Būdienė, Algirdas Valys, Juliana Lukša and Elena Servienė
Foods 2023, 12(21), 3938; https://doi.org/10.3390/foods12213938 - 27 Oct 2023
Cited by 7 | Viewed by 3125
Abstract
The bacterial contamination of meat is a global concern, especially for the risk of Salmonella infection that can lead to health issues. Artificial antibacterial compounds used to preserve fresh meat can have negative health effects. We investigated the potential of natural essential oils [...] Read more.
The bacterial contamination of meat is a global concern, especially for the risk of Salmonella infection that can lead to health issues. Artificial antibacterial compounds used to preserve fresh meat can have negative health effects. We investigated the potential of natural essential oils (EOs), namely Mentha arvensis (mint) and Cinnamomum cassia (cinnamon) EOs, to prevent contamination of the food pathogen, Salmonella enterica subsp. enterica serotype Typhimurium, in vitro and on chicken skin. The gas chromatography–mass spectrometry (GC-MS) technique was used to determine the compositions of mint EO (MEO) and cinnamon EO (CEO); the most abundant compound in MEO was menthol (68.61%), and the most abundant compound was cinnamaldehyde (83.32%) in CEO. The antibacterial activity of MEO and CEO were examined in vapor and direct contact with S. typhimurium at temperatures of 4 °C, 25 °C, and 37 °C. The minimal inhibitory concentration at 37 °C for MEO and CEO reached 20.83 µL/mL, and the minimal bactericidal concentration of CEO was the same, while for MEO, it was two-fold higher. We report that in most tested conditions in experiments performed in vitro and on chicken skin, CEO exhibits a stronger antibacterial effect than MEO. In the vapor phase, MEO was more effective against S. typhimurium than CEO at 4 °C. In direct contact, the growth of S. typhimurium was inhibited more efficiently by MEO than CEO at small concentrations and a longer exposure time at 37 °C. The exploration of CEO and MEO employment for the inhibition of Salmonella bacteria at different temperatures and conditions expands the possibilities of developing more environment- and consumer-friendly antibacterial protection for raw meat. Full article
Show Figures

Figure 1

12 pages, 1182 KiB  
Article
Composition and Anti-Helicobacter pylori Properties of Essential Oils Obtained from Selected Mentha Cultivars
by Bartłomiej Piasecki, Izabela Korona-Głowniak, Anna Kiełtyka-Dadasiewicz and Agnieszka Ludwiczuk
Molecules 2023, 28(15), 5690; https://doi.org/10.3390/molecules28155690 - 27 Jul 2023
Cited by 4 | Viewed by 3911
Abstract
Helicobacter pylori infections are highly common amongst the global population. Such infections have been shown to be the cause of gastric ulcers and stomach carcinoma and, unfortunately, most cases are asymptomatic. Standard treatment requires antibiotics such as metronidazole or azithromycin to which many [...] Read more.
Helicobacter pylori infections are highly common amongst the global population. Such infections have been shown to be the cause of gastric ulcers and stomach carcinoma and, unfortunately, most cases are asymptomatic. Standard treatment requires antibiotics such as metronidazole or azithromycin to which many strains are now resistant. Mentha species have been used as a natural treatment for gastrointestinal diseases throughout history and essential oils (EOs) derived from these plants show promising results as potential antimicrobial agents. In this study, EOs obtained from the leaves and flowers of five cultivars of Mentha × piperita and M. spicata were examined by GC-MS. The investigated mints are representatives of four chemotypes: the menthol chemotype (M. × piperita ‘Multimentha’ and M. × piperita ‘Swiss’), the piperitenone oxide chemotype (M. × piperita ‘Almira’), the linalool chemotype (M. × piperita ‘Granada’), and the carvone chemotype (M. spicata ‘Moroccan’). The chemical composition of EOs from mint flowers and leaves was comparable with the exception of the Swiss cultivar. Menthol was the most abundant component in the leaves while menthone was highest in flowers. The H. pylori ATCC 43504 reference strain and 10 other H. pylori clinical strains were examined for their sensitivity to the EOs in addition to their major monoterpenoid components (menthol, menthone, carvone, dihydrocarvone, linalool, 1,8-cineole, and limonene). All tested mint EOs showed inhibitory activity against both the reference H. pylori ATCC 43504 strain (MIC 15.6–31.3 mg/L) and clinical H. pylori strains (MIC50/90 31.3–250 mg/L/62.5–500 mg/L). Among the reference monoterpenes, menthol (MIC50/90 7.8/31.3 mg/L) and carvone (MIC50/90 31.3/62.5 mg/L) had the highest anti-H. pylori activity, which also correlated with a higher activity of EOs containing these compounds (M. × piperita ‘Swiss’ and M. spicata ‘Moroccan’). A synergistic and additive interaction between the most active EOs/compounds and antibiotics possibly points to a new plant-based anti-H. pylori treatment. Full article
(This article belongs to the Special Issue Essential Oils in Human Health)
Show Figures

Graphical abstract

18 pages, 4855 KiB  
Communication
RETRACTED: Estimating the Crop Acreage of Menthol Mint Crop from Remote Sensing Satellite Imagery Using ANN
by Jampani Satish Babu, Smitha Chowdary Ch, Debnath Bhattacharyya and Yungcheol Byun
Agronomy 2023, 13(4), 951; https://doi.org/10.3390/agronomy13040951 - 23 Mar 2023
Cited by 3 | Viewed by 2713 | Retraction
Abstract
Acreage estimates are crucial for forecasting menthol mint acreage, as crop output figures fluctuate from year to year in response to fluctuations in the market price of menthol mint oil. Thus, there are yearly fluctuations in the maximum price that farmers can obtain. [...] Read more.
Acreage estimates are crucial for forecasting menthol mint acreage, as crop output figures fluctuate from year to year in response to fluctuations in the market price of menthol mint oil. Thus, there are yearly fluctuations in the maximum price that farmers can obtain. Since low production arises from low rates, and high production results from high prices, these acreage estimate studies may be useful in lowering uncertainty regarding menthol mints’ output. The widespread adoption of remote sensing technologies for assessing crop acreage at both the national and international levels can be attributed to their low cost, ease of use, and flexibility. The extent of an area planted with menthol mint in the Vishakhapatnam district of Andhra Pradesh, India, was estimated using Sentinel-2A satellite data for that year. After conducting a comprehensive ground survey, the area of the menthol mint crop was estimated using an adaptive maximum chance-type set of rules for taluk-level statistics. According to the research, the Bheemunipatnam taluk in the Vishakhapatnam district was the most productive in growing menthol mint. Using customer and manufacturer accuracies of 89.13% and 87.23%, along with the average accuracy (90.67%) and kappa rate (0.9), the total acreage of menthol mint crop in the study region was estimated to be around 58,000,284.70 ha (0.844). A further aim in this study was to estimate the acreage planted with early and late menthol mint. Around 26,123.50 ha and 29,911.40 ha were found to be home to early menthol mint and late menthol mint, respectively. This method shows promise for early- and late-stage crop acreage assessment of menthol mint using a localised degree of precision. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

10 pages, 875 KiB  
Article
Antimicrobial and Toxic Effects of Boswellia serrata Roxb. and Mentha piperita Linn. Essential Oils on Vaginal Inhabitants
by Mirjana A. Bogavac, Tamara M. Perić, Jovana Mišković and Maja Karaman
Medicines 2022, 9(12), 62; https://doi.org/10.3390/medicines9120062 - 9 Dec 2022
Cited by 3 | Viewed by 2666
Abstract
Commercial essential oils (EOs) of incense, Boswellia serrata Roxb, and mint, Mentha piperita L., were investigated against vaginal bacterial and Candida albicans isolates for antimicrobial potential and safety use. The antimicrobial activity of EOs was investigated through a double-dilution micro-plate assay. A brine [...] Read more.
Commercial essential oils (EOs) of incense, Boswellia serrata Roxb, and mint, Mentha piperita L., were investigated against vaginal bacterial and Candida albicans isolates for antimicrobial potential and safety use. The antimicrobial activity of EOs was investigated through a double-dilution micro-plate assay. A brine shrimp assay was used for the determination of toxicity, while the determination of the chemical composition of EOs was carried out using GS–MS. Obtained minimal inhibitory (MIC) and minimal bactericidal concentration (MBC) point to the activity of mint essential oil (EO) against the multi-resistant P. aeruginosa isolate (MIC/MBC at 6.25 µL/mL), while MIC and MBC values for other isolates were reached at higher concentrations (25–50 µL/mL). According to the toxicity assay, the incense EO reached the LC50 value at 3.07 µL/mL, while mint EO showed higher toxicity at lower concentrations (0.5 µL/mL) and the LC50 could not be determined. The highest antimicrobial potential was obtained for incense against P. aeruginosa. Although the toxicity assay showed high toxicity of mint EO to the eggs of aquatic crustaceans Artemia salina, further testing of EO toxicity is proposed, for example on healthy cell-lines. According to the GC/MS spectrometry, the most represented components of mint EO were the oxygenated hydrocarbons L-menthone (20.86%) and menthol (31.86%), and they could be proposed for further antimicrobial and toxicity investigation. Full article
Show Figures

Figure 1

16 pages, 1100 KiB  
Article
Effect of Duration of High-Grain Feeding on Chewing, Feeding Behavior, and Salivary Composition in Cows with or without a Phytogenic Feed Supplement
by Raul Rivera-Chacon, Sara Ricci, Renée M. Petri, Andreas Haselmann, Nicole Reisinger, Qendrim Zebeli and Ezequias Castillo-Lopez
Animals 2022, 12(15), 2001; https://doi.org/10.3390/ani12152001 - 8 Aug 2022
Cited by 4 | Viewed by 2380
Abstract
Switching diets from forage to a high-grain (HG) diet increases the risk of rumen fermentation disorders in cattle. However, the effects of the duration of the HG feeding, after the diet switch, on animal behavior and health have received considerably less attention. This [...] Read more.
Switching diets from forage to a high-grain (HG) diet increases the risk of rumen fermentation disorders in cattle. However, the effects of the duration of the HG feeding, after the diet switch, on animal behavior and health have received considerably less attention. This experiment primarily aimed to assess the effects of the duration of an HG diet on the chewing, eating, and lying behavior and salivation dynamics in a control group (CON) and a group of cows receiving a phytogenic feed supplement (TRT) at 0.04% (DM basis), which included L-menthol, thymol, eugenol, mint oil, and cloves powder. The experiment was a crossover design with nine non-lactating cows, and two experimental periods with an intermediate washout of four weeks. In each period, the cows were first fed a forage diet for a week to collect baseline measurements representing week 0; then, the diet was switched over a week to HG (65% concentrate), which was fed for four continuous weeks (week 1, week 2, week 3, and week 4 on an HG diet, respectively). The cows were divided in two groups of four and five animals and were randomly allocated to CON or TRT. The data analysis revealed that at the start of the HG feeding, the dry matter intake and the cows’ number of lying bouts increased, but the eating time, rumination time, and meal frequency decreased, resulting in a greater eating rate. We also found that an advanced duration on an HG diet further decreased the rumination time, total chewing time, chewing index, and sorting in favor of short feed particles, with the lowest values in week 4. The feed bolus size increased but feed the ensalivation decreased in week 4 compared to week 0. The dietary switch increased salivary lysozyme activity, and the advanced duration on the HG diet increased salivary pH, but salivary phosphate decreased in weeks 1 and 2 on the HG diet. Supplementation with TRT increased sorting in favor of physically effective NDF (peNDF) in week 2 and increased salivary pH in week 4 on an HG diet. Overall, the negative effects of the HG diet in cattle are more pronounced during the initial stage of the HG feeding. However, several detrimental effects were exacerbated with the cows’ advanced duration on feed, with host adaptive changes still observed after 3 and 4 weeks following the diet switch. The TRT mitigated some of the negative effects through the temporal improvement of the salivary properties and the intake of peNDF, which are known to modulate rumen fermentation. Full article
(This article belongs to the Special Issue Animals’ Tenth Anniversary)
Show Figures

Figure 1

22 pages, 2592 KiB  
Article
Chemical Composition and Antibacterial Activity of Liquid and Volatile Phase of Essential Oils against Planktonic and Biofilm-Forming Cells of Pseudomonas aeruginosa
by Malwina Brożyna, Justyna Paleczny, Weronika Kozłowska, Daria Ciecholewska-Juśko, Adam Parfieńczyk, Grzegorz Chodaczek and Adam Junka
Molecules 2022, 27(13), 4096; https://doi.org/10.3390/molecules27134096 - 25 Jun 2022
Cited by 11 | Viewed by 3957
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing life-threatening, hard-to-heal infections associated with the presence of a biofilm. Essential oils (EOs) are promising agents to combat pseudomonal infections because of the alleged antimicrobial activity of their volatile fractions and liquid forms. Therefore, the purpose [...] Read more.
Pseudomonas aeruginosa is an opportunistic pathogen causing life-threatening, hard-to-heal infections associated with the presence of a biofilm. Essential oils (EOs) are promising agents to combat pseudomonal infections because of the alleged antimicrobial activity of their volatile fractions and liquid forms. Therefore, the purpose of this paper was to evaluate the antibacterial efficacy of both volatile and liquid phases of seven EOs (thyme, tea tree, basil, rosemary, eucalyptus, menthol mint, lavender) against P. aeruginosa biofilm and planktonic cells with the use of a broad spectrum of analytical in vitro methods. According to the study results, the antibacterial activity of EOs in their liquid forms varied from that of the volatile fractions. Overall, liquid and volatile forms of rosemary EO and tea tree EO displayed significant antibiofilm effectiveness. The outcomes indicate that these particular EOs possess the potential to be used in the therapy of P. aeruginosa infections. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Plant Volatiles in Vapor Phase)
Show Figures

Figure 1

2 pages, 200 KiB  
Abstract
The Antibiofilm Potential of Vapor Fractions of Selected Essential Oils against Pseudomonas aeruginosa 
by Malwina Brożyna, Justyna Paleczny and Adam Junka
Med. Sci. Forum 2022, 12(1), 3; https://doi.org/10.3390/eca2022-12702 - 15 Jun 2022
Viewed by 1206
Abstract
Biofilm is a major causative factor of persistent, hard-to-heal infections. Due to the biofilm’s persistence, even high-dose, systemic antibiotic therapy displays low antimicrobial efficacy. Therefore, there is an urgent need to search for novel bactericidal agents. Essential oils [EOs] are of great interest [...] Read more.
Biofilm is a major causative factor of persistent, hard-to-heal infections. Due to the biofilm’s persistence, even high-dose, systemic antibiotic therapy displays low antimicrobial efficacy. Therefore, there is an urgent need to search for novel bactericidal agents. Essential oils [EOs] are of great interest in this matter because of their broad spectrum of antimicrobial activity and non-specific mechanism of action. This study aimed to evaluate the antimicrobial activity of vapor fractions of three commercially available essential oils: menthol mint (Mentha arvensis, L.), lavender (Lavandula angustifolia, Mill.), and eucalyptus (Eucalyptus globulus, Labill.) against Pseudomonas aeruginosa biofilm. For the research purposes, fourteen clinical multidrug-resistant strains and one reference bacterial strain from American Type Culture Collection (ATCC 15441) were used. The self-developed evaluation method was applied, based on the optimized resazurin staining protocol, to determine the biofilm survival after the exposure to volatile agents. The results indicated that the EOs’ antibiofilm activity depends on the pseudomonal strains’ intraspecies variability. The lavender oil was active against five clinical strains, with the reduction rate ranging from 33% to 44%. The highest reduction level obtained for eucalyptus oil was 20%. The results for menthol mint oil were differentiated among the tested strains and ranged from 5% to 53%. The obtained outcomes indicate that the tested volatile fractions of EOs possess the potential to be applied in the treatment of infections caused by Pseudomonas aeruginosa biofilm. Further research is required to determine if they can be used in monotherapy or as adjuvants of other antimicrobial agents. Full article
17 pages, 2768 KiB  
Article
Supplementing a Phytogenic Feed Additive Modulates the Risk of Subacute Rumen Acidosis, Rumen Fermentation and Systemic Inflammation in Cattle Fed Acidogenic Diets
by Raul Rivera-Chacon, Ezequias Castillo-Lopez, Sara Ricci, Renee M. Petri, Nicole Reisinger and Qendrim Zebeli
Animals 2022, 12(9), 1201; https://doi.org/10.3390/ani12091201 - 6 May 2022
Cited by 25 | Viewed by 3897
Abstract
Feeding with high-concentrate diets increases the risk of subacute ruminal acidosis (SARA). This experiment was conducted to evaluate whether supplementing a phytogenic feed additive based on L-menthol, thymol, eugenol, mint oil (Mentha arvensis) and cloves powder (Syzygium aromaticum) (PHY) [...] Read more.
Feeding with high-concentrate diets increases the risk of subacute ruminal acidosis (SARA). This experiment was conducted to evaluate whether supplementing a phytogenic feed additive based on L-menthol, thymol, eugenol, mint oil (Mentha arvensis) and cloves powder (Syzygium aromaticum) (PHY) can amend the ruminal fermentation profile, modulate the risk of SARA and reduce inflammation in cattle. The experiment was designed as a crossover design with nine non-lactating Holstein cows, and was conducted in two experimental runs. In each run, cows were fed a 100% forage diet one week (wk 0), and were then transitioned stepwise over one week (0 to 65% concentrate, wk adapt.) to a high concentrate diet that was fed for 4 weeks. Animals were fed diets either with PHY or without (CON). The PHY group had an increased ruminal pH compared to CON, reduced time to pH < 5.8 in wk 3, which tended to decrease further in wk 4, reduced the ruminal concentration of D-lactate, and tended to decrease total lactate (wk 3). In wk 2, PHY increased acetate, butyrate, isobutyrate, isovalerate, and the acetate to propionate ratio compared to CON. Phytogenic supplementation reduced inflammation compared to CON in wk 3. Overall, PHY had beneficial effects on ruminal fermentation, reduced inflammation, and modulated the risk of SARA starting from wk 3 of supplementation. Full article
(This article belongs to the Special Issue Advances in Animal Novel Alternative Feed)
Show Figures

Figure 1

13 pages, 1727 KiB  
Article
Introducing Three New Fruit-Scented Mints to Farmlands: Insights on Drug Yield, Essential-Oil Quality, and Antioxidant Properties
by Hosein Ahmadi, Mohammad Reza Morshedloo, Roya Emrahi, Abdollah Javanmard, Farzad Rasouli, Filippo Maggi, Manoj Kumar and Jose Manuel Lorenzo
Antioxidants 2022, 11(5), 866; https://doi.org/10.3390/antiox11050866 - 28 Apr 2022
Cited by 15 | Viewed by 2978
Abstract
Mint species are one of the most traded medicinal plants with a wide array of applications in the food, pharmaceutical, and perfumery industries. Here, a field experiment based on completely randomized block design (RCBD) aimed to compare drug yield, antioxidant properties, and essential-oil [...] Read more.
Mint species are one of the most traded medicinal plants with a wide array of applications in the food, pharmaceutical, and perfumery industries. Here, a field experiment based on completely randomized block design (RCBD) aimed to compare drug yield, antioxidant properties, and essential-oil (EO) quality of three newly introduced mints (i.e., ginger mint, pineapple mint, and grapefruit mint) with a chiefly cultivated one (i.e., peppermint). The results manifested that dry-weight yield and EO yield of grapefruit mint (310 g/m2 and 5.18 g/m2, respectively) was approximately 2 times more than that of others. The highest EO content (i.e., 3.12%, v/w)) was obtained from the ginger mint; however, there were no significant differences among the other three mints. The highest total flavonoids content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of both methanolic and ethanolic extracts were found in pineapple and grapefruit mint. Methanolic extract of ginger mint yielded the highest total polyphenol content, whereas the ethanolic extract of pineapple mint showed the highest total polyphenol content. According to mean comparisons, the EO of ginger mint exhibited the highest antioxidant activity (EC50 value = 2.23 µL/mL), while EO of peppermint showed the lowest antioxidant activity (EC50 value = 48.23 µL/mL). Gas chromatography analysis identified four EO types among these mints: (i) grapefruit mint EO rich in linalool (51.7%) and linalyl acetate (28.38%); (ii) ginger mint EO rich in linalool (59.16%); (iii) pineapple mint EO rich in piperitone oxide (77.65%); and (iv) peppermint EO rich in menthol (35.65%). The findings of the present study provide new insights into the cultivation of preferable mints possessing desired characteristics for food and drug industries. Full article
(This article belongs to the Special Issue Advances in Natural Antioxidants for Food Improvement)
Show Figures

Figure 1

25 pages, 7208 KiB  
Article
The Antimicrobial and Antibiofilm In Vitro Activity of Liquid and Vapour Phases of Selected Essential Oils against Staphylococcus aureus
by Malwina Brożyna, Justyna Paleczny, Weronika Kozłowska, Grzegorz Chodaczek, Ruth Dudek-Wicher, Anna Felińczak, Joanna Gołębiewska, Agata Górniak and Adam Junka
Pathogens 2021, 10(9), 1207; https://doi.org/10.3390/pathogens10091207 - 17 Sep 2021
Cited by 19 | Viewed by 5399
Abstract
The high resistance of staphylococcal biofilm against antibiotics and developing resistance against antiseptics induces a search for novel antimicrobial compounds. Due to acknowledged and/or alleged antimicrobial activity of EOs, their application seems to be a promising direction to follow. Nevertheless, the high complexity [...] Read more.
The high resistance of staphylococcal biofilm against antibiotics and developing resistance against antiseptics induces a search for novel antimicrobial compounds. Due to acknowledged and/or alleged antimicrobial activity of EOs, their application seems to be a promising direction to follow. Nevertheless, the high complexity of EOs composition and differences in laboratory protocols of the antimicrobial activity assessment hinders the exact estimation of EOs effectiveness. To overcome these disadvantages, in the present work we analysed the effectiveness of volatile and liquid forms of seven EOs (derived from thyme, tea tree, basil, rosemary, eucalyptus, lavender, and menthol mint) against 16 staphylococcal biofilm-forming strains using cohesive set of in vitro techniques, including gas chromatography–mass spectrometry, inverted Petri dish, modified disk-diffusion assay, microdilution techniques, antibiofilm dressing activity measurement, AntiBioVol protocol, fluorescence/confocal microscopy, and dynamic light scattering. Depending on the requirements of the technique, EOs were applied in emulsified or non-emulsified form. The obtained results revealed that application of different in vitro techniques allows us to get a comprehensive set of data and to gain insight into the analysed phenomena. In the course of our investigation, liquid and volatile fractions of thyme EO displayed the highest antibiofilm activity. Liquid fractions of rosemary oil were the second most active against S. aureus. Vapour phases of tea tree and lavender oils exhibited the weakest anti-staphylococcal activity. The size of emulsified droplets was the lowest for T-EO and the highest for L-EO. Bearing in mind the limitations of the in vitro study, results from presented analysis may be of pivotal meaning for the potential application of thymol as a antimicrobial agent used to fight against staphylococcal biofilm-based infections. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

Back to TopTop