Composition and Anti-Helicobacter pylori Properties of Essential Oils Obtained from Selected Mentha Cultivars
Abstract
:1. Introduction
2. Results
2.1. GC-MS Results of Mint Essential Oils
2.2. Antimicrobial Activity of Mint Essential Oils and Reference Compounds
3. Discussion
4. Materials and Methods
4.1. Plant Material and Essential Oils
4.2. GC-MS Analysis
4.3. Microbiological Study
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Malfertheiner, P.; Megraud, F.; O’Morain, C.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; et al. Management of Helicobacter pylori infection-the Maastricht V/Florence consensus report. Gut 2017, 6, 6–30. [Google Scholar]
- Malfertheiner, P.; Mégraud, F.; O’Morain, C.; Hungin, A.P.S.; Jones, R.; Axon, A.; Graham, D.Y.; Tytgat, G. Current concepts in the management of Helicobacter pylori infection—The Maastricht 2-2000 consensus report. Aliment. Pharmacol. Ther. 2002, 16, 167–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adachi, T.; Matsui, S.; Watanabe, T.; Okamoto, K.; Okamoto, A.; Kono, M.; Yamada, M.; Nagai, T.; Komeda, Y.; Minaga, K.; et al. Comparative study of clarithromycin-versus metronidazole-based triple therapy as first-line eradication for Helicobacter pylori. Oncology 2017, 93, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Mahady, G.B.; Pendland, S.L.; Stoia, A.; Hamill, F.A.; Fabricant, D.; Dietz, B.M.; Chadwick, L.R. In vitro susceptibility of Helicobacter pylori to botanical extracts used traditionally for the treatment of gastrointestinal disorders. Phyther. Res. 2005, 19, 988–991. [Google Scholar]
- Bhamarapravati, S.; Pendland, S.L.; Mahady, G.B. Extracts of spice and food plants from Thai traditional medicine inhibit the growth of the human carcinogen Helicobacter pylori. In Vivo 2003, 17, 541–544. [Google Scholar]
- Harmati, M.; Gyukity-Sebestyen, E.; Dobra, G.; Terhes, G.; Urban, E.; Decsi, G.; Mimica-Dukić, N.; Lesjak, M.; Simin, N.; Pap, B.; et al. Binary mixture of Satureja hortensis and Origanum vulgare subsp. hirtum essential oils: In Vivo therapeutic efficiency against Helicobacter pylori infection. Helicobacter 2017, 22, e12350. [Google Scholar] [CrossRef]
- Falsafi, T.; Moradi, P.; Mahboubi, M.; Rahimi, E.; Momtaz, H.; Hamedi, B. Chemical composition and anti-Helicobacter pylori effect of Satureja bachtiarica Bunge essential oil. Phytomedicine 2015, 22, 173–177. [Google Scholar] [CrossRef]
- Memariani, Z.; Sharifzadeh, M.; Bozorgi, M.; Hajimahmoodi, M.; Farzaei, M.H.; Gholami, M.; Siavoshi, F.; Saniee, P. Protective effect of essential oil of Pistacia atlantica Desf. on peptic ulcer: Role of α-pinene. J. Tradit. Chin. Med. 2017, 37, 57–63. [Google Scholar] [CrossRef]
- Arunachalam, K.; Balogun, S.O.; Pavan, E.; de Almeida, G.V.B.; de Oliveira, R.G.; Wagner, T.; Cechinel Filho, V.; de Oliveira Martins, D.T. Chemical characterization, toxicology and mechanism of gastric antiulcer action of essential oil from Gallesia integrifolia (Spreng.) Harms in the in vitro and in vivo experimental models. Biomed. Pharmacother. 2017, 94, 292–306. [Google Scholar] [CrossRef]
- Bonamin, F.; Moraes, T.M.; Dos Santos, R.C.; Kushima, H.; Faria, F.M.; Silva, M.A.; Junior, I.V.; Nogueira, L.; Bauab, T.M.; Souza Brito, A.R.M.; et al. The effect of a minor constituent of essential oil from Citrus aurantium: The role of β-myrcene in preventing peptic ulcer disease. Chem. Biol. Interact. 2014, 212, 11–19. [Google Scholar] [CrossRef]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J. 2014, 8, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Ohno, T.; Kita, M.; Yamaoka, Y.; Imamura, S.; Yamamoto, T.; Mitsufuji, S.; Kodama, T.; Kashima, K.; Imanishi, J. Antimicrobial activity of essential oils against Helicobacter pylori. Helicobacter 2003, 8, 207–215. [Google Scholar] [CrossRef]
- Bunsawat, J.; Elliott, N.E.; Hertweck, K.L.; Sproles, E.; Alice, L.A. Phylogenetics of Mentha (Lamiaceae): Evidence from chloroplast DNA sequences. Syst. Bot. 2004, 29, 959–964. [Google Scholar] [CrossRef]
- Anwar, F.; Abbas, A.; Mehmood, T.; Gilani, A.H.; Rehman, N. Mentha: A genus rich in vital nutra-pharmaceuticals—A review. Phyther. Res. 2019, 33, 2548–2570. [Google Scholar] [CrossRef]
- Imai, H.; Osawa, K.; Yasuda, H.; Hamashima, H.; Arai, T.; Sasatsu, M. Inhibition by the essential oils of peppermint and spearmint of the growth of pathogenic bacteria. Microbios 2001, 106, 31–39. [Google Scholar]
- Korona-Glowniak, I.; Glowniak-Lipa, A.; Ludwiczuk, A.; Baj, T.; Malm, A. The in vitro activity of essential oils against Helicobacter pylori growth and urease activity. Molecules 2020, 25, 586. [Google Scholar] [CrossRef] [Green Version]
- Ludwiczuk, A.; Kiełtyka-Dadasiewicz, A.; Sawicki, R.; Golus, J.; Ginalska, G. Essential oils of some Mentha species and cultivars, their chemistry and bacteriostatic activity. Nat. Prod. Commun. 2016, 11, 1015–1018. [Google Scholar]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Dieases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003, 9, ix–xv. [Google Scholar]
- Bergonzelli, G.E.; Donnicola, D.; Porta, N.; Corthésy-Theulaz, I.E. Essential oils as components of a diet-based approach to management of Helicobacter infection. Antimicrob. Agents Chemother. 2003, 47, 3240–3246. [Google Scholar]
- Weseler, A.; Geiss, H.K.; Saller, R.; Reichling, J. A novel colorimetric broth microdilution method to determine the minimum inhibitory concentration (MIC) of antibiotics and essential oils against Helicobacter pylori. Pharmazie 2005, 60, 498–502. [Google Scholar]
- Reichling, J.; Schnitzler, P.; Suschke, U.; Saller, R. Essential oils of aromatic plants with antibacterial, antifungal, antiviral, and cytotoxic properties—An overview. Forsch Komplementarmed 2009, 16, 79–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonifacio, B.V.; dos Santos Ramos, M.A.; da Silva, P.B.; Bauab, T.M. Antimicrobial activity of natural products against Helicobacter pylori: A review. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 54. Available online: http://www.ann-clinmicrob.com/content/13/1/54 (accessed on 18 July 2023). [PubMed] [Green Version]
- El-Sherbiny, G.M.; Elbestawy, M.K.M. A review—Plant essential oils active against Helicobacter pylori. J. Essent. Oils Res. 2022, 34, 203–215. [Google Scholar] [CrossRef]
- Hung, T.T.; Ngan, L.T.M.; Le, B.V.; Hieu, T.T. Effects of plant essential oils and their constituents on Helicobacter pylori: A Review. Plant Sci. Today 2023, 10, 334–344. [Google Scholar]
- Reddy, K.V.; Sree, N.R.S.; Ranjit, P.; Maddela, N.R.; Kumar, V.; Jha, P.; Prasad, R.; Radice, M. Essential oils, herbal extracts and propolis for alleviating Helicobacter pylori infections: A critical view. S. Afr. J. Bot. 2023, 157, 138–150. [Google Scholar]
- Rodriguez-Solana, R.; Daferera, D.J.; Mitsi, C.; Trigas, P.; Polissiou, M.; Tarantilis, P.A. Comparative chemotype determination of Lamiaceae plants by means of GC-MS, FT-IR, and dispersive-Raman spectroscopic techniques and GC-FID quantification. Ind. Crops Prod. 2014, 62, 22–33. [Google Scholar]
- O’Donnell, F.; Smyth, T.J.P.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines. Int. J. Antimicrob. Agents 2010, 35, 30–38. [Google Scholar]
- Piasecki, B.; Biernasiuk, A.; Skiba, A.; Skalicka-Woźniak, K.; Ludwiczuk, A. Composition, anti-MRSA activity and toxicity of essential oils from Cymbopogon species. Molecules 2021, 26, 7542. [Google Scholar] [CrossRef]
- Baser, K.H.C.; Buchbauer, G. (Eds.) Handbook of Essential Oils: Science, Technology, and Applications, 3rd ed.; Taylor & Francis Group, CRC Press: London, UK; New York, NY, USA, 2020; pp. 1–1098. [Google Scholar]
- Al-Sayed, E.; Gad, H.A.; El-Kersh, D.M. Characterization of four Piper essential oils (GC/MS and ATR-IR) coupled to chemometrics and their anti-Helicobacter pylori activity. ACS Omega 2021, 6, 25652–25663. [Google Scholar]
- Elkousy, R.H.; Mostafa, N.M.; Abd-alkhalek, A.M.; El Hassab, M.A.; Al-Rashood, S.T.; Eldehna, W.M.; Eldahshan, O.A. GC/MS analysis and potential synergistic effect of mandarin and marjoram oils on Helicobacter pylori. J. Enzyme Inhib. Med. Chem. 2022, 37, 1610–1619. [Google Scholar]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar]
- Landau, E.; Shapira, R. Effects of subinhibitory concentrations of menthol on adaptation, morphological, and gene expression changes in enterohemorrhagic Escherichia coli. Appl. Environ. Microbiol. 2012, 78, 5361–5367. [Google Scholar]
- Edris, A.E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: A review. Phyther. Res. 2007, 21, 308–323. [Google Scholar]
- Mihai, A.D.; Chircov, C.; Grumezescu, A.M.; Holban, A.M. Magnetite nanoparticles and essential oils systems for advanced antibacterial therapies. Int. J. Mol. Sci. 2020, 21, 7355. [Google Scholar] [CrossRef]
- Baptista-Silva, S.; Borges, S.; Ramos, O.L.; Pintado, M.; Sarmento, B. The progress of essential oils as potential therapeutic agents: A review. J. Essent. Oil Res. 2020, 32, 279–295. [Google Scholar]
- Becerril, R.; Nerín, C.; Gómez-Lus, R. Evaluation of bacterial resistance to essential oils and antibiotics after exposure to oregano and cinnamon essential oils. Foodborne Pathog. Dis. 2012, 9, 699–705. [Google Scholar]
- Cimino, C.; Maurel, O.M.; Musumeci, T.; Bonaccorso, A.; Drago, F.; Souto, E.M.B.; Pignatello, R.; Carbone, C. Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems. Pharmaceutics 2021, 13, 327. [Google Scholar] [CrossRef]
- Liu, S.D.; Song, M.H.; Yun, W.; Lee, J.H.; Kim, H.B.; Cho, J.H. Effects of oral administration of essential oils on anti-immune stress, antimicrobial properties, and repairing the intestinal damage in broilers challenged by lipopolysaccharide. Can. J. Anim. Sci. 2018, 99, 377–383. [Google Scholar] [CrossRef]
- Joulain, D.; König, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons; E. B. Verlag: Hamburg, Germany, 1998; pp. 1–658. [Google Scholar]
- Linstrom, P.J.; Mallard, W.G. NIST Chemistry webBook, NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2014.
- Moody, J.A.; Gerding, D.N.; Peterson, L.R. Evaluation of ciprofloxacin’s synergism with other agents by multiple in vitro methods. Am. J. Med. 1987, 82, 44–54. [Google Scholar]
No. | Plant Name, Organ | Code | EO Yield [%] |
---|---|---|---|
1 | M. × piperita ‘Granada’, leaves | MpGrL | 2.23 |
2 | M. × piperita ‘Granada’, flowers | MpGrF | 3.77 |
3 | M. × piperita ‘Multimentha’, leaves | MpMmL | 2.26 |
4 | M. × piperita ‘Multimentha’, flowers | MpMmF | 3.75 |
5 | M. × piperita ‘Swiss’, leaves | MpSwL | 2.16 |
6 | M. × piperita ‘Swiss’, flowers | MpSwF | 3.34 |
7 | M. × piperita ‘Almira’, leaves | MpAlL | 1.19 |
8 | M. spicata ‘Moroccan’, leaves | MsMoL | 2.20 |
9 | M. spicata ‘Moroccan’, flowers | MsMoF | 2.64 |
Compound | RIlit. | RIexp. | EOs from Mint Samples—Relative Percentages | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MpAlL | MpGrL | MpGrF | MpSwL | MpSwF | MpMmL | MpMmF | MsMoL | MsMoF | |||
α-Pinene | 936 | 933 | - | 0.2 | 0.1 | 0.4 | 0.6 | 0.5 | 0.6 | 0.8 | 0.9 |
Sabinene | 973 | 973 | 0.2 * | 0.3 | 0.1 | 0.4 | 0.4 | 0.5 | 0.4 | 0.5 | 0.5 |
β-Pinene | 978 | 978 | 0.9 | 0.4 | 0.2 | 0.6 | 0.7 | 0.7 | 0.7 | 1.0 | 0.9 |
Myrcene | 987 | 990 | - | 0.9 | 1.1 | 0.3 | 0.3 | 0.5 | 0.4 | 0.7 | 0.7 |
3-Octanol | 981 | 1000 | 0.4 | 0.1 | 0.1 | 0.2 | 0.2 | 0.4 | 0.4 | 1.4 | 1.2 |
α-Terpinene | 1013 | 1015 | - | - | - | - | 0.1 | 0.1 | - | - | - |
p-Cymene | 1015 | 1017 | - | - | - | 0.1 | 0.1 | 0.1 | 0.2 | - | - |
Limonene | 1025 | 1030 | 1.8 | 0.3 | 0.3 | 5.8 | 6.1 | 0.6 | 1.9 | 8.6 | 10.5 |
1,8-Cineole | 1024 | 1033 | 0.8 | 5.4 | 2.8 | 5.7 | 3.0 | 4.7 | 2.8 | 3.4 | 2.2 |
(E)-β-Ocimene | 1041 | 1037 | - | 0.4 | 0.5 | 0.9 | 0.3 | 0.5 | 0.1 | 0.3 | 0.1 |
γ-Terpinene | 1051 | 1049 | - | - | - | - | - | 0.2 | - | - | - |
(E)-Sabinene hydrate | 1053 | 1055 | - | - | - | 0.9 | 0.4 | 1.1 | 0.7 | 0.3 | 0.3 |
p-Mentha-2,4(8)-diene | 1077 | 1077 | - | 0.6 | 0.8 | - | - | - | - | 0.1 | - |
Terpinolene | 1082 | 1086 | - | 0.1 | 0.2 | - | - | - | - | - | - |
Linalool | 1086 | 1102 | 1.6 | 41.2 | 45.8 | 0.4 | 0.2 | 0.6 | 0.4 | 0.4 | 0.3 |
1-Oct-3-enyl acetate | 1093 | 1108 | - | 2.2 | 1.5 | - | - | - | - | - | - |
Menthone | 1136 | 1147 | - | 0.2 | 0.1 | 10.8 | 48.3 | 48.9 | 49.3 | 0.5 | 0.6 |
Isomenthone | 1146 | 1167 | - | - | - | 1.5 | 5.5 | 6.5 | 4.4 | - | - |
Menthofuran | 1150 | 1168 | - | - | - | - | - | - | 3.3 | - | - |
Borneol | 1150 | 1168 | 1.4 | - | - | - | - | - | - | - | - |
Neomenthol | 1156 | 1169 | - | 0.2 | 0.1 | 6.8 | 1.7 | 2.8 | 0.9 | 0.1 | 0.1 |
Menthol | 1172 | 1184 | - | 0.1 | 0.1 | 45.2 | 23.2 | 22.0 | 8.6 | 0.3 | 0.4 |
(Z)-Dihydrocarvone | 1172 | 1200 | - | - | - | - | - | - | - | 11.6 | 2.7 |
α-Terpineol | 1176 | 1200 | - | 5.1 | 5.3 | 0.2 | 0.1 | - | - | - | - |
Dihydrocarveol | 1176 | 1203 | - | - | - | - | - | - | - | 2.2 | 0.4 |
(E)-Dihydrocarvone | 1177 | 1207 | - | - | - | - | - | - | - | 0.5 | - |
Nerol | 1215 | 1227 | - | 1.0 | 1.0 | - | - | - | - | - | - |
Pulegone | 1215 | 1227 | 0.8 | - | - | - | 2.4 | 1.7 | 17.5 | - | - |
Carvone | 1215 | 1247 | 1.1 | 0.2 | 0.2 | 0.2 | 0.2 | - | - | 56.6 | 66.6 |
Linalyl acetate | 1234 | 1250 | - | 24.2 | 25.7 | - | - | - | - | - | - |
Geraniol | 1235 | 1253 | - | 2.5 | 3.0 | - | - | - | - | - | - |
Isopiperitenone | 1240 | 1258 | 2.1 | - | - | - | - | - | - | - | - |
(E)-Carvone epoxide | 1243 | 1266 | - | - | - | - | - | - | - | 0.3 | 0.4 |
Lavandulyl acetate | 1275 | 1269 | - | 0.2 | 0.2 | - | - | - | - | - | - |
Menthyl acetate | 1280 | 1291 | - | - | - | 11.8 | 0.5 | 0.8 | 0.2 | 0.2 | 0.1 |
Dihydrocarveyl acetate | 1314 | 1326 | - | - | - | - | - | - | - | 0.7 | 0.1 |
(E)-Carveyl acetate | 1318 | 1330 | - | - | - | - | - | - | - | 0.1 | - |
Piperitenone | 1318 | 1330 | 26.5 | - | - | 1.4 | 1.9 | 2.0 | 1.5 | - | - |
Neryl acetate | 1334 | 1348 | 0.7 | 1.4 | 1.6 | - | - | - | - | - | - |
Piperitenone oxide | 1335 | 1353 | 50.0 | 0.2 | 0.1 | 0.1 | - | - | - | - | - |
Geranyl acetate | 1362 | 1367 | - | 2.9 | 3.6 | - | - | - | - | - | - |
(Z)-Jasmone | 1371 | 1375 | 1.2 | 0.2 | 0.1 | - | - | - | - | 1.2 | 1.7 |
Nepetalactone | 1379 | 1382 | 1.6 | - | - | - | - | - | - | - | - |
β-Bourbonene | 1386 | 1386 | - | - | - | 0.3 | 0.1 | 0.1 | 0.1 | 1.6 | 1.2 |
β-Elemene | 1389 | 1390 | - | - | - | - | - | - | - | 0.1 | 0.1 |
β-Gurjunene | 1413 | 1410 | - | 0.1 | - | - | - | - | - | 0.1 | 0.1 |
(E)-β-Caryophyllene | 1421 | 1423 | - | 0.1 | 0.1 | 0.3 | 0.3 | 1.1 | 1.3 | 1.1 | 2.2 |
(E)-β-Farnesane | 1446 | 1453 | - | 0.4 | 0.3 | 0.4 | 0.3 | - | - | - | - |
α-Humulene | 1455 | 1460 | - | - | - | - | - | - | - | 0.2 | 0.4 |
(Z)-Muurola-4(15),5-diene | 1462 | 1466 | - | - | - | - | - | - | - | 0.3 | 0.6 |
Germacrene D | 1479 | 1484 | - | 1.9 | 1.0 | 1.4 | 1.3 | 1.3 | 0.9 | 0.6 | 0.9 |
Bicyclogermacrene | 1494 | 1494 | - | - | - | 0.6 | 0.5 | 0.3 | 0.1 | 0.2 | 0.3 |
Caryophyllene oxide | 1578 | 1581 | - | - | - | - | - | - | - | 0.3 | 0.3 |
Viridiflorol | 1592 | 1600 | - | - | - | - | - | 0.2 | 0.2 | - | - |
Hinesol | 1632 | 1651 | - | 0.8 | 0.6 | - | - | - | - | - | - |
Isopimara-7,15-diene | 2010 | 2008 | 1.3 | - | - | - | - | - | - | - | - |
Total % | 92.3 | 96.7 | 98.4 | 96.7 | 98.7 | 98.5 | 98.4 | 97.1 | 98.1 | ||
Monoterpene hydrocarbons | 2.8 | 3.2 | 3.3 | 9.4 | 9.0 | 4.8 | 5.0 | 12.3 | 13.9 | ||
Oxygenated monoterpenes in total | 87.8 | 85.0 | 89.7 | 84.1 | 87.0 | 90.0 | 90.0 | 78.4 | 76.0 | ||
Monoterpene ketones | 81.7 | 0.8 | 0.5 | 14.0 | 58.3 | 59.1 | 72.7 | 70.2 | 72.0 | ||
Monoterpene alcohols | 3.0 | 50.1 | 55.3 | 46.7 | 25.6 | 26.5 | 10.6 | 3.3 | 1.5 | ||
Monoterpene esters | 0.7 | 28.7 | 31.1 | 11.8 | 0.5 | 0.8 | 0.2 | 1.0 | 0.2 | ||
Sesquiterpenes | - | 6.2 | 3.8 | 3.0 | 2.5 | 3.3 | 3.0 | 5.0 | 7.0 | ||
Other compounds | 1.7 | 2.3 | 1.6 | 0.2 | 0.2 | 0.4 | 0.4 | 1.4 | 1.2 | ||
Chemotype | Piperitenone oxide | Linalool | Menthol | Carvone |
Mint EOs and Reference Compounds | Helicobacter pylori ATCC 43504 | Clinical Helicobacter pylori Strains | ||||
---|---|---|---|---|---|---|
mg/L | ||||||
MIC * | MBC | MIC50 | MIC90 | MIC Range | MBC Range | |
MpAlL | 15.6 | 15.6 | 125 | 125 | 62.5–250 | 15.6–250 |
MpGrL | 31.3 | 31.3 | 125 | 250 | 62.5–250 | 31.3–250 |
MpGrF | 31.3 | 125 | 250 | 250 | 125–500 | 31.3–500 |
MpMmL | 31.3 | 31.3 | 62.5 | 125 | 62.5–250 | 31.3–250 |
MpMmF | 31.3 | 31.3 | 250 | 500 | 250–500 | 31.3–1000 |
MpSwL | 15.6 | 62.5 | 31.3 | 125 | 31.3–125 | 31.3–125 |
MpSwF | 15.6 | 62.5 | 250 | 500 | 125–500 | 62.5–500 |
MsMoL | 31.3 | 31.3 | 62.5 | 62.5 | 31.3–125 | 31.3–125 |
MsMoF | 15.6 | 15.6 | 62.5 | 62.5 | 31.3–125 | 15.6–125 |
Menthol | 62.5 | 250 | 7.8 | 31.3 | 7.8–31.3 | 7.8–250 |
Menthone | 250 | 250 | 1000 | 1000 | 250–>1000 | 250–>1000 |
Linalool | 125 | 250 | 125 | 250 | 62.5–500 | 62.5–500 |
1,8-Cineole | 125 | 250 | >1000 | >1000 | >1000 | 250–>1000 |
Limonene | 62.5 | 125 | 500 | 1000 | 250–1000 | 125–1000 |
(R)-(−)-Carvone | 62.5 | 125 | 31.3 | 62.5 | 15.6–125 | 31.3–125 |
Dihydrocarvone (E + Z) | 125 | 125 | 500 | 1000 | 125–1000 | 125–1000 |
Metronidazole | 31.3 | 31.3 | 7.8 | 31.3 | 1.95–250 | 7.8–250 |
Analyzed Mint EOs and Reference Compounds | Antibiotics | |
---|---|---|
Metronidazole | Clarithromycin | |
MpSwL | 0.28–0.625 | 0.75–1.00 |
MsMoF | 0.28–0.625 | 0.62–0.75 |
Menthol | 0.094–0.14 | 0.51–0.65 |
(R)-(−)-Carvone | 0.12–0.31 | 0.62–0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piasecki, B.; Korona-Głowniak, I.; Kiełtyka-Dadasiewicz, A.; Ludwiczuk, A. Composition and Anti-Helicobacter pylori Properties of Essential Oils Obtained from Selected Mentha Cultivars. Molecules 2023, 28, 5690. https://doi.org/10.3390/molecules28155690
Piasecki B, Korona-Głowniak I, Kiełtyka-Dadasiewicz A, Ludwiczuk A. Composition and Anti-Helicobacter pylori Properties of Essential Oils Obtained from Selected Mentha Cultivars. Molecules. 2023; 28(15):5690. https://doi.org/10.3390/molecules28155690
Chicago/Turabian StylePiasecki, Bartłomiej, Izabela Korona-Głowniak, Anna Kiełtyka-Dadasiewicz, and Agnieszka Ludwiczuk. 2023. "Composition and Anti-Helicobacter pylori Properties of Essential Oils Obtained from Selected Mentha Cultivars" Molecules 28, no. 15: 5690. https://doi.org/10.3390/molecules28155690
APA StylePiasecki, B., Korona-Głowniak, I., Kiełtyka-Dadasiewicz, A., & Ludwiczuk, A. (2023). Composition and Anti-Helicobacter pylori Properties of Essential Oils Obtained from Selected Mentha Cultivars. Molecules, 28(15), 5690. https://doi.org/10.3390/molecules28155690