Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = membrane-assisted solvent extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 15017 KiB  
Article
Green Synthesized Composite AB-Polybenzimidazole/TiO2 Membranes with Photocatalytic and Antibacterial Activity
by Hristo Penchev, Katerina Zaharieva, Silvia Dimova, Ivelina Tsacheva, Rumyana Eneva, Stephan Engibarov, Irina Lazarkevich, Tsvetelina Paunova-Krasteva, Maria Shipochka, Ralitsa Mladenova, Ognian Dimitrov, Daniela Stoyanova and Irina Stambolova
Crystals 2024, 14(12), 1081; https://doi.org/10.3390/cryst14121081 - 16 Dec 2024
Viewed by 1377
Abstract
Novel AB-Polybenzimidazole (AB-PBI)/TiO2 nanocomposite membranes have been prepared using a synthetic green chemistry approach. Modified Eaton’s reagent (methansulfonic acid/P2O5) was used as both reaction media for microwave-assisted synthesis of AB-PBI and as an efficient dispersant of partially agglomerated [...] Read more.
Novel AB-Polybenzimidazole (AB-PBI)/TiO2 nanocomposite membranes have been prepared using a synthetic green chemistry approach. Modified Eaton’s reagent (methansulfonic acid/P2O5) was used as both reaction media for microwave-assisted synthesis of AB-PBI and as an efficient dispersant of partially agglomerated titanium dioxide powders. Composite membranes of 80 µm thickness have been prepared by a film casting approach involving subsequent anti-solvent inversion in order to obtain porous composite membranes possessing high sorption capacity. The maximal TiO2 filler content achieved was 20 wt.% TiO2 nanoparticles (NPs). Titania particles were green synthesized (using a different content of Mentha Spicata (MS) aqueous extract) by hydrothermal activation (150 °C), followed by thermal treatment at 400 °C. The various methods such as powder X-ray diffraction and Thermogravimetric analyses, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Energy-dispersive X-ray spectroscopy, Electronic paramagnetic resonance, Scanning Electron Microscopy and Transmission Electron Microscopy have been used to study the phase and surface composition, structure, morphology, and thermal behavior of the synthesized nanocomposite membranes. The photocatalytic ability of the so-prepared AB-Polybenzimidazole/bio-TiO2 membranes was studied for decolorization of Reactive Black 5 (RB5) as a model azo dye pollutant under UV light illumination. The polymer membrane in basic form, containing TiO2 particles, was obtained with a 40 mL quantity of the MS extract, exhibiting the highest decolorization rate (96%) after 180 min of UV irradiation. The so-prepared AB-Polybenzimidazole/TiO2 samples have a powerful antibacterial effect on E. coli when irradiated by UV light. Full article
Show Figures

Figure 1

11 pages, 813 KiB  
Article
Extraction and Concentration of Spirulina Water-Soluble Metabolites by Ultrafiltration
by Claudia Salazar-González, Carolina Mendoza Ramos, Hugo A. Martínez-Correa and Hugo Fabián Lobatón García
Plants 2024, 13(19), 2770; https://doi.org/10.3390/plants13192770 - 3 Oct 2024
Cited by 5 | Viewed by 2230
Abstract
Spirulina (Arthospira platensis) is known for its rich content of natural compounds like phycocyanin, chlorophylls, carotenoids, and high protein levels, making it a nutrient-dense food. Over the past decade, research has aimed to optimize the extraction, separation, and purification of these [...] Read more.
Spirulina (Arthospira platensis) is known for its rich content of natural compounds like phycocyanin, chlorophylls, carotenoids, and high protein levels, making it a nutrient-dense food. Over the past decade, research has aimed to optimize the extraction, separation, and purification of these valuable metabolites, focusing on technologies such as high-pressure processing, ultrasound-assisted extraction, and microwave-assisted extraction as well as enzymatic treatments, chromatographic precipitation, and membrane separation. In this study, various extraction methods (conventional vs. ultrasound-assisted), solvents (water vs. phosphate buffer), solvent-to-biomass ratios (1:5 vs. 1:10), and ultrafiltration (PES membrane of MWCO 3 kDa, 2 bar) were evaluated. The quantities of total protein, phycocyanin (PC), chlorophyll a (Cla), and total carotenoids (TCC) were measured. The results showed that ultrasound-assisted extraction (UAE) with phosphate buffer at a 1:10 ratio yielded a metabolite-rich retentate (MRR) with 37.0 ± 1.9 mg/g of PC, 617 ± 15 mg/g of protein, 0.4 ± 0.2 mg/g of Cla, and 0.15 ± 0.14 mg/g of TCC. Water extraction in the concentration process achieved the highest concentrations in MRR, with approximately 76% PC, 92% total protein, 62% Cla, and 41% TCC. These findings highlight the effective extraction and concentration processes to obtain a metabolite-rich retentate from Spirulina biomass, reducing the volume tenfold and showing potential as a functional ingredient for the food, cosmetic, and pharmaceutical industries. Full article
(This article belongs to the Special Issue Microalgae Photobiology, Biotechnology, and Bioproduction)
Show Figures

Figure 1

15 pages, 1682 KiB  
Article
Two-Step Macromolecule Separation Process with Acid Pretreatment and High-Shear-Assisted Extraction for Microalgae-Based Biorefinery
by Donghyun Kim, Seul-Gi Kang, Yong Keun Chang and Minsoo Kwak
Sustainability 2024, 16(17), 7589; https://doi.org/10.3390/su16177589 - 2 Sep 2024
Cited by 2 | Viewed by 2187
Abstract
A simple two-stage extraction and recovery method for macromolecules from microalgae biomass, termed CASS (concentrating the microalgae solution, acid pretreatment, high-shear-assisted lipid extraction, and separation), was developed. This method effectively processed the wet biomass of Chlorella sp. ABC-001 at a moderately low biomass [...] Read more.
A simple two-stage extraction and recovery method for macromolecules from microalgae biomass, termed CASS (concentrating the microalgae solution, acid pretreatment, high-shear-assisted lipid extraction, and separation), was developed. This method effectively processed the wet biomass of Chlorella sp. ABC-001 at a moderately low biomass concentration (50 g/L). The optimal conditions were acid pretreatment with 5 wt.% H2SO4 at 100 °C for 1 h, followed by high-shear extraction using hexane at 3000 rpm for 30 min. The acid pretreatment hydrolyzed carbohydrates and phospholipids, disrupting the cell wall and membrane, while high-shear mixing enhanced mass transfer rates between solvents and lipids, overcoming the hydraulic barrier at the cell surface. Within 10 min after completing the process, the extraction mixture achieved natural phase separation into water, solvent, and biomass residue layers, each enriched with carbohydrates, lipids, and proteins, respectively. The CASS process demonstrated high esterifiable lipid yields (91%), along with substantial recovery of glucose (90%) and proteins (100%). The stable phase separation prevented emulsion formation, simplifying downstream processing. This study presents the results on cell disruption, optimal acid treatment concentration, and high-shear mixing to achieve macromolecule separation, expanding the lipid-centric microalgal process to a comprehensive biorefinery concept. Full article
(This article belongs to the Topic Biomass Transformation: Sustainable Development)
Show Figures

Figure 1

25 pages, 5093 KiB  
Review
Efficient Metal Extraction from Dilute Solutions: A Review of Novel Selective Separation Methods and Their Applications
by Soroush Rahmati, Roshanak Adavodi, Mohammad Raouf Hosseini and Francesco Veglio’
Metals 2024, 14(6), 605; https://doi.org/10.3390/met14060605 - 21 May 2024
Cited by 22 | Viewed by 3372
Abstract
Notable increases in metal consumption and declining ore grades in recent decades have stressed the significance of dilute solutions as secondary sources of valuable metals. Moreover, environmental considerations and the imperative of sustainable development have further emphasized their treatment. Therefore, finding an efficient [...] Read more.
Notable increases in metal consumption and declining ore grades in recent decades have stressed the significance of dilute solutions as secondary sources of valuable metals. Moreover, environmental considerations and the imperative of sustainable development have further emphasized their treatment. Therefore, finding an efficient solution for separating metals from dilute solutions has attracted the attention of numerous researchers. This paper reviews the purification processes of dilute solutions and highlights key achievements of published research works. Although this study focuses on evaluating the efficiency of recently developed aqueous-phase purification methods, such as immobilized ligands, ionic liquids, and air-assisted solvent extraction, the application of conventional processes to treat these solutions, such as solvent extraction, ion exchange, membranes, chemical precipitation, and adsorption are also briefly outlined. To provide a comprehensive assessment, more than 200 research articles were reviewed, and their key findings are stated in this study. This research contributes to the advancement of knowledge of metal recovery from dilute solutions and sheds light on the dynamic evolution of this field. Full article
(This article belongs to the Special Issue Recovery of Critical Metals and Materials from Residues)
Show Figures

Figure 1

14 pages, 2339 KiB  
Article
Enhanced Electrophoretic Depletion of Sodium Dodecyl Sulfate with Methanol for Membrane Proteome Analysis by Mass Spectrometry
by Hammam H. Said and Alan A. Doucette
Proteomes 2024, 12(1), 5; https://doi.org/10.3390/proteomes12010005 - 2 Feb 2024
Cited by 3 | Viewed by 3361
Abstract
Membrane proteins are underrepresented during proteome characterizations, primarily owing to their lower solubility. Sodium dodecyl sulfate (SDS) is favored to enhance protein solubility but interferes with downstream analysis by mass spectrometry. Here, we present an improved workflow for SDS depletion using transmembrane electrophoresis [...] Read more.
Membrane proteins are underrepresented during proteome characterizations, primarily owing to their lower solubility. Sodium dodecyl sulfate (SDS) is favored to enhance protein solubility but interferes with downstream analysis by mass spectrometry. Here, we present an improved workflow for SDS depletion using transmembrane electrophoresis (TME) while retaining a higher recovery of membrane proteins. Though higher levels of organic solvent lower proteome solubility, we found that the inclusion of 40% methanol provided optimal solubility of membrane proteins, with 86% recovery relative to extraction with SDS. Incorporating 40% methanol during the electrophoretic depletion of SDS by TME also maximized membrane protein recovery. We further report that methanol accelerates the rate of detergent removal, allowing TME to deplete SDS below 100 ppm in under 3 min. This is attributed to a three-fold elevation in the critical micelle concentration (CMC) of SDS in the presence of methanol, combined with a reduction in the SDS to protein binding ratio in methanol (0.3 g SDS/g protein). MS analysis of membrane proteins isolated from the methanol-assisted workflow revealed enhanced proteome detection, particularly for proteins whose pI contributed a minimal net charge and therefore possessed reduced solubility in a purely aqueous solvent. This protocol presents a robust approach for the preparation of membrane proteins by maximizing their solubility in MS-compatible solvents, offering a tool to advance membrane proteome characterization. Full article
(This article belongs to the Section Proteomics Technology and Methodology Development)
Show Figures

Graphical abstract

14 pages, 1799 KiB  
Article
Oil from Mullet Roe Byproducts: Effect of Oil Extraction Method on Human Erythrocytes and Platelets
by Ioannis Tsamesidis, Paraskevi Tzika, Despoina Georgiou, Aggelos Charisis, Sakshi Hans, Ronan Lordan, Ioannis Zabetakis and Eleni P. Kalogianni
Foods 2024, 13(1), 79; https://doi.org/10.3390/foods13010079 - 25 Dec 2023
Viewed by 2466
Abstract
Background: The valorization of byproducts to obtain high nutritional value foods is of utmost importance for our planet where the population is booming. Among these products are oils rich in ω-3 fatty acids produced from fishery byproducts. Recently, mullet roe oil from [...] Read more.
Background: The valorization of byproducts to obtain high nutritional value foods is of utmost importance for our planet where the population is booming. Among these products are oils rich in ω-3 fatty acids produced from fishery byproducts. Recently, mullet roe oil from roe byproducts was produced that was rich in the ω-3 fatty acids eicosatetraenoic acid (EPA) and docosahexaenoic acid (DHA). Oils are customarily characterized for their composition and degree of oxidation but little is known of their biological effects, especially the effect of the extraction method. Methods: The purpose of this study was to evaluate the effects of freshly extracted mullet roe oil from mullet roe byproducts and the effect of the extraction method on human red blood cells (hRBCs) and platelets. To this end, the hemocompatibility (cytotoxicity), oxidative effects, and erythrocyte membrane changes were examined after 1 and 24 h of incubation. Antiplatelet effects were also assessed in vitro. Results: The expeller press oil extraction method and alcalase-assisted extraction produced the most biocompatible oils, as shown by hemocompatibility measurements and the absence of erythrocyte membrane alterations. Solvent extracts and protease-assisted extraction oils resulted in the rupture of red blood cells at different examined dilutions, creating hemolysis. Conclusions: It seems that the proper functioning of oil–erythrocyte interactions cannot be explained solely by ROS. Further investigations combining chemical analysis with oil–cell interactions could be used as an input to design high nutritional value oils using green extraction technologies. All samples exhibited promising antiplatelet and antiblood clotting effects in vitro. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

13 pages, 3082 KiB  
Article
Mesostructured Fibrils Exfoliated in Deep Eutectic Solvent as Building Blocks of Collagen Membranes
by Ying Pei, Wei Li, Lu Wang, Jing Cui, Lu Li, Shengjie Ling, Keyong Tang and Huafeng Tian
Polymers 2023, 15(19), 4008; https://doi.org/10.3390/polym15194008 - 6 Oct 2023
Viewed by 2096
Abstract
The mesoscale components of collagen (nanofibrils, fibrils, and fiber bundles) are well organized in native tissues, resulting in superior properties and diverse functions. In this paper, we present a simple and controlled liquid exfoliation method to directly extract medium-sized collagen fibers ranging from [...] Read more.
The mesoscale components of collagen (nanofibrils, fibrils, and fiber bundles) are well organized in native tissues, resulting in superior properties and diverse functions. In this paper, we present a simple and controlled liquid exfoliation method to directly extract medium-sized collagen fibers ranging from 102 to 159 nm in diameter from bovine Achilles tendon using urea/hydrochloric acid and a deep eutectic solvent (DES). In situ observations under polarized light microscopy (POM) and molecular dynamics simulations revealed the effects of urea and GuHCl on tendon collagen. FTIR study results confirmed that these fibrils retained the typical structural characteristics of type I collagen. These shed collagen fibrils were then used as building blocks to create independent collagen membranes with good and stable mechanical properties, excellent barrier properties, and cell compatibility. A new method for collagen processing is provided in this work by using DES-assisted liquid exfoliation for constructing robust collagen membranes with mesoscale collagen fibrils as building blocks. Full article
(This article belongs to the Special Issue Advanced Biopolymer-Based Composites)
Show Figures

Figure 1

15 pages, 5115 KiB  
Review
A Perspective on Missing Aspects in Ongoing Purification Research towards Melissa officinalis
by Roberto Castro-Muñoz, Grzegorz Boczkaj and René Cabezas
Foods 2023, 12(9), 1916; https://doi.org/10.3390/foods12091916 - 8 May 2023
Cited by 4 | Viewed by 3349
Abstract
Melissa officinalis L. is a medicinal plant used worldwide for ethno-medical purposes. Today, it is grown everywhere; while it is known to originate from Southern Europe, it is now found around the world, from North America to New Zealand. The biological properties of [...] Read more.
Melissa officinalis L. is a medicinal plant used worldwide for ethno-medical purposes. Today, it is grown everywhere; while it is known to originate from Southern Europe, it is now found around the world, from North America to New Zealand. The biological properties of this medicinal plant are mainly related to its high content of phytochemical (bioactive) compounds, such as flavonoids, polyphenolic compounds, aldehydes, glycosides and terpenes, among many other groups of substances. Among the main biological activities associated with this plant are antimicrobial activity (against fungi and bacteria), and antispasmodic, antioxidant and insomnia properties. Today, this plant is still used by society (as a natural medicine) to alleviate many other illnesses and symptoms. Therefore, in this perspective, we provide an update on the phytochemical profiling analysis of this plant, as well as the relationships of specific biological and pharmacological effects of specific phytochemicals. Currently, among the organic solvents, ethanol reveals the highest effectiveness for the solvent extraction of precious components (mainly rosmarinic acid). Additionally, our attention is devoted to current developments in the extraction and fractionation of the phytochemicals of M. officinalis, highlighting the ongoing progress of the main strategies that the research community has employed. Finally, after analyzing the literature, we suggest potential perspectives in the field of sustainable extraction and purification of the phytochemical present in the plant. For instance, some research gaps concern the application of cavitation-assisted extraction processes, which can effectively enhance mass transfer while reducing the particle size of the extracted material in situ. Meanwhile, membrane-assisted processes could be useful in the fractionation and purification of obtained extracts. On the other hand, further studies should include the application of ionic liquids and deep eutectic solvents (DES), including DESs of natural origin (NADES) and hydrophobic DESs (hDES), as extraction or fractionating solvents, along with new possibilities for effective extraction related to DESs formed in situ, assisted by mechanical mixing (mechanochemistry-based approach). Full article
Show Figures

Figure 1

14 pages, 3018 KiB  
Article
Extraction of Organochlorine Pesticides from Porous Membrane Packed Dried Fish Samples: Method Development and Greenness Evaluation
by Muhammad Sajid and Khalid Alhooshani
Separations 2023, 10(4), 233; https://doi.org/10.3390/separations10040233 - 1 Apr 2023
Cited by 2 | Viewed by 2171
Abstract
In this work, ultrasound-assisted solvent extraction was utilized for extraction of organochlorine pesticides from membrane-protected dried fish samples. The dried fish samples were packed inside a porous membrane bag which was immersed in a solvent and subjected to ultrasonication. After the extraction process, [...] Read more.
In this work, ultrasound-assisted solvent extraction was utilized for extraction of organochlorine pesticides from membrane-protected dried fish samples. The dried fish samples were packed inside a porous membrane bag which was immersed in a solvent and subjected to ultrasonication. After the extraction process, the sample-containing bag was separated from the extract. Since samples were packed inside the membrane, their separation did not require centrifugation or filtration. Moreover, the complex components of the biota matrix may also retain inside the porous membrane bag, alleviating the requirement of extract cleanup before analysis. The parameters that can affect the ultrasound-assisted solvent extraction of membrane-protected dried fish samples were suitably optimized. These parameters include the extraction solvent and its volume, the sample amount, ultrasound intensity and extraction time. Under the optimum extraction conditions, good linearity was achieved for all the tested organochlorine pesticides, with the coefficients of determination (R2) higher than 0.9922 for the linear ranges from 5–1000, 10–1000 and 20–1000 ng/g. The values of intra-day and inter-day relative standard deviations were ≤13.8%. The limit of detection ranged from 1.5 to 6.8 ng/g. The spiked relative recoveries were in the range of 87.3–104.2%. This method demonstrated excellent figures of merit and could find potential applications in routine analytical laboratories. Finally, the greenness of this method was evaluated using the green analytical procedure index and analytical greenness calculator metrics. Full article
Show Figures

Figure 1

28 pages, 1053 KiB  
Review
An Overview of Herbal Nutraceuticals, Their Extraction, Formulation, Therapeutic Effects and Potential Toxicity
by Vaishnavi Bommakanti, Amruthamol Puthenparambil Ajikumar, Chelssa Maria Sivi, Geethika Prakash, Anjaly Shanker Mundanat, Faraz Ahmad, Shafiul Haque, Miguel Angel Prieto and Sandeep Singh Rana
Separations 2023, 10(3), 177; https://doi.org/10.3390/separations10030177 - 6 Mar 2023
Cited by 42 | Viewed by 31628
Abstract
Herbal nutraceuticals are foods derived from plants and/or their derivatives, such as oils, roots, seeds, berries, or flowers, that support wellness and combat acute and chronic ailments induced by unhealthful dietary habits. The current review enlists various traditional as well as unexplored herbs [...] Read more.
Herbal nutraceuticals are foods derived from plants and/or their derivatives, such as oils, roots, seeds, berries, or flowers, that support wellness and combat acute and chronic ailments induced by unhealthful dietary habits. The current review enlists various traditional as well as unexplored herbs including angelica, burnet, caraway, laurel, parsley, yarrow, and zedoary, which are rich sources of bioactive components, such as aloesin, angelicin, trans-anethole, and cholesteric-7-en-3β-ol. The review further compares some of the extraction and purification techniques, namely, Soxhlet extraction, ultrasound assisted extraction, microwave assisted extraction, supercritical fluid extraction, accelerated solvent extraction, hydro-distillation extraction, ultra-high-pressure extraction, enzyme assisted extraction, pulsed electric field extraction, bio affinity chromatography, cell membrane chromatography, and ligand fishing. Herbal nutraceuticals can be purchased in varied formulations, such as capsules, pills, powders, liquids, and gels. Some of the formulations currently available on the market are discussed here. Further, the significance of herbal nutraceuticals in prevention and cure of diseases, such as diabetes, obesity, dementia, hypertension, and hypercholesterolemia; and as immunomodulators and antimicrobial agents has been discussed. Noteworthy, the inappropriate use of these herbal nutraceuticals can lead to hepatotoxicity, pulmonary toxicity, cytotoxicity, carcinogenicity, nephrotoxicity, hematotoxicity, and cardiac toxicity. Hence, this review concludes with a discussion of various regulatory aspects undertaken by the government agencies in order to minimize the adverse effects associated with herbal nutraceuticals. Full article
(This article belongs to the Section Analysis of Food and Beverages)
Show Figures

Graphical abstract

26 pages, 5642 KiB  
Review
Exploring Microbial-Based Green Nanobiotechnology for Wastewater Remediation: A Sustainable Strategy
by Sumira Malik, Archna Dhasmana, Subham Preetam, Yogendra Kumar Mishra, Vishal Chaudhary, Sweta Parmita Bera, Anuj Ranjan, Jutishna Bora, Ajeet Kaushik, Tatiana Minkina, Hanuman Singh Jatav, Rupesh Kumar Singh and Vishnu D. Rajput
Nanomaterials 2022, 12(23), 4187; https://doi.org/10.3390/nano12234187 - 25 Nov 2022
Cited by 52 | Viewed by 6987
Abstract
Water scarcity due to contamination of water resources with different inorganic and organic contaminants is one of the foremost global concerns. It is due to rapid industrialization, fast urbanization, and the low efficiency of traditional wastewater treatment strategies. Conventional water treatment strategies, including [...] Read more.
Water scarcity due to contamination of water resources with different inorganic and organic contaminants is one of the foremost global concerns. It is due to rapid industrialization, fast urbanization, and the low efficiency of traditional wastewater treatment strategies. Conventional water treatment strategies, including chemical precipitation, membrane filtration, coagulation, ion exchange, solvent extraction, adsorption, and photolysis, are based on adopting various nanomaterials (NMs) with a high surface area, including carbon NMs, polymers, metals-based, and metal oxides. However, significant bottlenecks are toxicity, cost, secondary contamination, size and space constraints, energy efficiency, prolonged time consumption, output efficiency, and scalability. On the contrary, green NMs fabricated using microorganisms emerge as cost-effective, eco-friendly, sustainable, safe, and efficient substitutes for these traditional strategies. This review summarizes the state-of-the-art microbial-assisted green NMs and strategies including microbial cells, magnetotactic bacteria (MTB), bio-augmentation and integrated bioreactors for removing an extensive range of water contaminants addressing the challenges associated with traditional strategies. Furthermore, a comparative analysis of the efficacies of microbe-assisted green NM-based water remediation strategy with the traditional practices in light of crucial factors like reusability, regeneration, removal efficiency, and adsorption capacity has been presented. The associated challenges, their alternate solutions, and the cutting-edge prospects of microbial-assisted green nanobiotechnology with the integration of advanced tools including internet-of-nano-things, cloud computing, and artificial intelligence have been discussed. This review opens a new window to assist future research dedicated to sustainable and green nanobiotechnology-based strategies for environmental remediation applications. Full article
Show Figures

Graphical abstract

21 pages, 2929 KiB  
Article
Development of a Polymeric Membrane Impregnated with Poly-Lactic Acid (PLA) Nanoparticles Loaded with Red Propolis (RP)
by Valdemir da Costa Silva, Ticiano G. do Nascimento, Naianny L. O. N. Mergulhão, Johnnatan D. Freitas, Ilza Fernanda B. Duarte, Laisa Carolina G. de Bulhões, Camila B. Dornelas, João Xavier de Araújo, Jucenir dos Santos, Anielle C. A. Silva, Irinaldo D. Basílio and Marilia O. F. Goulart
Molecules 2022, 27(20), 6959; https://doi.org/10.3390/molecules27206959 - 17 Oct 2022
Cited by 13 | Viewed by 2622
Abstract
The main objectives of this study were to develop and characterize hydrophilic polymeric membranes impregnated with poly-lactic acid (PLA) nanoparticles (NPs) combined with red propolis (RP). Ultrasonic-assisted extraction was used to obtain 30% (w/v) red propolis hydroalcoholic extract (RPE). [...] Read more.
The main objectives of this study were to develop and characterize hydrophilic polymeric membranes impregnated with poly-lactic acid (PLA) nanoparticles (NPs) combined with red propolis (RP). Ultrasonic-assisted extraction was used to obtain 30% (w/v) red propolis hydroalcoholic extract (RPE). The NPs (75,000 g mol−1) alone and incorporated with RP (NPRP) were obtained using the solvent emulsification and diffusion technique. Biopolymeric hydrogel membranes (MNPRP) were obtained using carboxymethylcellulose (CMC) and NPRP. Their characterization was performed using thermal analysis, Fourier transform infrared (FTIR), total phenols (TPC) and flavonoids contents (TFC), and antioxidant activity through the radical scavenging assay with 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) and Ferric reducing antioxidant power (FRAP). The identification and quantification of significant RP markers were performed through UPLC-DAD. The NPs were evaluated for particle size, polydispersity index, and zeta potential. The TPC for RPE, NPRP, and MNPRP was 240.3 ± 3.4, 191.7 ± 0.3, and 183.4 ± 2.1 mg EGA g−1, while for TFC, the value was 37.8 ± 0.9, 35 ± 3.9, and 26.8 ± 1.9 mg EQ g−1, respectively. Relevant antioxidant activity was also observed by FRAP, with 1400.2 (RPE), 1294.2 (NPRP), and 696.2 µmol Fe2+ g−1 (MNPRP). The primary markers of RP were liquiritigenin, isoliquiritigenin, and formononetin. The particle sizes were 194.1 (NPs) and 361.2 nm (NPRP), with an encapsulation efficiency of 85.4%. Thermal analysis revealed high thermal stability for the PLA, nanoparticles, and membranes. The DSC revealed no interaction between the components. FTIR allowed for characterizing the RPE encapsulation in NPRP and CMC for the MNPRP. The membrane loaded with NPRP, fully characterized, has antioxidant capacity and may have application in the treatment of skin wounds. Full article
(This article belongs to the Special Issue New Horizons in Membrane Science: from Preparation to Application)
Show Figures

Graphical abstract

14 pages, 1294 KiB  
Article
Determination of Glycerophospholipids in Biological Material Using High-Performance Liquid Chromatography with Charged Aerosol Detector HPLC-CAD—A New Approach for Isolation and Quantification
by Magdalena Rosłon, Małgorzata Jaworska and Elżbieta L. Anuszewska
Molecules 2022, 27(10), 3356; https://doi.org/10.3390/molecules27103356 - 23 May 2022
Cited by 4 | Viewed by 4178
Abstract
The method of using high-performance liquid chromatography with a charged aerosol detector method (HPLC-CAD) was developed for the separation and determination of phospholipids isolated from cell membranes. The established cell lines—normal and neoplastic prostate cells and normal skin fibroblasts and melanoma cells—were selected [...] Read more.
The method of using high-performance liquid chromatography with a charged aerosol detector method (HPLC-CAD) was developed for the separation and determination of phospholipids isolated from cell membranes. The established cell lines—normal and neoplastic prostate cells and normal skin fibroblasts and melanoma cells—were selected for the study. Chromatographic separation was performed in the diol stationary phase using a gradient elution based on a mixture of n-hexane, isopropanol and water with the addition of triethylamine and acetic acid as buffer additives. Taking the elements of the Folch and Bligh–Dyer methods, an improved procedure for lipid isolation from biological material was devised. Ultrasound-assisted extraction included three extraction steps and changed the composition of the extraction solvent, which led to higher recovery of the tested phospholipids. This method was validated by assessing the analytical range, precision, intermediate precision and accuracy. The analytical range was adjusted to the expected concentrations in cell extracts of various origins (from 40 µg/mL for PS up to 10 mg/mL for PC). Both precision and intermediate precision were at a similar level and ranged from 3.5% to 9.0%. The recovery for all determined phospholipids was found to be between 95% and 110%. The robustness of the method in terms of the use of equivalent columns was also confirmed. Due to the curvilinear response of CAD, the quantification was based on an internal standard method combined with a power function transformation of the normalized peak areas, allowing the linearization of the signal with an R2 greater than 0.996. The developed method was applied for the isolation and determination of glycerophospholipids from cell membranes, showing that the profile of the tested substances was characteristic of various types of cells. This method can be used to assess changes in metabolism between normal cells and neoplastic cells or cells with certain pathologies or genetic changes. Full article
Show Figures

Graphical abstract

15 pages, 2172 KiB  
Article
Enhanced Antioxidant, Hyaluronidase, and Collagenase Inhibitory Activities of Glutinous Rice Husk Extract by Aqueous Enzymatic Extraction
by Sudarat Jiamphun and Wantida Chaiyana
Molecules 2022, 27(10), 3317; https://doi.org/10.3390/molecules27103317 - 21 May 2022
Cited by 11 | Viewed by 3767
Abstract
In this research, we aimed to compare the biological activities related to cosmeceutical applications of glutinous rice husk extracted by aqueous enzymatic extraction (AEE) and conventional solvent extraction. Cellulase enzymes were used to assist the extraction process. The vanillic and ferulic acid contents [...] Read more.
In this research, we aimed to compare the biological activities related to cosmeceutical applications of glutinous rice husk extracted by aqueous enzymatic extraction (AEE) and conventional solvent extraction. Cellulase enzymes were used to assist the extraction process. The vanillic and ferulic acid contents of each extract were investigated by high-performance liquid chromatography, and their antioxidant and anti-aging activities were investigated by spectrophotometric methods. The irritation effects of each extract were investigated by the hen’s egg test on chorioallantoic membrane. The rice husk extract from AEE using 0.5% w/w of cellulase (CE0.5) contained the significantly highest content of vanillic and ferulic acid (p < 0.05), which were responsible for its biological activities. CE0.5 was the most potent antioxidant via radical scavenging activities, and possessed the most potent anti-skin wrinkle effect via collagenase inhibition. Aside from the superior biological activities, the rice husk extracts from AEE were safer than those from solvent extraction, even when 95% v/v ethanol was used. Therefore, AEE is suggested as a green extraction method that can be used instead of the traditional solvent extraction technique given its higher yield and high quality of bioactive compounds. Additionally, CE0.5 is proposed as a potential source of natural antioxidants and anti-aging properties for further development of anti-wrinkle products. Full article
Show Figures

Graphical abstract

20 pages, 2342 KiB  
Article
The Varietal Influence of Flavour Precursors from Grape Marc on Monoterpene and C13-Norisoprenoid Profiles in Wine as Determined by Membrane-Assisted Solvent Extraction (MASE) GC-MS
by Lisa Pisaniello, Flynn Watson, Tracey Siebert, Leigh Francis and Josh L. Hixson
Molecules 2022, 27(7), 2046; https://doi.org/10.3390/molecules27072046 - 22 Mar 2022
Cited by 9 | Viewed by 2743
Abstract
The winemaking by-product grape marc (syn. pomace) contains significant quantities of latent flavour in the form of flavour precursors which can be extracted and used to modulate the volatile composition of wine via chemical hydrolysis. Varietal differences in grapes are widely known with [...] Read more.
The winemaking by-product grape marc (syn. pomace) contains significant quantities of latent flavour in the form of flavour precursors which can be extracted and used to modulate the volatile composition of wine via chemical hydrolysis. Varietal differences in grapes are widely known with respect to their monoterpene content, and this work aimed to extend this knowledge into differences due to cultivar in volatiles derived from marc precursors following wine-like storage conditions. Marc extracts were produced from floral and non-floral grape lots on a laboratory-scale and from Muscat Gordo Blanco marc on a winery -scale, added to a base white wine for storage over five to six months, before being assessed using a newly developed membrane-assisted solvent extraction gas chromatography-mass spectrometry (GC-MS) method. The geraniol glucoside content of the marc extracts was higher than that of juices produced from each grape lot. In all wines with added marc extract from a floral variety, geraniol glucoside concentration increased by around 150–200%, with increases also observed for non-floral varieties. The relative volatile profile from extracts of the floral varieties was similar but had varied absolute concentrations. In summary, while varietally pure extracts would provide the greatest control over flavour outcomes when used in winemaking, aggregated marc parcels from floral cultivars may provide a mechanism to simplify the production logistics of latent flavour extracts for use in the wine sector. Full article
(This article belongs to the Special Issue Selected Papers from the 16th Weurman Flavour Research Symposium)
Show Figures

Figure 1

Back to TopTop