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Abstract: Melissa officinalis L. is a medicinal plant used worldwide for ethno-medical purposes. Today,
it is grown everywhere; while it is known to originate from Southern Europe, it is now found around
the world, from North America to New Zealand. The biological properties of this medicinal plant
are mainly related to its high content of phytochemical (bioactive) compounds, such as flavonoids,
polyphenolic compounds, aldehydes, glycosides and terpenes, among many other groups of sub-
stances. Among the main biological activities associated with this plant are antimicrobial activity
(against fungi and bacteria), and antispasmodic, antioxidant and insomnia properties. Today, this
plant is still used by society (as a natural medicine) to alleviate many other illnesses and symptoms.
Therefore, in this perspective, we provide an update on the phytochemical profiling analysis of
this plant, as well as the relationships of specific biological and pharmacological effects of specific
phytochemicals. Currently, among the organic solvents, ethanol reveals the highest effectiveness for
the solvent extraction of precious components (mainly rosmarinic acid). Additionally, our attention
is devoted to current developments in the extraction and fractionation of the phytochemicals of
M. officinalis, highlighting the ongoing progress of the main strategies that the research community
has employed. Finally, after analyzing the literature, we suggest potential perspectives in the field
of sustainable extraction and purification of the phytochemical present in the plant. For instance,
some research gaps concern the application of cavitation-assisted extraction processes, which can
effectively enhance mass transfer while reducing the particle size of the extracted material in situ.
Meanwhile, membrane-assisted processes could be useful in the fractionation and purification of
obtained extracts. On the other hand, further studies should include the application of ionic liquids
and deep eutectic solvents (DES), including DESs of natural origin (NADES) and hydrophobic DESs
(hDES), as extraction or fractionating solvents, along with new possibilities for effective extraction
related to DESs formed in situ, assisted by mechanical mixing (mechanochemistry-based approach).

Keywords: green chemistry; phytochemicals; bioactive substances; chemical profiling; antioxidants

1. Introduction

Since ancient times, many plants belonging to different families have been used for
their medicinal properties to alleviate specific symptoms and illnesses in human beings.
It is known that over 80% of the global population still utilizes plants and herbs to treat
diseases as part of traditional medicine [1]. As illustrated in Figure 1, Melissa officinalis L.
presents wrinkled, ovate, medium green leaves (up to 3 inches long), which grow in
pairs on square stems rising to 2 inches tall. Over the summer, tiny, two-lipped, white
flowers appear on the leaf axils. Depending on their type, the plants mostly contain
active phytochemicals, including alkaloids, flavonoids, glycosides, phenolic compounds,
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polysaccharides, saponins, tannins, proteins, volatile oils, gingerols and capsaicins, among
many other specific substances (e.g., minerals and vitamins) that are needed for some
specific metabolic pathways in humans [2–8].
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Figure 1. Digital images of the physical aspects of a typical M. officinalis plant. Note: photos taken by
the authors.

M. officinalis is a typical plant that has been used for ethno-medical and therapeutical
aims, including for antibacterial, antioxidant, antidiabetic, anti-inflammatory, antispas-
modic, anti-insomnia and even antidepressive purposes [9]. For instance, some countries,
such as Austria, Brazil, Denmark, Croatia and Iran, have utilized several parts of the plant
to alleviate gastrointestinal issues, migraine, rheumatism and depression, among other
illnesses. Table 1 gives complete information about the ethnopharmacological applications
of M. officinalis in different countries. Although M. officinalis originated primarily in South-
ern Europe, it is now found around the world, from North America to New Zealand [9].
This plant is reported to contain different phytochemical substances, such as volatile and
aromatic bioactives, triterpenes, flavonoids, phenolic compounds and acids, to which such
therapeutic effects have been credited. In this plant, the active phytochemicals can be found
in wide varieties among its different parts, including the roots, seeds, leaves, skin, flowers
and the entire plant [10].

Table 1. Ethno-pharmacological applications of M. officinalis in different countries. Adapted
from [11].

Country Part of the Plant Dosage Form Medicinal Uses/Illness Treated

Austria Leaves Tea, essential oil
(external application) Curing gastrointestinal, nervous, hepatic and biliary ailments

Bolivia Aerial part Infusion Curing heart ailments

Bosnia and
Herzegovina Leaves Oral preparations

Curing insomnia, restlessness, arrhythmia, increased lactation,
flatulence, depressions, morning sickness, diarrhea, migraine

and rheumatism; strengthening the body; internal purification;
blood purification

Brazil Leaves Infusion tea Sedative for children; curing stomach disturbances, bad cold,
cough, infection and fever

Leaves Bath Wound healing (external use)
Roots Decoction Curing bad cold and cough

Bulgaria Leaves Infusion Sedative, hypotensive and spasmolytic
Croatia Leaves Infusion Curing sore throat and cough

Denmark Aerial parts Infusion Curing sleeplessness caused by heart break, melancholy
and sadness

Ecuador Stems, leaves Infusion Relaxant, curing insomnia

Greece Aerial parts Infusion, decoction

Blood circulation and heart stimulant; curing hypertension,
earaches, bloating, dyspepsia, spasm, headache, depression,

dizziness, migraine and common cold; decreasing cholesterol
and uric acid; brain stimulant; calmative
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Table 1. Cont.

Country Part of the Plant Dosage Form Medicinal Uses/Illness Treated

India Leaves Infusion, decoction Promoting memory;

Iran Leaves Infusion (oral)

curing depression, anxiety, psychosis, palpitation, obsession,
dementia, epilepsy, stroke, tremor, paralysis, migraine and

vertigo, syncope asthma, diabetes fevers, hiccups, joint
inflammation and pain, cancer, halitosis, aphtha, rabies,

gastrointestinal problems and piles; menorrhagia exhilarant;
cardiac and gastric tonic; mild sedative; memory enhancer;

antidote; disinfectant
Leaves Oil (inhalation) Treatment of nightmares
Leaves Infusion (external use) Curing conjunctivitis and lack of eyesight

Iraq Leaves Tea Diuretic; analgesic; treats headache and toothache; galactogenic

Italy Leaves Poultice infusion Wound healing
Curing abdominal pains

Leaves Compress of crushed
fresh leaves Healing insect bites

Jordan Aerial parts Infusion Sedative; carminative; antispasmodic; curing abdominal pain,
digestive and gynecological disorders and arthritis

Kosovo Aerial parts Infusion Curing abdominal pains during pregnancy;

Lebanon Aerial parts Decoction neuro-relaxant; strengthening the heart; curing migraine and
stomach disorders; enhancing memory

Morocco Aerial parts Infusion Spasmolytic, depurative and tranquilizing;
heart tonic; cholagogue

Palestine Aerial parts Infusion Antimicrobial
Patagonia Aerial parts Infusion Sedative

Peru Leaves Infusion Sedative and hypotensive

Poland Leaves Infusion Nervous excitability; curing vegetative neurosis, tension,
anxiety, motor agitation and menopause

Portugal

Aerial part,
stems and

flowers (fresh or
dried)

Infusion Relaxation (insomnia, nervousness and spasms)

Republic of
Macedonia Leaves Tea, oil Curing heart problems and headache

Spain Leaves Tea, oil
Exhilarant; antidote; emmenagogue pain killer; curing intestinal

ulcers, gripes, heart palpitations caused by consumption of
toxic mushrooms, and orthopnea

Turkey Aerial part Infusion
Decoction

Curing cancer, asthma, cardiovascular diseases,
nephritis, forgetfulness,

diabetes, cold, bronchitis and enteritis; antiseptic;
antispasmodic; memory-enhancing

However, in addition to its therapeutic purposes, M. officinalis has also been used
for culinary purposes due to its abundance of aromatic and volatile substances, such as
geranial, neral, citronellal and geraniol, to mention just a few of them. The plant and
its extracts have been involved in flavoring, garnishing, drink and beverage preparation,
herbal oil fabrication, soups, meat dishes and sauces [12].

Nowadays, great efforts have been made to determine the phytochemical composition
and substance profiling related to this medicinal plant. This is also supported by the
current trend of finding specific metabolites and phytochemicals that are challenging to
chemically synthesize. The interest in medicinal plants relies on their primary role as a
source of biologically active substances and their usage, after their successful recovery
and purification, in products such as supplements, pharmaceuticals and nutraceuticals, as
stated by experts in the field [13–15]. In this perspective, efforts have briefly been made to
give an update on the biological and therapeutic effects associated with this plant, and the
main investigation regards the complete identification of the phytochemical contained in
M. officinalis. More importantly, we present up-to-date research on the strategies and
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processes targeted toward the extraction and purification of its compounds for specific
applications and purposes. Finally, as a perspective in the field, we also declare missing
research gaps for future research groups interested in successfully extracting the phyto-
chemicals from this plant. Herein, we also provide potential new strategies, emerging
separation technologies and green solvents for the sustainable extraction of its components.

2. An overview on the Phytochemicals Contained in Melissa officinalis L. and Their
Related Biological Activities

M. officinalis is identified as a plant with remarkable pharmacological effects. To date,
several studies have documented different pharmacological and biological effects of the
extracts from this plant. Herein, we provide an updated scheme documenting all the
pharmacological effects of M. officinalis. Very recently, Petrisor et al. [10] comprehensively
reviewed the pharmacological effects of this herb, finding out that most of its biological
activities are intrinsically related to its phenolic compounds [16]. Certainly, its pheno-
lic compounds display exceptional antioxidant activity; however, antiproliferative [17],
antiangiogenic [18], antimicrobial (toward fungi, bacteria and virus) [19,20], antianxiety [21],
antidepressant [22], anti-Alzheimer’s [23], neuroprotective [24], and cardioprotective
activities [25] are also among its discovered biological properties.

The plant’s pharmacological properties have been associated with specific compounds,
as specified in Table 2. For instance, betulinic acid and chlorogenic acid have been credited
with the anticancer and antidiabetic properties, respectively. While more than one compo-
nent has been related to other biological effects, e.g., antimicrobial properties (including
antibacterial and antifungal) are a result of synergistic effects from different phytochemicals,
such as geranial, neral, citronellal, β-caryophyllene, α-cadinol, geranyl acetate, ursolic acid,
citronellal and geranyl acetate [26–32], as summarized in Table 2.

Table 2. Biological activities associated with specific phytochemicals contained in M. officinalis.

Activity Compounds Related to Such Activity: References

Antibacterial and antifungal Geranial, neral, citronellal, β-caryophyllene, α-cadinol,
geranyl acetate, ursolic acid [26–32]

Insecticidal Citronellal, geranyl acetate [29,31–33]

Anti-inflammatory β-caryophyllene, betulinic acid, caffeic acid, rosmarinic acid,
chlorogenic acid, p-coumaric acid, cymaroside, rutin [29,34,35]

Antioxidative
β-caryophyllene, ursolic acid, caffeic acid, caftaric acid,

rosmarinic acid, ferulic acid, chlorogenic acid, p-coumaric
acid, cymaroside, rutin

[29,33,35]

Hepatoprotective α-cadinol, oleanolic acid [30,36]
Antiviral Betulinic acid, oleanolic acid [34,36]

Anticancer Betulinic acid [34]
Antidiabetic Chlorogenic acid [37]

M. officinalis presents a great variety of phytochemicals belonging to major chemi-
cal classifications of phenolic acids, terpenoids and flavonoids [38]. Moreover, volatile
compounds (such as geranial, neral, geraniol and citronellal), triterpenes (ursolic and
oleanolic acid), phenolic compounds (such as rosmarinic, caffeic and protocatechuic acid)
and flavonoids (such as rhamnocitrin, quercetin and luteolin) have been identified. To
some extent, most bioactive phytochemicals have been profiled in the essential oil of
M. officinalis. Table 3 enlists most of these compounds contained in the essential oil from
the dried leaves. In general, major compounds (such as (E)-Caryophyllene, citronellal and
geranial) can be present at a range of concentrations between 0.1 and 35%, while minor
compounds (such as (2E)-Nonen-1-al, (E)-Nerolidol and (E)-α-Bergamotene) have been
quantified to range from 0.1 to 3.6%.
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Table 3. Major and minor volatile bioactive compounds identified in essential oil of M. officinalis.
Adapted from [10].

Major Compound Chemical Structure Minor Compounds 1 Chemical Structure

(E)-Caryophyllene
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α-Copaene 1,2-Benzenedicarboxilic acid, 
butyl 2-methylopropyl ester 

 

β-Caryophyllene 

 

1,8-Dehydro-cineol 

 

  14-Hydroxy-9-epi-(E)-caryo-
phyllene 

  1-Octen-3-ol 

1 Full list of minor compounds in the essential oil can be found in [10]. 

Triterpenes, which present three terpene units, are defined as non-volatile com-
pounds. These compounds, which can own distinct sulfate groups linked to sugars or 
glucones, are the largest family of phytochemicals contained in natural plant-based prod-
ucts, and they are indeed present in M. officinalis. Ursolic, oleanolic and betulinic acids are 
found in large quantities in this herb at maximum concentrations of 11,234, 6151 and 170 
μg/g [18], respectively, and while the rest of compounds have been identified, they have 
not been quantified accordingly. To some extent, the presence of such compounds may 
vary from one part to another in the plant, as shown in Table 4. In addition to the com-
pounds reported in Table 3, other non-volatile components, such as disulfated ursene 
triterpenes and ursenic glycoside, have been documented by Mencherini et al. [39,40], 
who extracted them from dried stems and leaves. The same authors also reported the suc-
cessful identification of three ursene triterpenes glycoside named as Melissioside A, B and 
C [39]. More recently, three different ursene triterpene glycosides (denominated as 23-
sulfate triterpenoid glycoside ester of nigaichigosides) were discovered by Abdel-Naime 
et al. [41]. 

Table 4. Triterpenes identified in M. officinalis. Adapted from [10]. 

Triterpene Part of Plant 
Ursolic acid * Aerial part 

Oleanolic acid ** Aerial part 
Betulinic acid *** Aerial part 

3β,16β,23-Trihydroxy-13,28-epoxyurs-11-ene-3-O-β-D-glu-
copyranoside 

Leaves and stems 

3,23-Disulfate ester of 2α,3β,19α,23-tetrahydroxyurs-12-en-
28-oicacid Leaves and stems 

3,23-Disulfate ester of 2α,3β,19α,23-tetrahydroxyurs-12-en-
28-oicacid 28-O-β-D-glucopyranoside Leaves and stems 

3,23-Disulfate ester of2α,3β,23,29-tetrahydroxyolean-12-en-
28-oicacid 

Leaves and stems 

3,23-disulfate ester of 3β-23,29-trihydroxyolean-12-en-28-oic 
acid Leaves and stems 

3,23-Disulfate ester of 2α,3β-23,29-tetrahydroxyolean-12-
ene-28-oicacid Leaves and stems 

1,2-Benzenedicarboxilic
acid, butyl

2-methylopropyl ester
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sulfate triterpenoid glycoside ester of nigaichigosides) were discovered by Abdel-Naime 
et al. [41]. 
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28-oicacid 28-O-β-D-glucopyranoside Leaves and stems 

3,23-Disulfate ester of2α,3β,23,29-tetrahydroxyolean-12-en-
28-oicacid 

Leaves and stems 

3,23-disulfate ester of 3β-23,29-trihydroxyolean-12-en-28-oic 
acid Leaves and stems 

3,23-Disulfate ester of 2α,3β-23,29-tetrahydroxyolean-12-
ene-28-oicacid Leaves and stems 

1 Full list of minor compounds in the essential oil can be found in [10].
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Triterpenes, which present three terpene units, are defined as non-volatile compounds.
These compounds, which can own distinct sulfate groups linked to sugars or glucones,
are the largest family of phytochemicals contained in natural plant-based products, and
they are indeed present in M. officinalis. Ursolic, oleanolic and betulinic acids are found in
large quantities in this herb at maximum concentrations of 11,234, 6151 and 170 µg/g [18],
respectively, and while the rest of compounds have been identified, they have not been
quantified accordingly. To some extent, the presence of such compounds may vary from
one part to another in the plant, as shown in Table 4. In addition to the compounds reported
in Table 3, other non-volatile components, such as disulfated ursene triterpenes and ursenic
glycoside, have been documented by Mencherini et al. [39,40], who extracted them from
dried stems and leaves. The same authors also reported the successful identification of three
ursene triterpenes glycoside named as Melissioside A, B and C [39]. More recently, three
different ursene triterpene glycosides (denominated as 23-sulfate triterpenoid glycoside
ester of nigaichigosides) were discovered by Abdel-Naime et al. [41].

Table 4. Triterpenes identified in M. officinalis. Adapted from [10].

Triterpene Part of Plant

Ursolic acid * Aerial part
Oleanolic acid ** Aerial part
Betulinic acid *** Aerial part

3β,16β,23-Trihydroxy-13,28-epoxyurs-11-ene-3-O-β-D-
glucopyranoside Leaves and stems

3,23-Disulfate ester of 2α,3β,19α,23-tetrahydroxyurs-12-en-28-oicacid Leaves and stems
3,23-Disulfate ester of 2α,3β,19α,23-tetrahydroxyurs-12-en-28-oicacid

28-O-β-D-glucopyranoside Leaves and stems

3,23-Disulfate ester of2α,3β,23,29-tetrahydroxyolean-12-en-28-oicacid Leaves and stems
3,23-disulfate ester of 3β-23,29-trihydroxyolean-12-en-28-oic acid Leaves and stems

3,23-Disulfate ester of 2α,3β-23,29-tetrahydroxyolean-12-ene-28-oicacid Leaves and stems
23-sulfate ester of 2α,3β,19 α,23-tetrahydroxyurs-12-en-28-oic acid Leaves and stems
23-sulfate ester of 2α,3β,19 α,23-tetrahydroxyurs-12-en-28-oic acid

28-O-β-
D-glucopyranoside

Leaves and stems

Melissioside A, B and C Leaves and stems
* 5577–11,234 µg/g, ** 915–6151 µg/g, *** 12–170 µg/g. Aerial parts of plants refers to the plant’s structures above
ground, such as stems, leaves, petioles, flowers, fruits and seeds. Stem refers to the ascending portion of the axis,
bearing branches, leaves, flowers and fruits. Leaves are a lateral, flattened structure that grows from the stem.

As for phenolic compounds, different phenolic acids (including caffeic, caftaric, chloro-
genic, ferulic, gentisic, p-coumaric and rosmarinic acids) and flavonoids (apigenin, cy-
maroside, daidzein, hyperoside, isoquercetine, kaempherol, luteolin, myricetin, quercetin,
quercetrol and rutin) have been identified in the leaves and aerial parts [42,43].

Over the course of this section, we have documented many phytochemical compounds
with distinct bioactivity. However, less attention has been devoted to the extraction meth-
ods, which becomes relevant in terms of bioactivity degree and extraction efficiency. The
following section reviews the main findings of extraction methods reported in the literature
regarding the extraction of these phytochemicals.

3. Recent Research on the Extraction and Purification of Phytochemicals from
M. officinalis

To date, conventional solvent extraction has been the main pathway for extract-
ing diverse phytochemicals from M. officinalis, as summarized in Table 5. For instance,
Encalada et al. [17] successfully produced ethanolic and aqueous extracts containing mainly
rosmarinic acid, which were subsequently assayed for cytotoxicity activity. By comparing
both solvents (water and ethanol), it was noted that ethanol exhibited better extraction
efficiency toward phenolic compounds and flavonoids, showing concentrations of about
3400 mg/100 g and 927 mg/100 g, respectively. Such values were much higher than the
ones provided by aqueous extracts. These findings agree with previous reports supporting
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the exceptional affinity of polyphenols for ethanol [44]. Given the stronger polarity of water
compared with ethanol, it seems that ethanolic solutions are suitable for extracting specific
compounds with less polarity. According to Sun et al. [44], ethanol and ethanolic solutions
are favorable for extracting some bioactive phytochemicals with a broad range of polarity,
but not the most polar ones; in these latter compounds, water still stands as the most
suitable solution. Certainly, both the nature and polarity of the solvents become relevant in
extraction methods, especially in polyphenol extraction. A polar solvent displays better
extraction efficiency thanks to the interactions (hydrogen bonds) between the polar sites of
the bioactive compounds [45].

Compared with Encalada et al. [17], Magalhães et al. [46] reported higher concentra-
tion of rosmarinic acid (up to 5 mg/mL) in ethanolic extracts, in which a higher ethanol
concentration was used for the extraction. Therefore, both studies confirm that ethanol
seems to be the most favorable polar solvent for the targeted separation of phenolic acid.
However, it is important to mention that some other components can also be extracted,
e.g., during the extraction of phenolic compounds via ethanolic extraction, triterpenes have
also been identified in the resultant extracts [18].

Table 5. Specific extraction of phytochemicals from M. officinalis using solvent extraction methods.

Compound Solvents Used Extraction Conditions Remarks regarding the Study Ref.

Rosmarinic acid EtOH solutions * (50%)
Aqueous solutions Room temperature Remarkable cytotoxicity activity of

rosmarinic acid (1000 µg/mL) extract [17]

Total phenolics EtOH solutions (70%) Room temperature,
sonication (30 min)

Remarkable cytotoxicity activity and
exceptional antioxidant properties [47]

Rosmarinic acid
(caffeic acid dimer) EtOH solutions (80%) 25 ◦C, stirring

(150 rpm)
Notable tumor inhibition activity of

phenolic extract (5 mg/mL) [46]

Total phenolics EtOH and methanolic
solutions - Acceptable antioxidant activity and good

activity towards lipid peroxidation [48]

Citronellal, thymol,
citral, β-caryophyllene Aqueous extracts 100 ◦C Notable antioxidant properties [49]

Rosmarinic acid, caftaric
acid, gentisic acid,

chlorogenic acid, caffeic
acid, p-coumaric acid,

ferulic acid, sinapic
acid, hyperoside,

isoquercitrin, rutin,
myricetin, fisetin,

quercitrin, quercetol,
luteolin, kaempferol,

apigenin

EtOH solutions (70%) Room temperature
The resultant phenolic-enriched

extract displayed potential
chemo-preventive activity

[18]

Cinnamic acid EtOH solutions (96%) Room temperature The extract exhibited cardioprotective
effects due to antioxidant properties [25]

Rosmarinic acid EtOH solutions (70%) Room temperature Resultant extract exhibited anxiolytic and
antidepressant activity [21]

Rosmarinic acid,
triterpenoids, ursolic
acid, oleanolic acid

Ethyl acetate,
methanol, hexane,

water

Room temperature,
24–48 h

Methanolic extract displayed the
best anxiolytic activity [24]

Total phenolics
and flavonoids

EtOH solutions
(99.9%)

Room temperature,
72 h

Remarkable anti-leishmania and
anti-trypanosoma activities were
observed in the resultant extract

[50]
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Table 5. Cont.

Compound Solvents Used Extraction Conditions Remarks regarding the Study Ref.

Phenolic compounds EtOH solutions (75%) Room temperature,
48 h

The resultant compounds revealed
analgesic effect in rat models [51]

Phenolic compounds EtOH solutions - Anti-insomnia effect was observed in the
enriched phenolic extracts [52]

Phenolic compounds EtOH solutions Room temperature The ethanolic extract displayed a
reduction effect on glucose levels in rats [53]

Rosmarinic acid and
salvianolic acids

Methanolic solutions
(70%) 37 ◦C The resultant extracts exhibited visible

GSK-3β-inhibitory activity [23]

Rosmarinic acid EtOH solutions (70%) -
The resultant extract exhibited

symptomatic benefits in the
gastrointestinal tract

[54]

Caffeic acid, p-coumaric
acid, rosmarinic acid Aqueous extracts 100 ◦C An antiviral effect was observed

in the extract. [55]

Phenolic compounds,
alkaloids EtOH solutions (70%) - Positive antifungal activities were

observed in the obtained extract [56]

* EtOH: ethanol.

In a practical study, Awad et al. [57] used four different solvents (ethyl acetate,
methanol, hexane and water) to study the effects of their polarity on the extraction of
specific phytochemicals. To some extent, methanol was found to be the most suitable
solvent for the simultaneous extraction and isolation of rosmarinic acid, triterpenoids,
ursolic acid and oleanolic acid, in which most of the extracts contained rosmarinic acid as
the major active element. Importantly, methanolic extract enriched in rosmarinic acid also
acted as in vitro inhibitor of rat brain GABA transaminase (40% inhibition at 100 µg/mL),
which is generally related to specific illnesses such as anxiety, epilepsy and other neuro-
logical disorders. In the supporting Award [57] outcomes, Gürbüz et al. [23] also reported
the presence of rosmarinic acid and salvianolic acids in methanolic extracts, which also
confirmed a potential effect of GSK-3β-inhibitory activity related to Alzheimer’s disease.

Regarding the extraction of volatile compounds from essential oils, Ehsani et al. [49]
extracted citronellal (37.33%), thymol (11.96%), citral (10.10%) and β-caryophyllene (7.27%)
via hydro-distillation. The authors demonstrated that the physicochemical composition of
M. officinalis essential oils is composed of around 85% volatile components, and thus, they
provide exceptional antioxidant properties and antibacterial properties. In a different study,
Chung et al. [58] reported the presence of large amounts of monoterpene, sesquiterpene
and some other carbonyl-based phytochemicals in essential oils. The authors reported the
successful production of such essential oils via steam distillation, followed by extraction
with distilled water and diethyl ether for 2 h at atmospheric pressure.

More recently, El Ouadi et al. [19] experimented with the production of essential oil
from M. officinalis using hydro-distillation (average yield of 1%). Interestingly, the authors
detected P-mentha-1,2,3-triol as the main volatile compound (by 13.1%) in the resultant
essential oil, which was later tested for its antifungal activities against Bcinera, Pexpansum
and Rstolonifer, along with a bio-antifungal preservative for post-harvest diseases of fruits
(e.g., apples). The authors also reported the presence of other relevant phytochemi-
cals, including P-menth-3-en-8-ol (8.8%), pulegone (8.8%), piperitynone oxide (8.4%) and
2-piperitone oxide (7.3%).

4. Perspectives and Research Gaps: Potential of New Strategies, Emerging Separation
Technologies and Green Solvents for Sustainable Extraction

In the last section of this review, we confirmed the presence of a huge number of
phytochemicals (Tables 3 and 4) with different biological and pharmacological effects in
Melissa officinalis L. (see Table 2). To some extent, the efforts of the research community
have led to evidence that solvent extraction is the most common strategy for producing
enriched extracts, which have been subsequently tested for further bioactivity evaluation.



Foods 2023, 12, 1916 9 of 15

Herein, polar solvents (such as ethanol and methanol) are reported as the most suitable for
the extraction of specific phenolic compounds (e.g., rosmarinic acid). However, this review
identifies that the research community has been focused on the evaluation of the pharmaco-
logical effects of alcoholic extracts without the optimization of process variables, and with
no further fractionation and purification of the obtained extracts. Regarding the latter point,
scientists could implement the following new strategies, emerging separation/extraction
techniques and green solvents for the sustainable extraction of such phytochemicals:

• Solvent extraction: If the research community still applies solvent extraction as the
primary method of recovering extracted compounds from this plant, calculating the
partition coefficient (logP) of the solvents is a must since the solute is distributed
between two immiscible solvents. Furthermore, determining the solubility (logS) of
target compounds in the solvents is also suggested to obtain high recovery yields.

• Membrane separation techniques: These processes, such as ultra- and nanofiltration, use
a perm-selective barrier based on the molecular sieving mechanism for the separation
of compounds [59,60]. These latter physical separation technologies have been used
for the fractionation and purification of various biological active compounds, such
as phenolic compounds, low-molecular-weight carbohydrates, proteins, flavonoids,
glycosides and anthocyanins, among others, from several sources, including natural
extracts, agro-food by-products and wastes, and fermentation systems [61–65]. Thus
far, there are no reports documenting the application of such technologies in the purification
of phytochemicals of M. officinalis. Eventually, considering the molecular weight of
rosmarinic acid (ca. 360 g/mol), a nanofiltration membrane with a molecular weight
cut-off ranging from 150 to 300 kDa would be enough to concentrate this compound
once contained in aqueous and alcoholic extracts [66]. Herein, preliminary filtration
steps based on microfiltration and ultrafiltration would be needed to remove other
undesired molecules from the raw extract, as reported in the literature [67–69].

• Emerging extraction techniques: To date, distinct emerging extraction techniques have
been developed, such as microwave, ultrasound, pulsed electric-assisted extraction,
supercritical/subcritical fluids and pressurized liquids, among others, which have
emerged as advanced pathways for extracting different types of biomolecules from
plant-based sources [6,13,70]. The application of such processes enables the handling
of different operating conditions, such as solvent-to-solid ratio, irradiation time, pH,
temperature, agitation speed, microwave power, pressure and ultrasound intensity, for
optimization of the overall extraction process. Thus far, there are no reports documenting
experimentation using any of these techniques for the extraction of phytochemicals from this
plant. Importantly, before applying any of aforementioned techniques, the application
of any pre-treatment of the plant source, such as enzyme-assisted extraction [71] or
hydrodynamic cavitation (HC) [72,73], could be beneficial to obtain higher extrac-
tion yields, e.g., enzyme treatment is used to break lignocellulosic matter, making
more phytochemicals available for extraction. While HC based on the cavitation phe-
nomenon boosts extraction efficiency due to the increased mass transfer rate between
the substrate and solvent, while the disintegration of solids/lowering of particle size
occurs following cell wall rupture thanks to the intense implosion of cavitation bub-
bles. On the other hand, special attention should be paid to aspects of uncontrolled
oxidation reactions that can take place during cavitation-assisted processes that cause
qualitative changes in as-obtained extracts [74].

• Ionic liquids: Given the content of volatile and nonvolatile compounds, in addition
to the phenolic compounds identified in M. officinalis, a selective solid/fluid extrac-
tion method could be designed using a neoteric solvent such as supercritical CO2
(SCO2) or ionic liquids, in order to separate triterpenoids, essential oils and target
acids from leaves and stems. Ionic liquids are recognized for their solvent power,
polarity and hydrophobic/hydrophilic behavior using hydrophilic-based imidazolium
ionic liquids. For instance, Claudio and coworkers [75] improved their extraction
yields of oleanolic acid extracted from olive tree leaves by up to 2.5 wt%. Yang and



Foods 2023, 12, 1916 10 of 15

coworkers [76] used the same group of ionic liquids to extract chlorogenic acid from
ramie (Boehmeria nivea L.) leaves, with a maximum extraction efficiency of 96.18%. Ros-
marinic acid, which is also present in M. officinalis, has been successfully extracted from
Rosmarinus officinalis [77] from perilla seeds using hydrophilic ionic liquid due to the
interaction with the cellulose of the cell wall [78]. Therefore, similar hydrophilic ionic
liquids should be explored to extract such bioactive compounds from M. officinalis.

The solid/supercritical fluid extraction of caffeine from coffee beans has been re-
ported [79], which could potentially be applied to M. officinalis leaves or steams; however, a
purification process using SCO2 after the solid/liquid extraction process has been reported
for organic compounds [80] in liquid/dense gas extraction, or using a membrane contactor
to avoid the mass transfer drawback of the liquid/gas extraction [81]. Using EtOH:water
(50/50 v/v) rosemary extract, Lefebvre and coworkers [82] obtained carnosic acid and
rosmarinic acid using SCO2, and Chadni and coworkers obtained 8 mg/g of rosmarinic
acid using SCO2 from the organic phase after the distillation process of Salvia sclarea.

A purification step for organic compounds from water or water/EtOH extract has also
been studied using hydrophobic ionic liquids [83], and this purification step could take
place after the processes shown in Table 5, which are used to find a purer extract that leaves
behind a phenolic compound. Yan-Ying and coworkers [84] used [PF6]-based hydrophobic
ionic liquids to obtain ferulic acid and caffeic acid from aqueous solution; however, the use
of ionic liquid to separate or purify phytochemicals from M. officinalis is still a field that is
not covered in the literature.

• Deep eutectic solvents: As chemistry evolves, new extraction techniques and solvents are
developed that provide eco-friendly alternatives to conventional extraction procedures.
For instance, most of the conventional solvents (methanol, hexane, cyclohexane, etc.)
tend to display related toxicity to human beings and the environment. Very recently,
new green solvents, such as deep eutectic solvents (DESs), have emerged as an eco-
friendly alternative for targeted extractions. DESs are a combination of two or three
inexpensive and safe chemicals (e.g., choline chloride, urea glucose, proline, xylitol
among many others), which can be self-assembled by hydrogen bonds [85,86]. To date,
antioxidants [87], phenolic compounds [88], capsaicins [89], terpenoids [90], heavy
metals (Ni, Zn, Pb) [91–93] and pharmaceuticals [94], among many other components,
have been successfully extracted via DESs from different source systems. Thus far,
there are no reports documenting the experimentation of any eutectic solvent for the extraction
of phytochemicals from M. officinalis. Researchers need to carefully select the type of
DES system based on its nature (hydrophilic or hydrophobic—hDESs) [95] and the
polarity of the target phytochemical. Uncommon selectivity, compared to organic
solvents, can be obtained through the “tuning” of extracts’ properties using DESs
tailored to specific applications [96]. The latest development in this field relates to the
ifcastron-situ formation of DESs, assisted by mechanical mixing (a mechano-chemical
approach) [97]. In this process, only one of the pre-defined DES components in solid
state is mixed with powdered plant material. The DES is formed with the target
antioxidant (rosmarinic acid) that is primarily present in the plant material.

5. Conclusions and Research Gaps

Over the course of this review, we complied the most recent literature dealing with the
presence of phytochemicals in M. officinalis and their related biological and pharmacological
effects, as the usage of this plant has been promoted for many years as part of traditional
medicine. Additionally, this review analyzed one of the most important aspects of the
extraction of phytochemicals from the plant, revealing that ethanol has been the preferred
polar solvent in conventional solvent extraction. To some extent, the usage of ethanol as a
polar solvent results in the successful extraction of rosmarinic acid since it displays a high
affinity for such solvents, according to several studies [17,18,21,46,55].

By reviewing the extraction procedures used in all the studies, it was observed that
most of the experimental works are mainly focused on biological and pharmacological
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studies, while minimal emphasis is devoted to the analysis of the extraction process,
e.g., authors rarely report the real concentration of the compounds or target analytes.
Additionally, most of the studies lack data on extraction yield or efficiency. In addition to
this, there are no studies about the proper fractionation of the resultant alcoholic extracts.
Therefore, there is still a need to identify the main compounds associated with precise
bioactivity.

Finally, most of the authors do not report the pre-conditioning of M. officinalis samples
before extraction. Here, major attention is needed, since drying and milling affect the
final particle size of the dried samples, with a strong effect on the extraction yield and the
resulting concentration of the phytochemicals in the extract. As for the extraction process,
there is a need to optimize the extraction conditions.

Further studies should also focus on emerging extraction and separation techniques,
such as the ones based on the cavitation phenomenon or membrane-assisted processes, and
the replacement of organic solvents with “green” alternatives—for example, DESs. On the
other hand, extracts obtained from a liquid phase are not the final desired product. Thus,
well-established processes should include aspects of solvent recovery, as well as resource
and energy cost optimization.
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(contract numbers: DEC 33/2022/IDUB/l.1; NOBELIUM nr 036236) is gratefully acknowledged. R.
Castro-Muñoz also acknowledges the School of Engineering and Science and the FEMSA Biotech-
nology Center at Tecnológico de Monterrey for their support through the Bioprocess (0020209I13)
Focus Group.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Geck, M.S.; Cristians, S.; Berger-González, M.; Casu, L.; Heinrich, M.; Leonti, M. Traditional Herbal Medicine in Mesoamerica:

Toward Its Evidence Base for Improving Universal Health Coverage. Front. Pharmacol. 2020, 11, 1160. [CrossRef]
2. Ángeles-López, G.E.; González-Trujano, M.E.; Rodríguez, R.; Déciga-Campos, M.; Brindis, F.; Ventura-Martínez, R. Gastrointesti-

nal activity of Justicia spicigera Schltdl. in experimental models. Nat. Prod. Res. 2021, 35, 1847–1851. [CrossRef]
3. Jacobo-Salcedo, M.d.R.; Alonso-Castro, A.J.; Salazar-Olivo, L.A.; Carranza-Alvarez, C.; González-Espíndola, L.Á.; Domínguez, F.;

Maciel-Torres, S.P.; García-Lujan, C.; González-Martínez, M.d.R.; Gómez-Sánchez, M.; et al. Antimicrobial and cytotoxic effects of
Mexican medicinal plants. Nat. Prod. Commun. 2011, 6, 1925–1928. [CrossRef] [PubMed]

4. Castro-Muñoz, R.; Correa-Delgado, M.; Córdova-Almeida, R.; Lara-Nava, D.; Chávez-Muñoz, M.; Velásquez-Chávez, V.F.;
Hernández-Torres, C.E.; Gontarek-Castro, E.; Ahmad, M.Z. Natural sweeteners: Sources, extraction and current uses in foods and
food industries. Food Chem. 2022, 370, 130991. [CrossRef] [PubMed]

5. Lama-Muñoz, A.; del Mar Contreras, M.; Espínola, F.; Moya, M.; de Torres, A.; Romero, I.; Castro, E. Extraction of oleuropein and
luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chem. 2019, 293, 161–168.
[CrossRef] [PubMed]

6. Castro-Muñoz, R.; Gontarek-Castro, E.; Jafari, S.M. Up-to-date strategies and future trends towards the extraction and purification
of Capsaicin: A comprehensive review. Trends Food Sci. Technol. 2022, 123, 161–171. [CrossRef]

7. Garza-Cadena, C.; Ortega-Rivera, D.M.; Machorro-García, G.; Gonzalez-Zermeño, E.M.; Homma-Dueñas, D.; Plata-Gryl, M.;
Castro-Muñoz, R. A comprehensive review on Ginger (Zingiber officinale) as a potential source of nutraceuticals for food
formulations: Towards the polishing of gingerol and other present biomolecules. Food Chem. 2023, 413, 135629. [CrossRef]
[PubMed]

8. Castro-Muñoz, R.; León-Becerril, E.; García-Depraect, O. Beyond the Exploration of Muicle (Justicia spicigera): Reviewing Its
Biological Properties, Bioactive Molecules and Materials Chemistry. Processes 2022, 10, 1035. [CrossRef]

https://doi.org/10.3389/fphar.2020.01160
https://doi.org/10.1080/14786419.2019.1637873
https://doi.org/10.1177/1934578X1100601234
https://www.ncbi.nlm.nih.gov/pubmed/22312741
https://doi.org/10.1016/j.foodchem.2021.130991
https://www.ncbi.nlm.nih.gov/pubmed/34509947
https://doi.org/10.1016/j.foodchem.2019.04.075
https://www.ncbi.nlm.nih.gov/pubmed/31151597
https://doi.org/10.1016/j.tifs.2022.03.014
https://doi.org/10.1016/j.foodchem.2023.135629
https://www.ncbi.nlm.nih.gov/pubmed/36753787
https://doi.org/10.3390/pr10051035


Foods 2023, 12, 1916 12 of 15

9. Miraj, S.; Rafieian-Kopaei; Kiani, S. Melissa officinalis L: A Review Study With an Antioxidant Prospective. J. Evid.-Based Complement.
Altern. Med. 2017, 22, 385–394. [CrossRef] [PubMed]

10. Petrisor, G.; Motelica, L.; Craciun, L.N.; Oprea, O.C.; Ficai, D.; Ficai, A. Melissa officinalis: Composition, Pharmacological Effects
and Derived Release Systems—A Review. Int. J. Mol. Sci. 2022, 23, 3591. [CrossRef]

11. Shakeri, A.; Sahebkar, A.; Javadi, B. Melissa officinalis L.—A review of its traditional uses, phytochemistry and pharmacology.
J. Ethnopharmacol. 2016, 188, 204–228. [CrossRef] [PubMed]

12. Colombo, E.; Biocotino, M.; Frapporti, G.; Randazzo, P.; Christodoulou, M.S.; Piccoli, G.; Polito, L.; Seneci, P.; Passarella, D.
Nanolipid-trehalose conjugates and nano-assemblies as putative autophagy inducers. Pharmaceutics 2019, 11, 422. [CrossRef]
[PubMed]

13. Kil, H.W.; Rho, T.; Yoon, K.D. Phytochemical Study of Aerial Parts of Leea asiatica. Molecules 2019, 24, 1733. [CrossRef] [PubMed]
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