Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (73)

Search Parameters:
Keywords = membrane type 1-matrix metalloproteinase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1886 KiB  
Review
Membrane-Type 5 Matrix Metalloproteinase (MT5-MMP): Background and Proposed Roles in Normal Physiology and Disease
by Deepak Jadhav, Anna M. Knapinska, Hongjie Wang and Gregg B. Fields
Biomolecules 2025, 15(8), 1114; https://doi.org/10.3390/biom15081114 - 3 Aug 2025
Viewed by 289
Abstract
The matrix metalloproteinase (MMP) family includes several membrane-bound enzymes. Membrane-type 5 matrix metalloproteinase (MT5-MMP) is unique amongst the MMP family in being primarily expressed in the brain and during development. It is proposed to contribute to synaptic plasticity and is implicated in several [...] Read more.
The matrix metalloproteinase (MMP) family includes several membrane-bound enzymes. Membrane-type 5 matrix metalloproteinase (MT5-MMP) is unique amongst the MMP family in being primarily expressed in the brain and during development. It is proposed to contribute to synaptic plasticity and is implicated in several pathologies, including multiple cancers and Alzheimer’s disease. In cancer, MT5-MMP expression has been correlated to cancer progression, but a distinct mechanistic role has yet to be uncovered. In Alzheimer’s disease, MT5-MMP exhibits pro-amyloidogenic activity, functioning as an η-secretase that cleaves amyloid precursor protein (APP), ultimately generating two synaptotoxic fragments, Aη-α and Aη-β. Several intracellular binding partners for MT5-MMP have been identified, and of these, N4BP2L1, EIG121, BIN1, or TMX3 binding to MT5-MMP results in a significant increase in MT5-MMP η-secretase activity. Beyond direct effects on APP, MT5-MMP may also facilitate APP trafficking to endosomal/lysosomal compartments and enhance proinflammatory responses. Overall, the substrate profile of MT5-MMP has not been well defined, and selective inhibitors of MT5-MMP have not been described. These advances will be needed for further consideration of MT5-MMP as a therapeutic target in Alzheimer’s disease and other pathologies. Full article
Show Figures

Figure 1

20 pages, 1953 KiB  
Review
Limited Proteolysis as a Regulator of Lymphatic Vessel Function and Architecture
by Takuro Miyazaki
Int. J. Mol. Sci. 2025, 26(15), 7144; https://doi.org/10.3390/ijms26157144 - 24 Jul 2025
Viewed by 170
Abstract
Recent advances have highlighted the multifaceted roles of the lymphatic vasculature in immune cell trafficking, immunomodulation, nutrient transport, and fluid homeostasis. Beyond these physiological functions, lymphatic vessels are critically involved in pathologies such as cancer metastasis and lymphedema, rendering their structural and functional [...] Read more.
Recent advances have highlighted the multifaceted roles of the lymphatic vasculature in immune cell trafficking, immunomodulation, nutrient transport, and fluid homeostasis. Beyond these physiological functions, lymphatic vessels are critically involved in pathologies such as cancer metastasis and lymphedema, rendering their structural and functional regulation of major interest. Emerging evidence suggests that limited proteolysis is a key regulatory mechanism for lymphatic vascular function. In dyslipidemic conditions, dysregulated calpain activity impairs lymphatic trafficking and destabilizes regulatory T cells, partly via the limited proteolysis of mitogen-activated kinase kinase kinase 1 and inhibitor of κBα. In addition, a disintegrin and metalloprotease with thrombospondin motifs-3-mediated proteolytic activation of vascular endothelial growth factor-C has been implicated in both developmental and tumor-associated lymphangiogenesis. Proteolytic shedding of lymphatic vessel endothelial hyaluronan receptor-1 by a disintegrin and metalloprotease 17 promotes lymphangiogenesis, whereas cleavage by membrane-type 1 matrix metalloproteinase inhibits it. This review is structured around two core aspects—lymphatic inflammation and lymphangiogenesis—and highlights recent findings on how limited proteolysis regulates each of these processes. It also discusses the therapeutic potential of targeting these proteolytic machineries and currently unexplored research questions, such as how intercellular junctions of lymphatic endothelial cells are controlled. Full article
Show Figures

Figure 1

15 pages, 5549 KiB  
Article
GPR55 Antagonist CID16020046 Suppresses Collagen-Induced Rheumatoid Arthritis by Suppressing Th1/Th17 Cells in Mice
by Jung-Eun Lee and Dong-Soon Im
Int. J. Mol. Sci. 2025, 26(10), 4680; https://doi.org/10.3390/ijms26104680 - 14 May 2025
Viewed by 513
Abstract
Lysophosphatidylinositols are degradation products of phosphatidylinositols within cell membranes and digestive metabolites of a high-fat diet in the gut. G-protein-coupled receptor 55 (GPR55) is a receptor that senses lysophosphatidylinositol and acts as an immune mediator, being primarily upregulated during immune cell activation. This [...] Read more.
Lysophosphatidylinositols are degradation products of phosphatidylinositols within cell membranes and digestive metabolites of a high-fat diet in the gut. G-protein-coupled receptor 55 (GPR55) is a receptor that senses lysophosphatidylinositol and acts as an immune mediator, being primarily upregulated during immune cell activation. This study aimed to investigate the role of GPR55, using its antagonist, CID16020046, in a collagen-induced rheumatoid arthritis mouse model. It was observed that DBA-1J mice develop joint lesions characteristic of rheumatoid arthritis following immunization with bovine type II collagen. The administration of CID16020046 (1 mg/kg, intraperitoneally) alleviated rheumatoid arthritis symptoms and inflammatory responses. Histopathological analysis showed that CID16020046 reduced foot edema, proteoglycan loss, and bone erosion in the joints. CID16020046 also decreased rheumatoid-arthritis-induced serum IgG levels, as measured using enzyme-linked immunosorbent assays. The treatment reduced levels of pro-inflammatory cytokines (IL-1β and IL-6), Th1 cytokine (IFN-γ), and Th17 cytokine (IL-17A), along with matrix metalloproteinase-3 (MMP-3) and the receptor activator of nuclear factor-κB ligand (RANKL) in the feet. A significant reduction in splenomegaly was also observed, along with significant reductions in CD4+ T helper 1 (Th1) and Th17 cells in the spleen. Additionally, CID16020046 suppressed the differentiation of naïve T cells into CD4+IL-17+ Th17 cells. CID16020046 suppressed expression levels of inflammatory cytokine mRNAs in SW982 human synovial cells. In conclusion, blocking GPR55 alleviates collagen-induced rheumatoid arthritis symptoms by suppressing Th1 and Th17 cells in the spleen and pro-inflammatory cytokines in the joints, suggesting that GPR55 is a potential therapeutic target for autoimmune inflammatory diseases. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

17 pages, 4807 KiB  
Article
Recombinant Type XVII Collagen Inhibits EGFR/MAPK/AP-1 and Activates TGF-β/Smad Signaling to Enhance Collagen Secretion and Reduce Photoaging
by Ying He, Shiyu Yin, Ru Xu, Yan Zhao, Yuhang Du, Zhiguang Duan and Daidi Fan
Cosmetics 2025, 12(2), 59; https://doi.org/10.3390/cosmetics12020059 - 27 Mar 2025
Cited by 1 | Viewed by 2104
Abstract
Studies have consistently shown that long-wave ultraviolet A (UVA) radiation triggers skin photoaging, which is evident as reduced elasticity, a loss of firmness, and signs of aging. There is an urgent need to investigate photoaging mechanisms to devise protective strategies against UVA. The [...] Read more.
Studies have consistently shown that long-wave ultraviolet A (UVA) radiation triggers skin photoaging, which is evident as reduced elasticity, a loss of firmness, and signs of aging. There is an urgent need to investigate photoaging mechanisms to devise protective strategies against UVA. The present study aimed to explore the effects of recombinant type XVII collagen on UVA-induced skin aging and uncover its molecular mechanisms, thereby laying a solid theoretical foundation for precise treatments and prevention. We therefore modeled photoaging damage in HaCaT cells and evaluated collagen-related protein and gene expression levels via western blot analysis and real-time quantitative polymerase chain reaction analysis. Immunofluorescent staining was also used to assess collagen secretion and basement membrane protein expression. Recombinant type XVII collagen significantly boosted type IV and type XVII collagen, laminin alpha 5, and integrin β1 production, thus counteracting UVA-induced collagen decline. The polymerase chain reaction analysis revealed matrix metalloproteinase (MMP) downregulation and tissue inhibitor of metalloproteinase (TIMP) upregulation. Modulating the transforming growth factor (TGF)-β/Smad and epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) pathways suppressed photoaging. Together, our findings suggest that recombinant type XVII collagen ameliorates UVA-induced damage by reversing MMP and TIMP gene expression, thereby preventing collagen degradation and enhancing basement membrane secretion. These results offer a theoretical basis for potent anti-photoaging products, thus paving the way for innovative solutions against UVA-induced skin aging. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

16 pages, 5930 KiB  
Article
Expression of MMP-14 and CD147 in Gingival Tissue of Patients With and Without Diabetes Mellitus Type II
by Ionut Catalin Botezatu, Maria-Alexandra Martu, Laura Stoica, Ana Emanuela Botez, Pavel Onofrei, Cristina Daniela Dimitriu, Bogdan Vasile Grecu, Ionut Daniel Gafincu Grigoriu, Oana Ciurcanu, Carmen Solcan, Anca Ileana Sin and Elena-Carmen Cotrutz
Diagnostics 2025, 15(5), 609; https://doi.org/10.3390/diagnostics15050609 - 3 Mar 2025
Cited by 1 | Viewed by 926
Abstract
Background: Diabetes mellitus (DM) is a major risk factor for the development of periodontal disease and aggravates the severity of periodontal conditions. Matrix metalloproteinases (MMPs) are known to degrade periodontal ligament attachment and bone matrix proteins. Increased expression of CD147 is associated with [...] Read more.
Background: Diabetes mellitus (DM) is a major risk factor for the development of periodontal disease and aggravates the severity of periodontal conditions. Matrix metalloproteinases (MMPs) are known to degrade periodontal ligament attachment and bone matrix proteins. Increased expression of CD147 is associated with increased synthesis of several MMPs, being a modulator of MMP expression, including that of MMP-14. The purpose of this study was to quantify and compare the expressions of MMP-14 and CD147 in gingival tissues of patients with and without type 2 diabetes mellitus. Material and Methods: In this histological study, we included 33 subjects with periodontal disease: 16 patients with type 2 DM (test group) and 17 systemically healthy patients (control group). Tissue fragments were processed using an immunohistochemistry technique to determine immunoreactivity (IR) intensity of MMP-14 and CD147. Results: In the group of diabetes patients with periodontitis, 56.2% showed weak positive expressions (+), while 43.8% had intensely positive expressions (+++) of MMP-14. Statistically significant differences between test and control groups (p = 0.004, p = 0.883, and p = 0.002) were found for the membranous IR intensity of MMP-14. In the group of diabetes patients with periodontitis, 56.2% had moderate positive expressions (++) of CD 147, while 43.8% showed intensely positive expressions (+++). Statistically significant differences between the test and control groups were found (p = 0.001, p = 0.002, and p = 0.003) for the membranous IR intensity of CD147. Conclusions: The significantly higher membranous IR intensity for MMP-14 and CD 147 demonstrates the role of these biomarkers in the development of periodontal pathology in diabetes patients. It can be assumed that MMP-14 and CD147 could be further investigated as potential predictive biomarkers. Full article
Show Figures

Figure 1

17 pages, 986 KiB  
Review
The Diverse Pathways for Cell Surface MT1-MMP Localization in Migratory Cells
by Hannah Kelly, Masaki Inada and Yoshifumi Itoh
Cells 2025, 14(3), 209; https://doi.org/10.3390/cells14030209 - 31 Jan 2025
Cited by 1 | Viewed by 1262
Abstract
Controlled cell migration is an essential biological process in health, while uncontrolled cell migration contributes to disease progression. For cells to migrate through tissue, they must first degrade the extracellular matrix (ECM), which acts as a physical barrier to cell migration. A type [...] Read more.
Controlled cell migration is an essential biological process in health, while uncontrolled cell migration contributes to disease progression. For cells to migrate through tissue, they must first degrade the extracellular matrix (ECM), which acts as a physical barrier to cell migration. A type I transmembrane-type matrix metalloproteinase, MT1-MMP, is the key enzyme involved in this process. It has been extensively shown that MT1-MMP promotes the migration of different cell types in tissue, including fibroblasts, epithelial cells, endothelial cells, macrophages, mesenchymal stem cells, and cancer cells. MT1-MMP is tightly regulated at different levels, and its localization to leading-edge membrane structures is an essential process for MT1-MMP to promote cellular invasion. Different cells display different motility-associated membrane structures, which contribute to their invasive ability, and there are diverse mechanisms of MT1-MMP localization to these structures. In this article, we will discuss the current understanding of MT1-MMP regulation, in particular, localization mechanisms to these different motility-associated membrane structures. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Cancer Invasion and Metastasis)
Show Figures

Figure 1

23 pages, 1440 KiB  
Review
Direct Vascular Effects of Angiotensin II (A Systematic Short Review)
by György L. Nádasy, András Balla, Gabriella Dörnyei, László Hunyady and Mária Szekeres
Int. J. Mol. Sci. 2025, 26(1), 113; https://doi.org/10.3390/ijms26010113 - 26 Dec 2024
Cited by 5 | Viewed by 3655
Abstract
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects [...] Read more.
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies. All blood vessels respond to stimulation by Ang II; the immediate response is smooth muscle contraction, increasing vascular resistance, and elevating blood pressure. Such effects are conveyed by type 1 angiotensin receptors (AT1Rs) located in the plasma membrane of both endothelial and vascular smooth muscle cells. AT1Rs are heterotrimeric G protein-coupled receptors (GPCRs), but their signal pathways are much more complicated than other GPCRs. In addition to Gq/11, the G12/13, JAK/STAT, Jnk, MAPK, and ERK 1/2, and arrestin-dependent and -independent pathways are activated because of the promiscuous attachment of different signal proteins to the intracellular G protein binding site and to the intracellular C terminal loop. Substantial changes in protein expression follow, including the intracellular inflammation signal protein NF-κB, endothelial contact proteins, cytokines, matrix metalloproteinases (MMPs), and type I protocollagen, eliciting the inflammatory transformation of endothelial and vascular smooth muscle cells and fibrosis. Ang II is an important contributor to vascular pathologies in hypertensive, atherosclerotic, and aneurysmal vascular wall remodeling. Such direct vascular effects are reviewed. In addition to reducing blood pressure, AT1R antagonists and ACE inhibitors have a beneficial effect on the vascular wall by inhibiting pathological wall remodeling. Full article
(This article belongs to the Special Issue Renin-Angiotensin System in Health and Diseases)
Show Figures

Figure 1

28 pages, 8683 KiB  
Article
Suppression of MT5-MMP Reveals Early Modulation of Alzheimer’s Pathogenic Events in Primary Neuronal Cultures of 5xFAD Mice
by Dominika Pilat, Jean-Michel Paumier, Laurence Louis, Christine Manrique, Laura García-González, Delphine Stephan, Anne Bernard, Raphaëlle Pardossi-Piquard, Frédéric Checler, Michel Khrestchatisky, Eric Di Pasquale, Kévin Baranger and Santiago Rivera
Biomolecules 2024, 14(12), 1645; https://doi.org/10.3390/biom14121645 - 21 Dec 2024
Cited by 1 | Viewed by 1187
Abstract
We previously reported that membrane-type 5-matrix metalloproteinase (MT5-MMP) deficiency not only reduces pathological hallmarks of Alzheimer’s disease (AD) in 5xFAD (Tg) mice in vivo but also impairs interleukin-1 beta (IL-1β)-mediated neuroinflammation and Aβ production in primary Tg immature neural cell cultures after 11 days [...] Read more.
We previously reported that membrane-type 5-matrix metalloproteinase (MT5-MMP) deficiency not only reduces pathological hallmarks of Alzheimer’s disease (AD) in 5xFAD (Tg) mice in vivo but also impairs interleukin-1 beta (IL-1β)-mediated neuroinflammation and Aβ production in primary Tg immature neural cell cultures after 11 days in vitro. We now investigate the effect of MT5-MMP on incipient pathogenic pathways that are activated in cortical primary cultures at 21–24 days in vitro (DIV), during which time neurons are organized into a functional mature network. Using wild-type (WT), MT5-MMP−/− (MT5−/−), 5xFAD (Tg), and 5xFADxMT5-MMP−/− (TgMT5−/−) mice, we generated primary neuronal cultures that were exposed to IL-1β and/or different proteolytic system inhibitors. We assessed neuroinflammation, APP metabolism, synaptic integrity, and electrophysiological properties using biochemical, imaging and whole-cell patch-clamp approaches. The absence of MT5-MMP impaired the IL-1β-mediated induction of inflammatory genes in TgMT5−/− cells compared to Tg cells. Furthermore, the reduced density of dendritic spines in Tg neurons was also prevented in TgMT5−/− neurons. IL-1β caused a strong decrease in the dendritic spine density of WT neurons, which was prevented in MT5−/− neurons. However, the latter exhibited fewer spines than the WT under untreated conditions. The spontaneous rhythmic firing frequency of the network was increased in MT5−/− neurons, but not in TgMT5−/− neurons, and IL-1β increased this parameter only in Tg neurons. In terms of induced somatic excitability, Tg and TgMT5−/− neurons exhibited lower excitability than WT and MT5−/−, while IL-1β impaired excitability only in non-AD backgrounds. The synaptic strength of miniature global synaptic currents was equivalent in all genotypes but increased dramatically in WT and MT5−/− neurons after IL-1β. MT5-MMP deficiency decreased endogenous and overexpressed C83 and C99 levels but did not affect Aβ levels. C99 appears to be cleared by several pathways, including γ-secretase, the autophagolysosomal system, and also α-secretase, via its conversion to C83. In summary, this study confirms that MT5-MMP is a pivotal factor affecting not only neuroinflammation and APP metabolism but also synaptogenesis and synaptic activity at early stages of the pathology, and reinforces the relevance of targeting MT5-MMP to fight AD. Full article
(This article belongs to the Special Issue Role of Matrix Metalloproteinase in Health and Disease)
Show Figures

Figure 1

19 pages, 3393 KiB  
Article
Anti-Cancer Potential of Isoflavone-Enriched Fraction from Traditional Thai Fermented Soybean against Hela Cervical Cancer Cells
by Amonnat Sukhamwang, Sirinada Inthanon, Pornngarm Dejkriengkraikul, Tistaya Semangoen and Supachai Yodkeeree
Int. J. Mol. Sci. 2024, 25(17), 9277; https://doi.org/10.3390/ijms25179277 - 27 Aug 2024
Cited by 2 | Viewed by 1666
Abstract
Cervical cancer is a leading cause of gynecological malignancies and cancer-related deaths among women worldwide. This study investigates the anti-cancer activity of Thua Nao, a Thai fermented soybean, against HeLa cervical carcinoma cells, and explores its underlying mechanisms. Our findings reveal that the [...] Read more.
Cervical cancer is a leading cause of gynecological malignancies and cancer-related deaths among women worldwide. This study investigates the anti-cancer activity of Thua Nao, a Thai fermented soybean, against HeLa cervical carcinoma cells, and explores its underlying mechanisms. Our findings reveal that the ethyl acetate fraction of Thua Nao (TN-EA) exhibits strong anti-cancer potential against HeLa cells. High-performance liquid chromatography (HPLC) analysis identified genistein and daidzein as the major isoflavones in TN-EA responsible for its anti-cancer activity. TN-EA and genistein reduced cell proliferation and induced G2/M phase arrest, while daidzein induced G1 arrest. These responses were associated with the downregulation of cell cycle regulators, including Cyclin B1, cycle 25C (Cdc25C), and phosphorylated cyclin-dependent kinase 1 (CDK-1), and the upregulation of the cell cycle inhibitor p21. Moreover, TN-EA and its active isoflavones promoted apoptosis in HeLa cells through the intrinsic pathway, evidenced by increased levels of cleaved Poly (ADP-ribose) polymerase (PARP) and caspase-3, loss of mitochondrial membrane potential, and the downregulation of anti-apoptotic proteins B-cell leukemia/lymphoma 2 (Bcl-2), B-cell lymphoma-extra-large (Bcl-xL), cellular inhibitor of apoptosis proteins 1 (cIAP), and survivin. Additionally, TN-EA and its active isoflavones effectively reduced cell invasion and migration by downregulating extracellular matrix degradation enzymes, including Membrane type 1-matrix metalloproteinase (MT1-MMP), urokinase-type plasminogen activator (uPA), and urokinase-type plasminogen activator receptor (uPAR), and reduced the levels of the mesenchymal marker N-cadherin. At the molecular level, TN-EA suppressed STAT3 activation via the regulation of JNK and Erk1/2 signaling pathways, leading to reduced proliferation and invasion of HeLa cells. Full article
(This article belongs to the Special Issue Anticancer Activity of Natural Products and Related Compounds)
Show Figures

Figure 1

11 pages, 1349 KiB  
Article
MMP-14 Exhibits Greater Expression, Content and Activity Compared to MMP-15 in Human Renal Carcinoma
by Grzegorz Młynarczyk, Anna Tokarzewicz, Monika Gudowska-Sawczuk, Barbara Mroczko, Vojtěch Novák, Adam Novák, Przemysław Mitura and Lech Romanowicz
Int. J. Mol. Sci. 2024, 25(15), 8107; https://doi.org/10.3390/ijms25158107 - 25 Jul 2024
Cited by 4 | Viewed by 1424
Abstract
Membrane-type metalloproteinases (including MMP-14 and MMP-15) are enzymes involved in the degradation of extracellular matrix components. In cancer, they are involved in processes such as cellular invasion, angiogenesis and metastasis. Therefore, the aim of this study was to evaluate the expression, content and [...] Read more.
Membrane-type metalloproteinases (including MMP-14 and MMP-15) are enzymes involved in the degradation of extracellular matrix components. In cancer, they are involved in processes such as cellular invasion, angiogenesis and metastasis. Therefore, the aim of this study was to evaluate the expression, content and activity of MMP-14 and MMP-15 in human renal cell carcinoma. Samples of healthy kidney tissue (n = 20) and tissue from clear-cell kidney cancer (n = 20) were examined. The presence and contents of the MMPs were assessed using Western blot and ELISA techniques, respectively. Their activity—both actual and specific—was evaluated using fluorimetric analysis. Both control and cancer human kidney tissues contain MMP-14 and MMP-15 enzymes in the form of high-molecular-weight complexes. Moreover, these enzymes occur in both active and latent forms. Their content in cancer tissues is very similar, but with a noteworthy decrease in content with an increase in the kidney cancer grade for both membrane-type metalloproteinases. Even more notable is the highest content of the investigated enzymes represented by MMP-14 in the control tissues. Considering the actual and specific activity outcomes, MMP-14 dominates over MMP-15 in all of the investigated tissues. Nevertheless, we also noted a significant enhancement of the activity of both metalloproteinases with an increase in the grade of renal cancer. The expression and activity of both enzymes were detected in all examined renal cancer tissues. However, our findings suggest that transmembrane metalloproteinase 14 (MMP-14) plays a much more significant and essential role than MMP-15 in the studied renal carcinoma tissues. Therefore, it seems that MMP-14 could be a promising target in the diagnosis, prognosis and therapy of renal cell carcinoma. Full article
Show Figures

Figure 1

17 pages, 8065 KiB  
Article
Time-Dependent Effect of Eggshell Membrane on Monosodium-Iodoacetate-Induced Osteoarthritis: Early-Stage Inflammation Control and Late-Stage Cartilage Protection
by Min Yu, Cheoljin Park, Young Bae Son, So Eun Jo, Seong Hee Jeon, Ye Jin Kim, Sang Bae Han, Jin Tae Hong and Dong Ju Son
Nutrients 2024, 16(12), 1885; https://doi.org/10.3390/nu16121885 - 14 Jun 2024
Cited by 4 | Viewed by 3397
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease that causes chronic pain, swelling, stiffness, disability, and significantly reduces the quality of life. Typically, OA is treated using painkillers and non-steroidal anti-inflammatory drugs (NSAIDs). While current pharmacologic treatments are common, their potential side effects [...] Read more.
Osteoarthritis (OA) is a chronic degenerative joint disease that causes chronic pain, swelling, stiffness, disability, and significantly reduces the quality of life. Typically, OA is treated using painkillers and non-steroidal anti-inflammatory drugs (NSAIDs). While current pharmacologic treatments are common, their potential side effects have prompted exploration into functional dietary supplements. Recently, eggshell membrane (ESM) has emerged as a potential functional ingredient for joint and connective tissue disorders due to its clinical efficacy in relieving joint pain and stiffness. Despite promising clinical evidence, the effects of ESM on OA progression and its mechanism of action remain poorly understood. This study evaluated the efficacy of Ovomet®, a powdered natural ESM, against joint pain and disease progression in a monosodium iodoacetate (MIA)-induced rodent model of OA in mice and rats. The results demonstrate that ESM significantly alleviates joint pain and attenuates articular cartilage destruction in both mice and rats that received oral supplementation for 5 days prior to OA induction and for 28 days thereafter. Interestingly, ESM significantly inhibited mRNA expression levels of pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), as well as inflammatory mediators, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase in the knee joint cartilage at the early stage of OA, within 7 days after OA induction. However, this effect was not observed in the late stage at 28 days after OA induction. ESM further attenuates the induction of protein expression for cartilage-degrading enzymes like matrix metalloproteinase (MMPs) 3 and 13, and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS-5), in the late-stage. In addition, MIA-induced reduction of the protein expression levels of cartilage components, cartilage oligomeric matrix protein (COMP), aggrecan (ACAN) and collagen type II α-1 chain (COL2α1), and cartilage extracellular matrix (ECM) synthesis promoting transcriptional factor SRY-Box 9 (SOX-9) were increased via ESM treatment in the cartilage tissue. Our findings suggest that Ovomet®, a natural ESM powder, is a promising dietary functional ingredient that can alleviate pain, inflammatory response, and cartilage degradation associated with the progression of OA. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

15 pages, 2581 KiB  
Article
ADAM12-Generated Basigin Ectodomain Binds β1 Integrin and Enhances the Expression of Cancer-Related Extracellular Matrix Proteins
by Kasper J. Mygind, Denise Nikodemus, Sebastian Gnosa, Ramya Kweder, Nicolai J. Wewer Albrechtsen, Marie Kveiborg, Janine T. Erler and Reidar Albrechtsen
Int. J. Mol. Sci. 2024, 25(11), 5871; https://doi.org/10.3390/ijms25115871 - 28 May 2024
Cited by 3 | Viewed by 1592
Abstract
Desmoplasia is a common feature of aggressive cancers, driven by a complex interplay of protein production and degradation. Basigin is a type 1 integral membrane receptor secreted in exosomes or released by ectodomain shedding from the cell surface. Given that soluble basigin is [...] Read more.
Desmoplasia is a common feature of aggressive cancers, driven by a complex interplay of protein production and degradation. Basigin is a type 1 integral membrane receptor secreted in exosomes or released by ectodomain shedding from the cell surface. Given that soluble basigin is increased in the circulation of patients with a poor cancer prognosis, we explored the putative role of the ADAM12-generated basigin ectodomain in cancer progression. We show that recombinant basigin ectodomain binds β1 integrin and stimulates gelatin degradation and the migration of cancer cells in a matrix metalloproteinase (MMP)- and β1-integrin-dependent manner. Subsequent in vitro and in vivo experiments demonstrated the altered expression of extracellular matrix proteins, including fibronectin and collagen type 5. Thus, we found increased deposits of collagen type 5 in the stroma of nude mice tumors of the human tumor cell line MCF7 expressing ADAM12—mimicking the desmoplastic response seen in human cancer. Our findings indicate a feedback loop between ADAM12 expression, basigin shedding, TGFβ signaling, and extracellular matrix (ECM) remodeling, which could be a mechanism by which ADAM12-generated basigin ectodomain contributes to the regulation of desmoplasia, a key feature in human cancer progression. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

17 pages, 3794 KiB  
Article
Stretch Causes cffDNA and HMGB1-Mediated Inflammation and Cellular Stress in Human Fetal Membranes
by Justin Gary Padron, Chelsea A. Saito Reis, Po’okela K. Ng, Nainoa D. Norman Ing, Hannah Baker, Kamalei Davis, Courtney Kurashima and Claire E. Kendal-Wright
Int. J. Mol. Sci. 2024, 25(10), 5161; https://doi.org/10.3390/ijms25105161 - 9 May 2024
Viewed by 1291
Abstract
Danger-associated molecular patterns (DAMPs) are elevated within the amniotic cavity, and their increases correlate with advancing gestational age, chorioamnionitis, and labor. Although the specific triggers for their release in utero remain unclear, it is thought that they may contribute to the initiation of [...] Read more.
Danger-associated molecular patterns (DAMPs) are elevated within the amniotic cavity, and their increases correlate with advancing gestational age, chorioamnionitis, and labor. Although the specific triggers for their release in utero remain unclear, it is thought that they may contribute to the initiation of parturition by influencing cellular stress mechanisms that make the fetal membranes (FMs) more susceptible to rupture. DAMPs induce inflammation in many different tissue types. Indeed, they precipitate the subsequent release of several proinflammatory cytokines that are known to be key for the weakening of FMs. Previously, we have shown that in vitro stretch of human amnion epithelial cells (hAECs) induces a cellular stress response that increases high-mobility group box-1 (HMGB1) secretion. We have also shown that cell-free fetal DNA (cffDNA) induces a cytokine response in FM explants that is fetal sex-specific. Therefore, the aim of this work was to further investigate the link between stretch and the DAMPs HMGB1 and cffDNA in the FM. These data show that stretch increases the level of cffDNA released from hAECs. It also confirms the importance of the sex of the fetus by demonstrating that female cffDNA induced more cellular stress than male fetuses. Our data treating hAECs and human amnion mesenchymal cells with HMGB1 show that it has a differential effect on the ability of the cells of the amnion to upregulate the proinflammatory cytokines and propagate a proinflammatory signal through the FM that may weaken it. Finally, our data show that sulforaphane (SFN), a potent activator of Nrf2, is able to mitigate the proinflammatory effects of stretch by decreasing the levels of HMGB1 release and ROS generation after stretch and modulating the increase of key cytokines after cell stress. HMGB1 and cffDNA are two of the few DAMPs that are known to induce cytokine release and matrix metalloproteinase (MMP) activation in the FMs; thus, these data support the general thesis that they can function as potential central players in the normal mechanisms of FM weakening during the normal distension of this tissue at the end of a normal pregnancy. Full article
Show Figures

Figure 1

14 pages, 1616 KiB  
Article
Paradoxical Changes: EMMPRIN Tissue and Plasma Levels in Marfan Syndrome-Related Thoracic Aortic Aneurysms
by Kyle C. Alexander, Carlton W. Anderson, Chris B. Agala, Panagiotis Tasoudis, Elizabeth N. Collins, Yiwen Ding, John W. Blackwell, Danielle E. Willcox, Behzad S. Farivar, Melina R. Kibbe, John S. Ikonomidis and Adam W. Akerman
J. Clin. Med. 2024, 13(6), 1548; https://doi.org/10.3390/jcm13061548 - 8 Mar 2024
Cited by 2 | Viewed by 1572
Abstract
Background: Thoracic aortic aneurysms (TAAs) associated with Marfan syndrome (MFS) are unique in that extracellular matrix metalloproteinase inducer (EMMPRIN) levels do not behave the way they do in other cardiovascular pathologies. EMMPRIN is shed into the circulation through the secretion of extracellular vesicles. [...] Read more.
Background: Thoracic aortic aneurysms (TAAs) associated with Marfan syndrome (MFS) are unique in that extracellular matrix metalloproteinase inducer (EMMPRIN) levels do not behave the way they do in other cardiovascular pathologies. EMMPRIN is shed into the circulation through the secretion of extracellular vesicles. This has been demonstrated to be dependent upon the Membrane Type-1 MMP (MT1-MMP). We investigated this relationship in MFS TAA tissue and plasma to discern why unique profiles may exist. Methods: Protein targets were measured in aortic tissue and plasma from MFS patients with TAAs and were compared to healthy controls. The abundance and location of MT1-MMP was modified in aortic fibroblasts and secreted EMMPRIN was measured in conditioned culture media. Results: EMMPRIN levels were elevated in MFS TAA tissue but reduced in plasma, compared to the controls. Tissue EMMPRIN elevation did not induce MMP-3, MMP-8, or TIMP-1 expression, while MT1-MMP and TIMP-2 were elevated. MMP-2 and MMP-9 were reduced in TAA tissue but increased in plasma. In aortic fibroblasts, EMMPRIN secretion required the internalization of MT1-MMP. Conclusions: In MFS, impaired EMMPRIN secretion likely contributes to higher tissue levels, influenced by MT1-MMP cellular localization. Low EMMPRIN levels, in conjunction with other MMP analytes, distinguished MFS TAAs from controls, suggesting diagnostic potential. Full article
(This article belongs to the Special Issue Surgical Approaches for Complex Thoracic Aortic Diseases)
Show Figures

Graphical abstract

13 pages, 2238 KiB  
Article
Higher Content but No Specific Activity in Gelatinase B (MMP-9) Compared with Gelatinase A (MMP-2) in Human Renal Carcinoma
by Grzegorz Młynarczyk, Monika Gudowska-Sawczuk, Barbara Mroczko, Marta Bruczko-Goralewska, Lech Romanowicz and Anna Tokarzewicz
Cancers 2023, 15(22), 5475; https://doi.org/10.3390/cancers15225475 - 20 Nov 2023
Cited by 9 | Viewed by 1609
Abstract
Gelatinases belong to a group of enzymes known as matrix metalloproteinases (MMPs). Gelatinases A and B (MMP-2 and MMP-9, respectively) are the enzymes with the highest ability to destroy collagen, primarily type IV collagen, which is an essential component of the base membrane. [...] Read more.
Gelatinases belong to a group of enzymes known as matrix metalloproteinases (MMPs). Gelatinases A and B (MMP-2 and MMP-9, respectively) are the enzymes with the highest ability to destroy collagen, primarily type IV collagen, which is an essential component of the base membrane. Hence, it can be assumed that they are involved, among other things, with the metastasis process of cancer. As a result, the objective of this study was to assess the presence, activity, and expression of selected gelatinases in human renal cancer. Healthy (n = 20) and clear-cell kidney cancer tissue samples (G2 n = 10, G3 n = 10) were analyzed. The presence and content of MMPs were measured using the Western blot and ELISA methods, respectively. The activity (actual and specific) was analyzed with a fluorimetric method. The presence of both investigated enzymes was demonstrated in the representative zymogram. MMP-9 showed the most intensive saturation. It has been observed that both gelatinases occur primarily in high molecular complexes in the human kidney, regardless of whether it is a control or tumor tissue. Both gelatinases were present in comparable amounts in healthy tissues of the kidney. MMP-9 showed a higher content than MMP-2 in both renal cancer grades, but we observed the enhanced activity of both gelatinases with an increase in the grade of renal cancer. A higher MMP-9 content and, on the other hand, lower specific activity in the cancer tissue suggest that MMP-9 is predominantly present in an inactive form in renal cancer. The higher activity of MMP-9 demonstrated using the zymography method may be a cause of different values of activity that depend on the phase of the carcinogenic process. The present study revealed changes in the tested gelatinases in healthy and cancerous tissues of renal cell carcinoma. Therefore, it can be concluded that matrix metalloproteinases 2 and 9 are enzymes directly involved in carcinogenesis, and hence, it seems that MMPs may have potential in the diagnosis and treatment of renal carcinoma. Full article
(This article belongs to the Special Issue Pathology of Urogenital Cancers)
Show Figures

Figure 1

Back to TopTop