Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = medium–low modulus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8857 KB  
Article
Biomimetic Porous Coatings on a Biocompatible Ti-15Mo Alloy as a Platform for Local Delivery of Anticancer Drugs to Patient Tissues
by Svetlana Gatina, Ruzil Farrakhov, Alfiz Gareev, Azat Sabitov, Nariman A. Enikeev, Natalia Anisimova and Mikhail Kiselevskiy
Biomedicines 2025, 13(11), 2779; https://doi.org/10.3390/biomedicines13112779 - 14 Nov 2025
Viewed by 475
Abstract
Background and Objectives: Currently, the development of local drug delivery systems for the treatment of cancer patients is a pressing issue. Such systems allow for the targeted delivery of anticancer drugs directly to the tumor site, ensuring prolonged drug release or reducing the [...] Read more.
Background and Objectives: Currently, the development of local drug delivery systems for the treatment of cancer patients is a pressing issue. Such systems allow for the targeted delivery of anticancer drugs directly to the tumor site, ensuring prolonged drug release or reducing the risk of recurrence after tumor removal, minimizing the impact on healthy tissues and thereby reducing the overall toxic load on the body. This work is devoted to evaluating the prospects of using scaffolds based on low-modulus titanium Ti-15Mo alloy with a biomimetic coating as a platform for the local administration of the cytostatic drug cisplatin into the patient’s body. Methods: Porous coatings were obtained by plasma electrolytic oxidation in an aqueous solution of sodium phosphate and calcium acetate with the addition of various components. The influence of coating parameters on the corrosion resistance of samples and on the antiproliferative effect of cisplatin-loaded scaffolds was evaluated. Human K562 hemoblastosis, HT116 intestinal cancer, and SKOV3 ovarian cancer cell lines were used as cell models. Results: It was shown that the addition of sodium phosphate (the PS type electrolyte) provides the formation of a coating with a developed system of interconnected pores characterized by an attractive combination of parameters: high porosity (17%), high pore size (3.9 μm), and considerable thickness (17.4 μm). This coating demonstrated the best corrosion resistance in a Ringer solution as compared to the other tested states. In addition, the PS coating loaded with cisplatin exhibited a pronounced cytotoxic effect on cancer cells. This effect was attributed to its ability to fix cisplatin on the surface, which slows down its release into the extracellular environment, increasing the time of its action, thereby contributing to a more effective (by more than 3 times) suppression of tumor cell proliferation compared to the action of the standard form of the drug in the form of a solution when changing the growth medium and subsequent incubation for 48 h. Conclusions: PS scaffolds made of low-modulus titanium alloy Ti-15Mo with a biomimetic surface in an electrolyte based on an aqueous solution of sodium phosphate and calcium acetate with the addition of sodium silicate can be used as an advanced platform for the local delivery of the cytostatic drug cisplatin, which makes them promising for application in orthopedic oncology. Full article
Show Figures

Figure 1

26 pages, 13498 KB  
Article
Flexural and Specific Properties of Acrylic Solid Surface (PMMA/ATH) Composites: Effects of Thermoforming-Relevant Heating and Cooling
by Vassil Jivkov, Boryana Petrova, Nikolay Yavorov and Yavor Makyov
J. Compos. Sci. 2025, 9(11), 620; https://doi.org/10.3390/jcs9110620 - 9 Nov 2025
Viewed by 1102
Abstract
Acrylic solid surface composites made of poly (methyl methacrylate) (PMMA) and aluminum trihydrate, Al(OH)3 (ATH) are widely used in furniture and interior applications. However, independent brand comparative data, especially on density-normalized (“specific”) properties, remain limited. This study quantifies the flexural response of [...] Read more.
Acrylic solid surface composites made of poly (methyl methacrylate) (PMMA) and aluminum trihydrate, Al(OH)3 (ATH) are widely used in furniture and interior applications. However, independent brand comparative data, especially on density-normalized (“specific”) properties, remain limited. This study quantifies the flexural response of 11 commercial sheets (6, 8, and 12 mm, including one translucent) under ISO 178 three-point bending and evaluates the effects of heating and cooling relevant to thermoforming. The density is concentrated in the range 1680–1748 kg/m3 (weighted mean of 1712 kg/m3). The flexural strength ranged between 51 and 79 MPa, divided into three groups—high (76–79 MPa), medium (63–67 MPa), and low (51–56 MPa) levels, while the modulus ranged between 7700 and 9400 MPa with a narrow dispersion. The strength showed no significant correlation with density, while the modulus increased with density, indicating that stiffness is composition-dominated, while strength is influenced by factors related to microstructural defects/particle boundaries. Heating at 160 °C and subsequent cooling have a significant influence on flexural strength and strain. Flexural strength increased by an average of approximately 7%, and flexural strain increased by approximately 12%, while the modulus remained virtually unchanged (within ±0.5%); additionally, shock cooling did not bring any benefits. The density-normalized parameters (σ/ρ, E/ρ) reflected these trends, allowing for a more accurate comparison when limited by mass or deformation. Overall, the results are broadly consistent with manufacturers’ declarations and demonstrate that thermoforming-relevant heating at 160 °C, followed by cooling, can be used not only to improve formability but also to modestly increase flexural strength and strain without compromising stiffness. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

22 pages, 2727 KB  
Article
Field Measurement and 2.5D FE Analysis of Ground Vibrations Induced by High-Speed Train Moving on Embankment and Cutting
by Junwei Bi, Guangyun Gao, Zhaoyang Chen, Jiyan Zhang, Juan Chen and Yuhan Li
Buildings 2025, 15(22), 4034; https://doi.org/10.3390/buildings15224034 - 8 Nov 2025
Viewed by 369
Abstract
Field measurements of ground vibrations were conducted along the Paris–Brussels high-speed railway (HSR) to systematically analyze vibration characteristics generated by embankment and cutting sections. Utilizing the 2.5D finite element method (FEM), numerical models were developed for both earthworks to evaluate the influences of [...] Read more.
Field measurements of ground vibrations were conducted along the Paris–Brussels high-speed railway (HSR) to systematically analyze vibration characteristics generated by embankment and cutting sections. Utilizing the 2.5D finite element method (FEM), numerical models were developed for both earthworks to evaluate the influences of design parameters on ground vibration responses. Results demonstrate that train axle load dominates vibration amplitude in the near-track zone, while the superposition effect of adjacent wheelsets and bogies becomes predominant at larger distances. Vibration energy attenuates progressively with increasing distance from the track, with medium- and high-frequency components decaying more rapidly than low-frequency components. The dominant vibration frequency is determined by the fundamental train-loading frequency (f1), which increases with train speed. Distinct attenuation patterns are identified between earthwork types: embankments exhibit a two-stage attenuation process, whereas cuttings undergo three stages, including a vibration rebound phenomenon at the slope crest. Furthermore, greater embankment height or cutting depth reduces ground vibrations, but beyond a critical threshold, further increases yield negligible benefits. A higher elastic modulus of the embankment material correlates with reduced vibrations, and steeper cutting slopes, while ensuring slope stability, contribute to additional mitigation. Full article
(This article belongs to the Special Issue Soil–Structure Interactions for Civil Infrastructure)
Show Figures

Figure 1

20 pages, 3632 KB  
Article
Effect of Waste Tire Particle Content on the Compressive Behavior and Pore Structure of Loess Subgrade Materials
by Xueyu Cao, Yang Liu, Xun Wu, Meng Han and Xiaoyan Liu
Materials 2025, 18(22), 5078; https://doi.org/10.3390/ma18225078 - 7 Nov 2025
Viewed by 327
Abstract
In response to the challenges of low recycling rates of waste tires and their underutilization in loess subgrades, this study systematically investigates the compression deformation characteristics of tire particle (4–6 mm)-modified loess through comprehensive laboratory testing. Using one-dimensional compression tests and cyclic loading–unloading [...] Read more.
In response to the challenges of low recycling rates of waste tires and their underutilization in loess subgrades, this study systematically investigates the compression deformation characteristics of tire particle (4–6 mm)-modified loess through comprehensive laboratory testing. Using one-dimensional compression tests and cyclic loading–unloading tests, the effects of different tire particle contents (0% to 100%) on pore structure evolution, compression parameters—including the compression coefficient, compression modulus, and volumetric compression coefficient—and deformation mechanisms were thoroughly analyzed. The study reveals critical state characteristics and deformation mechanisms of tire-derived aggregate–loess mixtures (TDA-LMs) and establishes a predictive model for their compression behavior. The research results indicate the following: (1) The compression behavior of TDA-LM exhibits a distinct dosage threshold and stress dependence: the critical blending ratio is 30% under stresses below 100 kPa, increasing to 40% at higher stresses (≥100 kPa); (2) Mixtures with medium to low tire content display strain hardening, whereas pure tire specimens show approximately 10% modulus softening within the 200–300 kPa range. Stress- and content-dependent models for the compression modulus and volumetric compression coefficient were developed with high accuracy (R2 > 0.96); (3) The dominant deformation mechanism shifts from soil skeleton plastic yielding (at tire contents < 40%) to rubber-dominated elastic deformation (at contents > 50%). Over 85% of cumulative deformation occurs during the initial loading phase, indicating that particle–soil interface restructuring primarily takes place early in the loading process. This study provides a theoretical basis and practical design parameters for the application of waste tires in loess subgrade engineering, supporting the sustainable reuse of solid waste in environmentally friendly geotechnical construction. Full article
Show Figures

Figure 1

16 pages, 2516 KB  
Article
Study of the Friction Contact of HIPIMS Magnetron-Sputtered TiB2 Against Aluminium at Temperatures up to 300 °C
by Gonzalo G. Fuentes, Marya Baloch, José Fernández Palacio, Pablo Amezqueta, Rebeca Bueno, Jonathan Fernández de Ara, Herbert Gabriel, Cayetano Hernández, Pilar Prieto and Germán Alcalá
Materials 2025, 18(13), 2975; https://doi.org/10.3390/ma18132975 - 23 Jun 2025
Viewed by 959
Abstract
In this study, we investigated the frictional properties of TiB2 films produced by high-power impulse magnetron sputtering and compared them with those of TiN- and CrN-sputtered coatings also made using high-power pulsed discharges. The films were characterised by scanning electron microscopy, Electron [...] Read more.
In this study, we investigated the frictional properties of TiB2 films produced by high-power impulse magnetron sputtering and compared them with those of TiN- and CrN-sputtered coatings also made using high-power pulsed discharges. The films were characterised by scanning electron microscopy, Electron Probe Micro-Analysis, nanoindentation and friction tests. Sliding friction analyses were performed against aluminium surfaces at different temperatures, ranging from room temperature to 300 °C. The TiB2 coatings exhibited hardness values of about 39 GPa, regardless of the bias potential used between −50 V and −100 V, a low modulus of around 300 GPa and a dense compact columnar microstructure with grain sizes between 51 and 68 nm in diameter. The friction behaviour on aluminium produced the transfer of this element to the films, at rates that depended on the test temperature. The TiN and CrN coatings exhibited low–medium adhesion to aluminium at room temperature and severe transfer during the friction tests at 150 °C. In the case of the TiB2 films, the adhesion of aluminium during friction tests was low for temperatures up to 175 °C. In fact, a clear transition of the mild-to-severe adhesion of aluminium on TiB2 was observed in the temperature range of 175 °C to 200 °C for the testing conditions evaluated in this study, which was concomitant with the evolution observed for the friction coefficients. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

15 pages, 3355 KB  
Article
Medium Internal Phase Emulsions Stabilized by Soy Protein Isolates: Protein Solubility Effect and Stabilization Mechanism
by Fengxian Guo, Yiming Mao, Yujie Chen, Shiying Wu, Zhiyong He, Baobei Wang, Hongbin Chen, Shunhong Wu and Zongping Zheng
Foods 2025, 14(12), 2028; https://doi.org/10.3390/foods14122028 - 8 Jun 2025
Viewed by 1574
Abstract
The solubility of soybean isolate protein (SPI) undergoes significant degradation during storage and transportation. This study investigates the formulation and assessment of SPI-stabilized medium internal phase emulsions (MIPEs) with different solubilities, namely SPI80, SPI70, SPI60, and SPI50, corresponding to solubility levels of about [...] Read more.
The solubility of soybean isolate protein (SPI) undergoes significant degradation during storage and transportation. This study investigates the formulation and assessment of SPI-stabilized medium internal phase emulsions (MIPEs) with different solubilities, namely SPI80, SPI70, SPI60, and SPI50, corresponding to solubility levels of about 80%, 70%, 60%, and 50%, respectively. The contact angles of these SPI variants ranged from 79.35 to 86.55 degrees, with SPI60 and SPI50 exhibiting significantly higher values compared to SPI80 and SPI70. All SPI samples were successfully utilized for the preparation of MIPEs. However, as SPI solubility decreases, emulsion stability progressively declines, accompanied by a reduction in the absolute value of zeta potential. Additionally, interfacial protein adsorption in emulsions decreases with decreasing SPI solubility, a trend that is similarly observed in viscosity characteristics, storage modulus (G′), and loss modulus (G″). Confocal laser scanning microscopy (CLSM) and cryo-scanning electron microscopy (Cryo-SEM) analyses revealed that emulsions exhibit reduced uniformity and a less interconnected microstructural network as SPI solubility decreases. These findings provide a theoretical foundation for utilizing low-solubility SPI in MIPEs applications. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

20 pages, 3018 KB  
Article
Performance Evaluation of Desulfurized Rubber Powder and Styrene-Butadiene-Styrene Composite-Modified Asphalt
by Bin Liu, Kai Zhang, Xiangyang Fan and Chongzhi Tu
Coatings 2025, 15(5), 607; https://doi.org/10.3390/coatings15050607 - 19 May 2025
Cited by 1 | Viewed by 899
Abstract
Rubber powder asphalt has been widely studied due to its favorable temperature sensitivity and fatigue resistance. However, because rubber powder does not easily swell in asphalt, it leads to poor storage stability and high viscosity, limiting its large-scale application. In this study, modified [...] Read more.
Rubber powder asphalt has been widely studied due to its favorable temperature sensitivity and fatigue resistance. However, because rubber powder does not easily swell in asphalt, it leads to poor storage stability and high viscosity, limiting its large-scale application. In this study, modified asphalt was prepared using desulfurized rubber powder (DRP) and styrene-butadiene-styrene (SBS) modifiers, aiming to identify the optimal formulation for enhanced performance. It was hypothesized that the combined use of DRP and SBS would produce synergistic effects, improving the overall mechanical and rheological properties of the asphalt. To test this, the effects of this composite modification were evaluated using Marshall tests (penetration, softening point, ductility, elastic recovery, and Brookfield viscosity) and Superpave tests (shear modulus, high-performance grade, rutting factor, fatigue factor, and creep and recovery). Additionally, moisture susceptibility, high-temperature stability, low-temperature cracking resistance, and fatigue resistance at the mixture level were assessed. Performance was evaluated according to the Chinese standard JT/T 798-2019 for rubberized asphalt using reclaimed tire rubber. Results show that DRP-modified asphalt demonstrates excellent temperature sensitivity, rutting resistance, deformation resistance, and fatigue performance. However, an excessive amount of DRP increases Brookfield viscosity, which negatively affects the workability of the asphalt binder. The addition of SBS further improves the softening point, ductility, and deformation recovery of the binder. Considering cost-effectiveness and overall performance, the optimal formulation was determined to be 25% DRP and 1% SBS. At this dosage, all performance indicators met the required standards. The rotational viscosity at 180 °C was approximately 35% lower than that of conventional rubber powder–modified asphalt, while the high-temperature rutting factor and fatigue resistance at medium-to-low temperatures outperformed those of SBS-modified asphalt. The mixture test results reveal that the gradation has an impact on the performance of the obtained mixture, but overall, the DRP-SBS composite-modified asphalt mixture has significant advantages in terms of performance and cost-effectiveness. Full article
(This article belongs to the Special Issue Advances in Asphalt and Concrete Coatings)
Show Figures

Figure 1

14 pages, 4910 KB  
Article
A Capacitive Pressure Sensor with a Hierarchical Microporous Scaffold Prepared by Melt Near-Field Electro-Writing
by Zhong Zheng, Yifan Pan and Hao Huang
Sensors 2025, 25(9), 2814; https://doi.org/10.3390/s25092814 - 29 Apr 2025
Cited by 1 | Viewed by 1142
Abstract
Flexible capacitive pressure sensors (CPSs) have been widely studied and applied due to their various advantages. Numerous studies have been carried out on improving their electromechanical sensing properties through microporous structures. However, it is challenging to effectively control these structures. In this work, [...] Read more.
Flexible capacitive pressure sensors (CPSs) have been widely studied and applied due to their various advantages. Numerous studies have been carried out on improving their electromechanical sensing properties through microporous structures. However, it is challenging to effectively control these structures. In this work, we controllably fabricate a hierarchical microporous capacitive pressure sensor (HMCPS) using melt near-field electro-writing technology. Thanks to the hierarchical microporous sensor, which provides a multi-level elastic modulus and relative dielectric constants, the HMCPS shows outstanding sensing properties. Its multi-range pressure response is sensitive: 3.127 kPa−1 at low pressure, 0.124 kPa−1 at medium pressure, and 0.025 kPa−1 at high pressure. Also, it has a stability of over 5000 cycles and a response time of less than 100 ms. The HMCPS can monitor dynamic and static pressures across a broad pressure range. It has been successfully applied to monitor human motions, showing great potential in human–computer interaction and smart wearable devices. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Graphical abstract

13 pages, 3008 KB  
Article
Characterization of a Lithium Disilicate CAD/CAM Material with Firing Temperature-Controlled Translucency
by Alvaro Munoz, Chris Louca and Alessandro Vichi
Materials 2025, 18(7), 1591; https://doi.org/10.3390/ma18071591 - 1 Apr 2025
Cited by 2 | Viewed by 2141
Abstract
Lithium disilicates are widely used in restorative dentistry due to their aesthetics, strength, and durability. Increased strength can be achieved by increasing crystal fraction, but this modification also reduces translucency. Recently developed lithium disilicates like Amber Mill claim to offer customizable translucency via [...] Read more.
Lithium disilicates are widely used in restorative dentistry due to their aesthetics, strength, and durability. Increased strength can be achieved by increasing crystal fraction, but this modification also reduces translucency. Recently developed lithium disilicates like Amber Mill claim to offer customizable translucency via firing protocols without changes in flexural strength. This study evaluated whether Amber Mill’s firing protocols produce significant differences in translucency without changing flexural strength. Forty specimens (n = 10) were assessed for translucency using Contrast Ratio (CR) and Translucency Parameter (TP) tests under four firing protocols designed to obtain high translucency (HT), medium translucency (MT), low translucency (LT), and medium opacity (MO). Using the three-point bending test, sixty specimens (n = 15) were tested for flexural strength with the same four firing protocols. The Weibull modulus and characteristic strength were also calculated, and SEM observation was performed. The CR and TP tests revealed statistically significant translucency differences only between MO and LT/MT/HT. Flexural strength ranked as MO > LT > MT > HT, with significant differences observed between MO vs. MT/HT and LT vs. HT. The findings indicate that the recommended firing protocols for the same shaded blocks resulted in limited differences in translucency. Additionally, higher translucencies were associated with reduced flexural strength, highlighting a trade-off between aesthetic and mechanical properties for Amber Mill. Full article
(This article belongs to the Special Issue Materials for Prosthodontics, Implantology, and Digital Dentistry)
Show Figures

Figure 1

13 pages, 2363 KB  
Article
Theoretical Research on the Axial Compression Capacity of Reinforced Concrete Mid-Long Columns Reinforced with Ultra-High-Performance Concrete
by Xiaolong Tong, Zhengwu Liao, Wei Liu, Huajing Guo and Jianliang Wu
Materials 2025, 18(2), 300; https://doi.org/10.3390/ma18020300 - 10 Jan 2025
Viewed by 1167
Abstract
Ultra-high-performance concrete (UHPC) is a cement-based composite material characterised by exceptional strength, low porosity and high durability, making it highly promising for reinforcement engineering. Based on the theory of tangential modulus, a calculation method has been developed for the axial compression capacity of [...] Read more.
Ultra-high-performance concrete (UHPC) is a cement-based composite material characterised by exceptional strength, low porosity and high durability, making it highly promising for reinforcement engineering. Based on the theory of tangential modulus, a calculation method has been developed for the axial compression capacity of reinforced concrete (RC) medium and long columns strengthened with UHPC, using the constitutive relation of materials and internal and external force balance conditions. This study analysed the influence of UHPC reinforcement layer thickness, reinforced layer, reinforcement ratio, column slenderness ratio and initial load level of core columns on the bearing capacity of reinforced columns. The results indicated that the bearing capacity of the mid-long columns increases with the thickness of the UHPC reinforcement layer and its reinforcement ratio. In addition, the bearing capacity decreases with the increase in the column slenderness ratio and initial load level of the core column. Full article
Show Figures

Figure 1

22 pages, 4783 KB  
Article
Enhancement of Air-Entrained Grout-Enriched Vibrated Cemented Sand, Gravel and Rock (GECSGR) for Improving Frost and Thawing Resistance in CSGR Dams
by Wambley Adomako Baah, Jinsheng Jia, Cuiying Zheng, Baozhen Jia, Yue Wang and Yangfeng Wu
Materials 2025, 18(1), 155; https://doi.org/10.3390/ma18010155 - 2 Jan 2025
Viewed by 1195
Abstract
Cemented Sand, Gravel, and Rock (CSGR) dams have traditionally used either Conventional Vibrated Concrete (CVC) or Grout-Enriched Roller Compacted Concrete (GERCC) for protective and seepage control layers in low- to medium-height dams. However, these methods are complex, prone to interference, and uneconomical due [...] Read more.
Cemented Sand, Gravel, and Rock (CSGR) dams have traditionally used either Conventional Vibrated Concrete (CVC) or Grout-Enriched Roller Compacted Concrete (GERCC) for protective and seepage control layers in low- to medium-height dams. However, these methods are complex, prone to interference, and uneconomical due to significant differences in the expansion coefficient, elastic modulus, and hydration heat parameters among CSGR, CVC, and GERCC. This complexity complicates quality control during construction, leading to the development of Grout-Enriched Vibrated Cemented Sand, Gravel, and Rock (GECSGR) as an alternative. Despite its potential, GECSGR has limited use due to concerns about freeze–thaw resistance. This project addresses these concerns by developing an air-entrained GECSGR grout formulation and construction technique. The study follows a five-phase approach: mix proportioning of C1806 CSGR; optimization of the grout formulation; determination of grout addition rate; evaluation of small-scale lab samples of GECSGR; and field application. The results indicate that combining 8–12% of 223 kg/m3 cement grout with 2–2.23 kg/m3 of admixtures, mud content of 15%, a marsh time of 26–31 s. and a water/cement ratio of 0.5–0.6 with the C1806 parent CSGR mixture achieved a post-vibration in situ air content of 4–6%, excellent freeze–thaw resistance (F300: mass loss <5% or initial dynamic modulus ≥60%), and permeability resistance (W12: permeability coefficient of 0.13 × 10−10 m/s). The development of a 2-in-1 slurry addition and vibration equipment eliminated performance risks and enhanced efficiency in field applications, such as the conversion of the C1804 CSGR mixture into air-entrained GECSGR grade C9015W6F50 for the 2.76 km Qianwei protection dam. Economic analysis revealed that the unit cost of GECSGR production is 18.3% and 6.33% less than CVC and GERCC, respectively, marking a significant advancement in sustainable cement-based composite materials in the dam industry. Full article
Show Figures

Figure 1

13 pages, 3187 KB  
Article
Enhancing Medium-Chain Fatty Acid Delivery Through Bigel Technology
by Manuela Machado, Eduardo M. Costa, Sara Silva, Sérgio C. Sousa, Ana Maria Gomes and Manuela Pintado
Gels 2024, 10(11), 738; https://doi.org/10.3390/gels10110738 - 14 Nov 2024
Cited by 3 | Viewed by 2236
Abstract
This study presents the development and characterization of medium-chain fatty acid (MCFA)-loaded bigels, using coconut oil as the MCFA source. The bigels exhibited high oil binding capacity, ranging from 87% to 98%, effectively retaining MCFAs within the matrix, with lauric acid (C12) being [...] Read more.
This study presents the development and characterization of medium-chain fatty acid (MCFA)-loaded bigels, using coconut oil as the MCFA source. The bigels exhibited high oil binding capacity, ranging from 87% to 98%, effectively retaining MCFAs within the matrix, with lauric acid (C12) being the main component detected within the bigels at 178.32 ± 0.10 mg/g. Physicochemical analysis, including FTIR and scanning electron microscopy, confirmed stable fatty acid incorporation and a cohesive, smooth structure. The FTIR spectra displayed O-H and C=O stretching vibrations, indicating hydrogen bonding within the matrix, while the SEM images showed uniform lipid droplet distribution with stable phase separation. Thermal stability tests showed that the bigels were stable for 5 days at 50 °C, with oil retention and structural integrity unchanged. Rheological testing indicated a solid-like behavior, with a high elastic modulus (G′) that consistently exceeded the viscous modulus (G″), which is indicative of a strong internal structure. In simulated gastrointestinal digestion, the bigels achieved significantly higher MCFA retention than the pure oil, particularly in the gastric phase, with recovery percentages of 38.1% for the bigels and 1.7% for the oil (p < 0.05), suggesting enhanced bioavailability. Cell-based cytotoxicity assays showed low cytotoxicity, and permeability testing in a co-culture Caco-2/HT29-MTX model revealed a controlled, gradual MCFA release, with approximately 10% reaching the basolateral side over 6 h. These findings highlight MCFA-loaded bigels as a promising platform for nutraceutical applications; they provided stability, safety, and controlled MCFA release, with significant potential for functional foods aimed at enhancing fatty acid bioavailability. Full article
(This article belongs to the Special Issue Gel Technology for Development of Bioactive Foodstuffs)
Show Figures

Graphical abstract

17 pages, 2553 KB  
Article
Evaluation of SMA-13 Asphalt Mixture Reinforced by Different Types of Fiber Additives
by Haochen Wu, Peng Xiao, Ziyun Fei, Aihong Kang and Xing Wu
Materials 2024, 17(22), 5468; https://doi.org/10.3390/ma17225468 - 8 Nov 2024
Cited by 1 | Viewed by 1717
Abstract
This research aims at systematically evaluating the properties of SMA-13 asphalt mixture reinforced by several fiber additives including flocculent lignin fiber (FLF), granular lignin fiber (GLF), chopped basalt fiber (CBF), and flocculent basalt fiber (FBF). Firstly, the thermal stability, moisture absorption, and oil [...] Read more.
This research aims at systematically evaluating the properties of SMA-13 asphalt mixture reinforced by several fiber additives including flocculent lignin fiber (FLF), granular lignin fiber (GLF), chopped basalt fiber (CBF), and flocculent basalt fiber (FBF). Firstly, the thermal stability, moisture absorption, and oil absorption property of these fiber additives were analyzed. Secondly, the property of SMA-13 reinforced using four types of single fibers and two kinds of composite fibers (FLF + CBF and FLF + FBF) was comprehensively analyzed. Specifically, the high-temperature performance was evaluated using the uniaxial penetration test and the rutting test, the medium-temperature anticracking property was evaluated using the IDEAL-CT test, the low-temperature property was analyzed using the beam bending test, and the water stability was studied by the freeze–thaw splitting test. Thirdly, the dynamic mechanical response of different-fibers-modified SMA-13 was evaluated using the uniaxial compression dynamic modulus test. Finally, correlation analysis between the results of dynamic modulus and the high-, medium-, and low-temperature mechanical performance was carried out. The research results reveal that the stability of CBF and FBF under thermal action is better than that of GLF and FLF, and FBF shows the best thermal stability. The oil absorption property of FLF is better than that of GLF, followed by FBF and CBF. The comprehensive mechanical properties of CBF- and FBF-reinforced SMA-13 are better than those of FLF- and GLF-modified SMA-13. CBF can better reinforce the mechanical property of SMA-13 under low and medium temperature, while FBF can better reinforce the performance of SMA-13 at high temperature. FLF/CBF- and FLF/FBF-composite-modified SMA-13 show better high-temperature mechanical performance than that of the single-fiber-reinforced mixture, and FLF has some negative impact on the properties of FLF/FBF-composite-modified SMA-13 at low temperature. Fibers have no significant influence on the water stability of the mixtures. Meanwhile, the linear correlation between the mechanical performance of all the fiber-reinforced SMA-13 and the dynamic modulus result is good. Full article
(This article belongs to the Special Issue Mechanical Property Research of Advanced Asphalt-Based Materials)
Show Figures

Figure 1

22 pages, 15370 KB  
Article
Wood Polymer Composites Based on the Recycled Polyethylene Blends from Municipal Waste and Ethiopian Indigenous Bamboo (Oxytenanthera abyssinica) Fibrous Particles Through Chemical Coupling Crosslinking
by Keresa Defa Ayana, Abubeker Yimam Ali and Chang-Sik Ha
Polymers 2024, 16(21), 2982; https://doi.org/10.3390/polym16212982 - 24 Oct 2024
Cited by 5 | Viewed by 3111
Abstract
Valorization of potential thermoplastic waste is an effective strategy to address resource scarcity and reduce valuable thermoplastic waste. In this study, new ecofriendly biomass-derived wood polymer composites (WPCs) were produced from three different types of recycled polyethylene (PE) municipal waste, namely linear low-density [...] Read more.
Valorization of potential thermoplastic waste is an effective strategy to address resource scarcity and reduce valuable thermoplastic waste. In this study, new ecofriendly biomass-derived wood polymer composites (WPCs) were produced from three different types of recycled polyethylene (PE) municipal waste, namely linear low-density polyethylene (LLDPE), medium-density polyethylene (MDPE), or high-density polyethylene (HDPE), and their blend with equal composition (33/33/33 by wt.%). Bamboo particle reinforcement derived from indigenous Ethiopian lowland bamboo (LLB), which had never been utilized before in a WPC formulation, was used as the dispersed phase. Before utilization, recycled LLDPE, MDPE, and HDPE were carefully characterized to determine their chemical compositions, residual metals, polycyclic aromatic hydrocarbons, and thermal properties. Similarly, the fundamental mechanical properties of the WPCs, such as tensile strength, modulus of elasticity, flexural strength, modulus of rupture, and unnotched impact strength, were evaluated. Finally, the thermal stability and interphase coupling efficiency of maleic-anhydride-grafted polypropylene (MAPP) were carefully investigated. WPCs formulated by melt-blending either of the recycled PEs or the blend of recycled PE with bamboo particles showed significant improvement due to MAPP enhancing interfacial adhesion and thermally induced crosslinking, despite inherent immiscibility. These results were confirmed using Fourier transform infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The formulated WPCs may promote PE waste cascading valorization, offering sustainable alternatives and maximizing LLB utilization. Furthermore, comparison with well-known standards for polyolefin-based WPCs indicated that the prepared WPCs can be used as alternative sustainable building materials and related applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

20 pages, 4721 KB  
Article
Study on the Effect of Hot and Humid Environmental Factors on the Mechanical Properties of Asphalt Concrete
by Xin Yan, Zhigang Zhou, Yingjia Fang, Chongsen Ma and Guangtao Yu
Materials 2024, 17(20), 4942; https://doi.org/10.3390/ma17204942 - 10 Oct 2024
Cited by 2 | Viewed by 1252
Abstract
To investigate the effect of hot and humid environmental factors on the mechanical properties of asphalt mixtures research, in this paper, the dynamic modulus of asphalt mixtures under the effects of aging, dry–wet cycling, and coupled effects of aging and dry–wet cycling were [...] Read more.
To investigate the effect of hot and humid environmental factors on the mechanical properties of asphalt mixtures research, in this paper, the dynamic modulus of asphalt mixtures under the effects of aging, dry–wet cycling, and coupled effects of aging and dry–wet cycling were measured by the simple performance tester (SPT) system, and the dynamic modulus principal curves were fitted based on the sigmoidal function. The results show that under the aging effect, the dynamic modulus of asphalt mixture increases with the aging degree; the dynamic modulus of short-term aged, medium-term aged, long-term aged, and ultra-long-term aged asphalt mixtures increased by 9.3%, 26.4%, 44.8%, and 57%, respectively, compared to unaged asphalt mixtures at 20 °C and 10 Hz; the high-temperature stability performance is enhanced, and the low temperature cracking resistance performance is enhanced; under the dry–wet cycle, the aging effect of asphalt water is more obvious in the early stage, and dynamic modulus of resilience of the mixture is slightly increased. In the long-term wet–dry cycle process, water on the asphalt and aggregate erosion increased, the structural bearing capacity attenuation, and the dynamic modulus of rebound greatly reduced at 20 °C and 10 Hz. For example, the dynamic modulus of asphalt mixtures with seven wet and dry cycles increased by 3% compared to asphalt mixtures without wet and dry cycles, and the dynamic modulus of asphalt mixtures with 14 cycles of wet and dry cycles and 21 cycles of wet and dry cycles decreased by 10.8% and 16.5%, respectively, compared to asphalt mixtures without wet and dry cycles. The main curve as a whole shifted downward; the high-temperature performance decreased significantly; in the aging wet–dry cycle coupling, the aging asphalt mixture is more susceptible to water erosion, and the first wet–dry cycle after the mix by the degree of water erosion is relatively small, along with the dynamic modulus of rebound. The dynamic modulus of resilience is relatively larger, and the high-temperature performance is relatively better, while the low-temperature performance is worse. Full article
Show Figures

Figure 1

Back to TopTop