Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,394)

Search Parameters:
Keywords = medical costs data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1217 KiB  
Article
Optimization Scheme for Modulation of Data Transmission Module in Endoscopic Capsule
by Meiyuan Miao, Chen Ye, Zhiping Xu, Laiding Zhao and Jiafeng Yao
Sensors 2025, 25(15), 4738; https://doi.org/10.3390/s25154738 - 31 Jul 2025
Viewed by 126
Abstract
The endoscopic capsule is a miniaturized device used for medical diagnosis, which is less invasive compared to traditional gastrointestinal endoscopy and can reduce patient discomfort. However, it faces challenges in communication transmission, such as high power consumption, serious signal interference, and low data [...] Read more.
The endoscopic capsule is a miniaturized device used for medical diagnosis, which is less invasive compared to traditional gastrointestinal endoscopy and can reduce patient discomfort. However, it faces challenges in communication transmission, such as high power consumption, serious signal interference, and low data transmission rate. To address these issues, this paper proposes an optimized modulation scheme that is low-cost, low-power, and robust in harsh environments, aiming to improve its transmission rate. The scheme is analyzed in terms of the in-body channel. The analysis and discussion for the scheme in wireless body area networks (WBANs) are divided into three aspects: bit error rate (BER) performance, energy efficiency (EE), and spectrum efficiency (SE), and complexity. These correspond to the following issues: transmission rate, communication quality, and low power consumption. The results demonstrate that the optimized scheme is more suitable for improving the communication performance of endoscopic capsules. Full article
Show Figures

Figure 1

24 pages, 624 KiB  
Systematic Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 - 31 Jul 2025
Viewed by 143
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

26 pages, 5549 KiB  
Article
Intrusion Detection and Real-Time Adaptive Security in Medical IoT Using a Cyber-Physical System Design
by Faeiz Alserhani
Sensors 2025, 25(15), 4720; https://doi.org/10.3390/s25154720 - 31 Jul 2025
Viewed by 273
Abstract
The increasing reliance on Medical Internet of Things (MIoT) devices introduces critical cybersecurity vulnerabilities, necessitating advanced, adaptive defense mechanisms. Recent cyber incidents—such as compromised critical care systems, modified therapeutic device outputs, and fraudulent clinical data inputs—demonstrate that these threats now directly impact life-critical [...] Read more.
The increasing reliance on Medical Internet of Things (MIoT) devices introduces critical cybersecurity vulnerabilities, necessitating advanced, adaptive defense mechanisms. Recent cyber incidents—such as compromised critical care systems, modified therapeutic device outputs, and fraudulent clinical data inputs—demonstrate that these threats now directly impact life-critical aspects of patient security. In this paper, we introduce a machine learning-enabled Cognitive Cyber-Physical System (ML-CCPS), which is designed to identify and respond to cyber threats in MIoT environments through a layered cognitive architecture. The system is constructed on a feedback-looped architecture integrating hybrid feature modeling, physical behavioral analysis, and Extreme Learning Machine (ELM)-based classification to provide adaptive access control, continuous monitoring, and reliable intrusion detection. ML-CCPS is capable of outperforming benchmark classifiers with an acceptable computational cost, as evidenced by its macro F1-score of 97.8% and an AUC of 99.1% when evaluated with the ToN-IoT dataset. Alongside classification accuracy, the framework has demonstrated reliable behaviour under noisy telemetry, maintained strong efficiency in resource-constrained settings, and scaled effectively with larger numbers of connected devices. Comparative evaluations, radar-style synthesis, and ablation studies further validate its effectiveness in real-time MIoT environments and its ability to detect novel attack types with high reliability. Full article
Show Figures

Figure 1

40 pages, 3463 KiB  
Review
Machine Learning-Powered Smart Healthcare Systems in the Era of Big Data: Applications, Diagnostic Insights, Challenges, and Ethical Implications
by Sita Rani, Raman Kumar, B. S. Panda, Rajender Kumar, Nafaa Farhan Muften, Mayada Ahmed Abass and Jasmina Lozanović
Diagnostics 2025, 15(15), 1914; https://doi.org/10.3390/diagnostics15151914 - 30 Jul 2025
Viewed by 521
Abstract
Healthcare data rapidly increases, and patients seek customized, effective healthcare services. Big data and machine learning (ML) enabled smart healthcare systems hold revolutionary potential. Unlike previous reviews that separately address AI or big data, this work synthesizes their convergence through real-world case studies, [...] Read more.
Healthcare data rapidly increases, and patients seek customized, effective healthcare services. Big data and machine learning (ML) enabled smart healthcare systems hold revolutionary potential. Unlike previous reviews that separately address AI or big data, this work synthesizes their convergence through real-world case studies, cross-domain ML applications, and a critical discussion on ethical integration in smart diagnostics. The review focuses on the role of big data analysis and ML towards better diagnosis, improved efficiency of operations, and individualized care for patients. It explores the principal challenges of data heterogeneity, privacy, computational complexity, and advanced methods such as federated learning (FL) and edge computing. Applications in real-world settings, such as disease prediction, medical imaging, drug discovery, and remote monitoring, illustrate how ML methods, such as deep learning (DL) and natural language processing (NLP), enhance clinical decision-making. A comparison of ML models highlights their value in dealing with large and heterogeneous healthcare datasets. In addition, the use of nascent technologies such as wearables and Internet of Medical Things (IoMT) is examined for their role in supporting real-time data-driven delivery of healthcare. The paper emphasizes the pragmatic application of intelligent systems by highlighting case studies that reflect up to 95% diagnostic accuracy and cost savings. The review ends with future directions that seek to develop scalable, ethical, and interpretable AI-powered healthcare systems. It bridges the gap between ML algorithms and smart diagnostics, offering critical perspectives for clinicians, data scientists, and policymakers. Full article
(This article belongs to the Special Issue Machine-Learning-Based Disease Diagnosis and Prediction)
Show Figures

Figure 1

28 pages, 2379 KiB  
Article
FADEL: Ensemble Learning Enhanced by Feature Augmentation and Discretization
by Chuan-Sheng Hung, Chun-Hung Richard Lin, Shi-Huang Chen, You-Cheng Zheng, Cheng-Han Yu, Cheng-Wei Hung, Ting-Hsin Huang and Jui-Hsiu Tsai
Bioengineering 2025, 12(8), 827; https://doi.org/10.3390/bioengineering12080827 - 30 Jul 2025
Viewed by 251
Abstract
In recent years, data augmentation techniques have become the predominant approach for addressing highly imbalanced classification problems in machine learning. Algorithms such as the Synthetic Minority Over-sampling Technique (SMOTE) and Conditional Tabular Generative Adversarial Network (CTGAN) have proven effective in synthesizing minority class [...] Read more.
In recent years, data augmentation techniques have become the predominant approach for addressing highly imbalanced classification problems in machine learning. Algorithms such as the Synthetic Minority Over-sampling Technique (SMOTE) and Conditional Tabular Generative Adversarial Network (CTGAN) have proven effective in synthesizing minority class samples. However, these methods often introduce distributional bias and noise, potentially leading to model overfitting, reduced predictive performance, increased computational costs, and elevated cybersecurity risks. To overcome these limitations, we propose a novel architecture, FADEL, which integrates feature-type awareness with a supervised discretization strategy. FADEL introduces a unique feature augmentation ensemble framework that preserves the original data distribution by concurrently processing continuous and discretized features. It dynamically routes these feature sets to their most compatible base models, thereby improving minority class recognition without the need for data-level balancing or augmentation techniques. Experimental results demonstrate that FADEL, solely leveraging feature augmentation without any data augmentation, achieves a recall of 90.8% and a G-mean of 94.5% on the internal test set from Kaohsiung Chang Gung Memorial Hospital in Taiwan. On the external validation set from Kaohsiung Medical University Chung-Ho Memorial Hospital, it maintains a recall of 91.9% and a G-mean of 86.7%. These results outperform conventional ensemble methods trained on CTGAN-balanced datasets, confirming the superior stability, computational efficiency, and cross-institutional generalizability of the FADEL architecture. Altogether, FADEL uses feature augmentation to offer a robust and practical solution to extreme class imbalance, outperforming mainstream data augmentation-based approaches. Full article
Show Figures

Graphical abstract

25 pages, 3868 KiB  
Article
From Research to Design: Enhancing Mental Well-Being Through Quality Public Green Spaces in Beirut
by Mariam Raad, Georgio Kallas, Falah Assadi, Nina Zeidan, Victoria Dawalibi and Alessio Russo
Land 2025, 14(8), 1558; https://doi.org/10.3390/land14081558 - 29 Jul 2025
Viewed by 230
Abstract
The global rise in urban-related health issues poses significant challenges to public health, particularly in cities facing socio-economic crises. In Lebanon, 70% of the population is experiencing financial hardship, and healthcare costs have surged by 172%, exacerbating the strain on medical services. Given [...] Read more.
The global rise in urban-related health issues poses significant challenges to public health, particularly in cities facing socio-economic crises. In Lebanon, 70% of the population is experiencing financial hardship, and healthcare costs have surged by 172%, exacerbating the strain on medical services. Given these conditions, improving the quality and accessibility of green spaces offers a promising avenue for alleviating mental health issues in urban areas. This study investigates the psychological impact of nine urban public spaces in Beirut through a comprehensive survey methodology, involving 297 participants (locals and tourists) who rated these spaces using Likert-scale measures. The findings reveal location-specific barriers, with Saanayeh Park rated highest in quality and Martyr’s Square rated lowest. The analysis identifies facility quality as the most significant factor influencing space quality, contributing 73.6% to the overall assessment, while activity factors have a lesser impact. The study further highlights a moderate positive association (Spearman’s rho = 0.30) between public space quality and mental well-being in Beirut. This study employs a hybrid methodology combining Research for Design (RfD) and Research Through Designing (RTD). Empirical data informed spatial strategies, while iterative design served as a tool for generating context-specific knowledge. Design enhancements—such as sensory plantings, shading systems, and social nodes—aim to improve well-being through better public space quality. The proposed interventions support mental health, life satisfaction, climate resilience, and urban inclusivity. The findings offer actionable insights for cities facing public health and spatial equity challenges in crisis contexts. Full article
Show Figures

Figure 1

12 pages, 1631 KiB  
Article
Machine Learning Applied to NHS Electronic Staff Records Identifies Key Areas of Focus for Staff Retention
by Rupert Milsom, Magdalena Zasada, Cath Taylor and Matt Spick
Adm. Sci. 2025, 15(8), 297; https://doi.org/10.3390/admsci15080297 - 29 Jul 2025
Viewed by 279
Abstract
Background: In this work, we examine determinants of staff departure rates in the NHS, a critical issue for workforce stability and continuity of care. High turnover, particularly among clinical staff, undermines service delivery and incurs substantial replacement costs. Methods: Here, we [...] Read more.
Background: In this work, we examine determinants of staff departure rates in the NHS, a critical issue for workforce stability and continuity of care. High turnover, particularly among clinical staff, undermines service delivery and incurs substantial replacement costs. Methods: Here, we analyse a unique dataset derived from Electronic Staff Records at Ashford and St. Peter’s NHS Foundation Trust, using a machine learning approach to move beyond traditional survey-based methods, to assess propensity to leave. Results: In addition to established predictors such as salary and length of service, we identify drivers of increased risks of staff exits, including the distance between home and workplace and, especially for medical staff, cost centre vacancy rates. Conclusions: These findings highlight the multifactorial nature of staff retention and suggest the potential of local administrative data to improve workforce planning, for example, through hyperlocal recruitment strategies. Whilst further work will be required to assess the generalisability of our findings beyond a single Trust, our analysis offers insights for NHS managers seeking to stabilise staffing levels and reduce attrition through targeted interventions beyond pay and tenure. Full article
Show Figures

Figure 1

18 pages, 7213 KiB  
Article
DFCNet: Dual-Stage Frequency-Domain Calibration Network for Low-Light Image Enhancement
by Hui Zhou, Jun Li, Yaming Mao, Lu Liu and Yiyang Lu
J. Imaging 2025, 11(8), 253; https://doi.org/10.3390/jimaging11080253 - 28 Jul 2025
Viewed by 238
Abstract
Imaging technologies are widely used in surveillance, medical diagnostics, and other critical applications. However, under low-light conditions, captured images often suffer from insufficient brightness, blurred details, and excessive noise, degrading quality and hindering downstream tasks. Conventional low-light image enhancement (LLIE) methods not only [...] Read more.
Imaging technologies are widely used in surveillance, medical diagnostics, and other critical applications. However, under low-light conditions, captured images often suffer from insufficient brightness, blurred details, and excessive noise, degrading quality and hindering downstream tasks. Conventional low-light image enhancement (LLIE) methods not only require annotated data but also often involve heavy models with high computational costs, making them unsuitable for real-time processing. To tackle these challenges, a lightweight and unsupervised LLIE method utilizing a dual-stage frequency-domain calibration network (DFCNet) is proposed. In the first stage, the input image undergoes the preliminary feature modulation (PFM) module to guide the illumination estimation (IE) module in generating a more accurate illumination map. The final enhanced image is obtained by dividing the input by the estimated illumination map. The second stage is used only during training. It applies a frequency-domain residual calibration (FRC) module to the first-stage output, generating a calibration term that is added to the original input to darken dark regions and brighten bright areas. This updated input is then fed back to the PFM and IE modules for parameter optimization. Extensive experiments on benchmark datasets demonstrate that DFCNet achieves superior performance across multiple image quality metrics while delivering visually clearer and more natural results. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

19 pages, 3862 KiB  
Article
Estimation of Total Hemoglobin (SpHb) from Facial Videos Using 3D Convolutional Neural Network-Based Regression
by Ufuk Bal, Faruk Enes Oguz, Kubilay Muhammed Sunnetci, Ahmet Alkan, Alkan Bal, Ebubekir Akkuş, Halil Erol and Ahmet Çağdaş Seçkin
Biosensors 2025, 15(8), 485; https://doi.org/10.3390/bios15080485 - 25 Jul 2025
Viewed by 422
Abstract
Hemoglobin plays a critical role in diagnosing various medical conditions, including infections, trauma, hemolytic disorders, and Mediterranean anemia, which is particularly prevalent in Mediterranean populations. Conventional measurement methods require blood sampling and laboratory analysis, which are often time-consuming and impractical during emergency situations [...] Read more.
Hemoglobin plays a critical role in diagnosing various medical conditions, including infections, trauma, hemolytic disorders, and Mediterranean anemia, which is particularly prevalent in Mediterranean populations. Conventional measurement methods require blood sampling and laboratory analysis, which are often time-consuming and impractical during emergency situations with limited medical infrastructure. Although portable oximeters enable non-invasive hemoglobin estimation, they still require physical contact, posing limitations for individuals with circulatory or dermatological conditions. Additionally, reliance on disposable probes increases operational costs. This study presents a non-contact and automated approach for estimating total hemoglobin levels from facial video data using three-dimensional regression models. A dataset was compiled from 279 volunteers, with synchronized acquisition of facial video and hemoglobin values using a commercial pulse oximeter. After preprocessing, the dataset was divided into training, validation, and test subsets. Three 3D convolutional regression models, including 3D CNN, channel attention-enhanced 3D CNN, and residual 3D CNN, were trained, and the most successful model was implemented in a graphical interface. Among these, the residual model achieved the most favorable performance on the test set, yielding an RMSE of 1.06, an MAE of 0.85, and a Pearson correlation coefficient of 0.73. This study offers a novel contribution by enabling contactless hemoglobin estimation from facial video using 3D CNN-based regression techniques. Full article
Show Figures

Figure 1

21 pages, 2794 KiB  
Article
Medical Data over Sound—CardiaWhisper Concept
by Radovan Stojanović, Jovan Đurković, Mihailo Vukmirović, Blagoje Babić, Vesna Miranović and Andrej Škraba
Sensors 2025, 25(15), 4573; https://doi.org/10.3390/s25154573 - 24 Jul 2025
Viewed by 344
Abstract
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the [...] Read more.
Data over sound (DoS) is an established technique that has experienced a resurgence in recent years, finding applications in areas such as contactless payments, device pairing, authentication, presence detection, toys, and offline data transfer. This study introduces CardiaWhisper, a system that extends the DoS concept to the medical domain by using a medical data-over-sound (MDoS) framework. CardiaWhisper integrates wearable biomedical sensors with home care systems, edge or IoT gateways, and telemedical networks or cloud platforms. Using a transmitter device, vital signs such as ECG (electrocardiogram) signals, PPG (photoplethysmogram) signals, RR (respiratory rate), and ACC (acceleration/movement) are sensed, conditioned, encoded, and acoustically transmitted to a nearby receiver—typically a smartphone, tablet, or other gadget—and can be further relayed to edge and cloud infrastructures. As a case study, this paper presents the real-time transmission and processing of ECG signals. The transmitter integrates an ECG sensing module, an encoder (either a PLL-based FM modulator chip or a microcontroller), and a sound emitter in the form of a standard piezoelectric speaker. The receiver, in the form of a mobile phone, tablet, or desktop computer, captures the acoustic signal via its built-in microphone and executes software routines to decode the data. It then enables a range of control and visualization functions for both local and remote users. Emphasis is placed on describing the system architecture and its key components, as well as the software methodologies used for signal decoding on the receiver side, where several algorithms are implemented using open-source, platform-independent technologies, such as JavaScript, HTML, and CSS. While the main focus is on the transmission of analog data, digital data transmission is also illustrated. The CardiaWhisper system is evaluated across several performance parameters, including functionality, complexity, speed, noise immunity, power consumption, range, and cost-efficiency. Quantitative measurements of the signal-to-noise ratio (SNR) were performed in various realistic indoor scenarios, including different distances, obstacles, and noise environments. Preliminary results are presented, along with a discussion of design challenges, limitations, and feasible applications. Our experience demonstrates that CardiaWhisper provides a low-power, eco-friendly alternative to traditional RF or Bluetooth-based medical wearables in various applications. Full article
Show Figures

Graphical abstract

35 pages, 4256 KiB  
Article
Automated Segmentation and Morphometric Analysis of Thioflavin-S-Stained Amyloid Deposits in Alzheimer’s Disease Brains and Age-Matched Controls Using Weakly Supervised Deep Learning
by Gábor Barczánfalvi, Tibor Nyári, József Tolnai, László Tiszlavicz, Balázs Gulyás and Karoly Gulya
Int. J. Mol. Sci. 2025, 26(15), 7134; https://doi.org/10.3390/ijms26157134 - 24 Jul 2025
Viewed by 408
Abstract
Alzheimer’s disease (AD) involves the accumulation of amyloid-β (Aβ) plaques, whose quantification plays a central role in understanding disease progression. Automated segmentation of Aβ deposits in histopathological micrographs enables large-scale analyses but is hindered by the high cost of detailed pixel-level annotations. Weakly [...] Read more.
Alzheimer’s disease (AD) involves the accumulation of amyloid-β (Aβ) plaques, whose quantification plays a central role in understanding disease progression. Automated segmentation of Aβ deposits in histopathological micrographs enables large-scale analyses but is hindered by the high cost of detailed pixel-level annotations. Weakly supervised learning offers a promising alternative by leveraging coarse or indirect labels to reduce the annotation burden. We evaluated a weakly supervised approach to segment and analyze thioflavin-S-positive parenchymal amyloid pathology in AD and age-matched brains. Our pipeline integrates three key components, each designed to operate under weak supervision. First, robust preprocessing (including retrospective multi-image illumination correction and gradient-based background estimation) was applied to enhance image fidelity and support training, as models rely more on image features. Second, class activation maps (CAMs), generated by a compact deep classifier SqueezeNet, were used to identify, and coarsely localize amyloid-rich parenchymal regions from patch-wise image labels, serving as spatial priors for subsequent refinement without requiring dense pixel-level annotations. Third, a patch-based convolutional neural network, U-Net, was trained on synthetic data generated from micrographs based on CAM-derived pseudo-labels via an extensive object-level augmentation strategy, enabling refined whole-image semantic segmentation and generalization across diverse spatial configurations. To ensure robustness and unbiased evaluation, we assessed the segmentation performance of the entire framework using patient-wise group k-fold cross-validation, explicitly modeling generalization across unseen individuals, critical in clinical scenarios. Despite relying on weak labels, the integrated pipeline achieved strong segmentation performance with an average Dice similarity coefficient (≈0.763) and Jaccard index (≈0.639), widely accepted metrics for assessing segmentation quality in medical image analysis. The resulting segmentations were also visually coherent, demonstrating that weakly supervised segmentation is a viable alternative in histopathology, where acquiring dense annotations is prohibitively labor-intensive and time-consuming. Subsequent morphometric analyses on automatically segmented Aβ deposits revealed size-, structural complexity-, and global geometry-related differences across brain regions and cognitive status. These findings confirm that deposit architecture exhibits region-specific patterns and reflects underlying neurodegenerative processes, thereby highlighting the biological relevance and practical applicability of the proposed image-processing pipeline for morphometric analysis. Full article
Show Figures

Figure 1

23 pages, 4371 KiB  
Article
Advances in Periodontal Diagnostics: Application of MultiModal Language Models in Visual Interpretation of Panoramic Radiographs
by Albert Camlet, Aida Kusiak, Agata Ossowska and Dariusz Świetlik
Diagnostics 2025, 15(15), 1851; https://doi.org/10.3390/diagnostics15151851 - 23 Jul 2025
Viewed by 303
Abstract
Background: Periodontitis is a multifactorial disease leading to the loss of clinical attachment and alveolar bone. The diagnosis of periodontitis involves a clinical examination and radiographic evaluation, including panoramic images. Panoramic radiographs are cost-effective methods widely used in periodontitis classification. The remaining [...] Read more.
Background: Periodontitis is a multifactorial disease leading to the loss of clinical attachment and alveolar bone. The diagnosis of periodontitis involves a clinical examination and radiographic evaluation, including panoramic images. Panoramic radiographs are cost-effective methods widely used in periodontitis classification. The remaining bone height (RBH) is a parameter used to assess the alveolar bone level. Large language models are widely utilized in the medical sciences. ChatGPT, the leading conversational model, has recently been extended to process visual data. The aim of this study was to assess the effectiveness of the ChatGPT models 4.5, o1, o3 and o4-mini-high in RBH measurement and tooth counts in relation to dental professionals’ evaluations. Methods: The analysis was based on 10 panoramic images, from which 252, 251, 246 and 271 approximal sites were qualified for the RBH measurement (using the models 4.5, o1, o3 and o4-mini-high, respectively). Three examiners were asked to independently evaluate the RBH in approximal sites, while the tooth count was achieved by consensus. Subsequently, the results were compared with the ChatGPT outputs. Results: ChatGPT 4.5, ChatGPT o3 and ChatGPT o4-mini-high achieved substantial agreement with clinicians in the assessment of tooth counts (κ = 0.65, κ = 0.66, κ = 0.69, respectively), while ChatGPT o1 achieved moderate agreement (κ = 0.52). In the context of RBH values, the ChatGPT models consistently exhibited a positive mean bias compared with the clinicians. ChatGPT 4.5 was reported to provide the lowest bias (+12 percentage points (pp) for the distal surfaces, width of the 95% CI for limits of agreement (LoAs) ~60 pp; +11 pp for the mesial surfaces, LoA width ~54 pp). Conclusions: ChatGPT 4.5 and ChatGPT o3 show potential in the assessment of tooth counts on a panoramic radiograph; however, their present level of accuracy is insufficient for clinical use. In the current stage of development, the ChatGPT models substantially overestimated the RBH values; therefore, they are not applicable for classifying periodontal disease. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence to Oral Diseases)
Show Figures

Figure 1

22 pages, 4406 KiB  
Article
Colorectal Cancer Detection Tool Developed with Neural Networks
by Alex Ede Danku, Eva Henrietta Dulf, Alexandru George Berciu, Noemi Lorenzovici and Teodora Mocan
Appl. Sci. 2025, 15(15), 8144; https://doi.org/10.3390/app15158144 - 22 Jul 2025
Viewed by 267
Abstract
In the last two decades, there has been a considerable surge in the development of artificial intelligence. Imaging is most frequently employed for the diagnostic evaluation of patients, as it is regarded as one of the most precise methods for identifying the presence [...] Read more.
In the last two decades, there has been a considerable surge in the development of artificial intelligence. Imaging is most frequently employed for the diagnostic evaluation of patients, as it is regarded as one of the most precise methods for identifying the presence of a disease. However, a study indicates that approximately 800,000 individuals in the USA die or incur permanent disability because of misdiagnosis. The present study is based on the use of computer-aided diagnosis of colorectal cancer. The objective of this study is to develop a practical, low-cost, AI-based decision-support tool that integrates clinical test data (blood/stool) and, if needed, colonoscopy images to help reduce misdiagnosis and improve early detection of colorectal cancer for clinicians. Convolutional neural networks (CNNs) and artificial neural networks (ANNs) are utilized in conjunction with a graphical user interface (GUI), which caters to individuals lacking programming expertise. The performance of the artificial neural network (ANN) is measured using the mean squared error (MSE) metric, and the obtained performance is 7.38. For CNN, two distinct cases are under consideration: one with two outputs and one with three outputs. The precision of the models is 97.2% for RGB and 96.7% for grayscale, respectively, in the first instance, and 83% for RGB and 82% for grayscale in the second instance. However, using a pretrained network yielded superior performance with 99.5% for 2-output models and 93% for 3-output models. The GUI is composed of two panels, with the best ANN model and the best CNN model being utilized in each. The primary function of the tool is to assist medical personnel in reducing the time required to make decisions and the probability of misdiagnosis. Full article
Show Figures

Figure 1

25 pages, 4050 KiB  
Review
Network Pharmacology-Driven Sustainability: AI and Multi-Omics Synergy for Drug Discovery in Traditional Chinese Medicine
by Lifang Yang, Hanye Wang, Zhiyao Zhu, Ye Yang, Yin Xiong, Xiuming Cui and Yuan Liu
Pharmaceuticals 2025, 18(7), 1074; https://doi.org/10.3390/ph18071074 - 21 Jul 2025
Viewed by 536
Abstract
Traditional Chinese medicine (TCM), a holistic medical system rooted in dialectical theories and natural product-based therapies, has served as a cornerstone of healthcare systems for millennia. While its empirical efficacy is widely recognized, the polypharmacological mechanisms stemming from its multi-component nature remain poorly [...] Read more.
Traditional Chinese medicine (TCM), a holistic medical system rooted in dialectical theories and natural product-based therapies, has served as a cornerstone of healthcare systems for millennia. While its empirical efficacy is widely recognized, the polypharmacological mechanisms stemming from its multi-component nature remain poorly characterized. The conventional trial-and-error approaches for bioactive compound screening from herbs raise sustainability concerns, including excessive resource consumption and suboptimal temporal efficiency. The integration of artificial intelligence (AI) and multi-omics technologies with network pharmacology (NP) has emerged as a transformative methodology aligned with TCM’s inherent “multi-component, multi-target, multi-pathway” therapeutic characteristics. This convergent review provides a computational framework to decode complex bioactive compound–target–pathway networks through two synergistic strategies, (i) NP-driven dynamics interaction network modeling and (ii) AI-enhanced multi-omics data mining, thereby accelerating drug discovery and reducing experimental costs. Our analysis of 7288 publications systematically maps NP-AI–omics integration workflows for natural product screening. The proposed framework enables sustainable drug discovery through data-driven compound prioritization, systematic repurposing of herbal formulations via mechanism-based validation, and the development of evidence-based novel TCM prescriptions. This paradigm bridges empirical TCM knowledge with mechanism-driven precision medicine, offering a theoretical basis for reconciling traditional medicine with modern pharmaceutical innovation. Full article
(This article belongs to the Special Issue Sustainable Approaches and Strategies for Bioactive Natural Compounds)
Show Figures

Figure 1

14 pages, 1395 KiB  
Article
Cost–Consequence Analysis of Semaglutide vs. Liraglutide for Managing Obese Prediabetic and Diabetic Patients in Saudi Arabia: A Single-Center Study
by Najla Bawazeer, Seham Bin Ganzal, Huda F. Al-Hasinah and Yazed Alruthia
Healthcare 2025, 13(14), 1755; https://doi.org/10.3390/healthcare13141755 - 20 Jul 2025
Viewed by 708
Abstract
Background: Semaglutide and Liraglutide are medications in the Glucagon-like peptide-1 agonists (GLP-1 RAs) class used to manage type 2 diabetes mellitus and obesity in Saudi Arabia. Although the 1.0 mg once weekly dosage of Semaglutide does not have a labeled indication for [...] Read more.
Background: Semaglutide and Liraglutide are medications in the Glucagon-like peptide-1 agonists (GLP-1 RAs) class used to manage type 2 diabetes mellitus and obesity in Saudi Arabia. Although the 1.0 mg once weekly dosage of Semaglutide does not have a labeled indication for the management of obesity, many believe that this dosage is more effective than the 3.0 mg once daily Liraglutide dosage for the management of both diabetes and obesity. Objective: To compare the effectiveness of the dosage of 1.0 mg of Semaglutide administered once weekly versus 3.0 mg of Liraglutide administered once daily in controlling HbA1c levels, promoting weight loss, and evaluating their financial implications among obese patients in Saudi Arabia using real-world data. Methods: A retrospective review of Electronic Medical Records (EMRs) from January 2021 to June 2024 was conducted on patients prescribed Semaglutide or Liraglutide for at least 12 months. Exclusion criteria included pre-existing severe conditions (e.g., cardiovascular disease, stroke, or cancer) and missing baseline data. The primary outcomes assessed were changes in HbA1c, weight, and direct medical costs. Results: Two hundred patients (100 patients on the 1.0 mg once weekly dose of Semaglutide and 100 patients on the 3.0 mg once daily dose of Liraglutide) of those randomly selected from the EMRs met the inclusion criteria and were included in the analysis. Of the 200 eligible patients (65.5% female, mean age 48.54 years), weight loss was greater with Semaglutide (−8.09 kg) than Liraglutide (−5.884 kg). HbA1c reduction was also greater with Semaglutide (−1.073%) than Liraglutide (−0.298%). The use of Semaglutide resulted in lower costs of USD −1264.76 (95% CI: −1826.82 to 33.76) and greater reductions in weight of −2.22 KG (95% CI: −7.68 to −2.784), as well as lower costs of USD −1264.76 (95% CI: (−2368.16 to −239.686) and greater reductions in HbA1c of −0.77% (95% CI: −0.923 to −0.0971) in more than 95% of the cost effectiveness bootstrap distributions. Conclusions: Semaglutide 1.0 mg weekly seems to be more effective and cost-saving in managing prediabetes, diabetes, and obesity compared to Liraglutide 3.0 mg daily. Future studies should examine these findings using a more representative sample and a robust study design. Full article
Show Figures

Figure 1

Back to TopTop