Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (47,418)

Search Parameters:
Keywords = mechanically controlled

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 916 KB  
Review
Trichoderma in Sustainable Agriculture and the Challenges Related to Its Effectiveness
by Karina Gutiérrez-Moreno, Ana I. Olguín-Martínez, Amelia C. Montoya-Martínez and Sergio de los Santos-Villalobos
Diversity 2025, 17(10), 734; https://doi.org/10.3390/d17100734 (registering DOI) - 19 Oct 2025
Abstract
Fungi from the genus Trichoderma have been extensively studied and used as biological control agents (BCAs) because of their versatile mechanisms of action. These include triggering systemic resistance, directly inhibiting pathogens, promoting plant growth, enhancing tolerance to abiotic stress, and producing auxins. However, [...] Read more.
Fungi from the genus Trichoderma have been extensively studied and used as biological control agents (BCAs) because of their versatile mechanisms of action. These include triggering systemic resistance, directly inhibiting pathogens, promoting plant growth, enhancing tolerance to abiotic stress, and producing auxins. However, the widespread application of the most studied Trichoderma strains has been limited by discrepancies between their potential results observed in controlled environments and the outcomes in greenhouses and field conditions. These differences are associated with context dependency, influenced by strain-specific traits, crop genotype, soil properties, and environmental factors. In this review, we examine the mechanisms of action, current challenges, and opportunities, emphasizing the importance of local strategies and detailed characterization of native strains to boost the effectiveness of Trichoderma-based products in sustainable agriculture. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

18 pages, 3617 KB  
Article
Sliding Mode Observer-Based Sensorless Control Strategy for PMSM Drives in Air Compressor Applications
by Rana Md Sohel, Wenhao Wu, Renzi Ji, Zihao Fang and Kai Liu
Appl. Sci. 2025, 15(20), 11206; https://doi.org/10.3390/app152011206 (registering DOI) - 19 Oct 2025
Abstract
This paper presents a sensorless control strategy for permanent magnet synchronous motor (PMSM) drives in industrial and automotive air compressor applications. The strategy utilizes an adaptive-gain sliding mode observer integrated with a refined back-EMF model to suppress chattering and improve convergence. The proposed [...] Read more.
This paper presents a sensorless control strategy for permanent magnet synchronous motor (PMSM) drives in industrial and automotive air compressor applications. The strategy utilizes an adaptive-gain sliding mode observer integrated with a refined back-EMF model to suppress chattering and improve convergence. The proposed approach achieves precise rotor position and speed estimation across a wide operational range without mechanical sensors. It directly addresses the critical needs of reliability, compactness, and resilience in automotive environments. Unlike conventional observers, its originality lies in the enhanced gain structure, enabling accurate and robust sensorless control validated through both simulation and hardware tests. Comprehensive simulation results demonstrate effective performance from 2000 to 8500 rpm, with steady-state speed tracking errors maintained below 0.4% at 2000 rpm and 0.035% at 8500 rpm under rated load. The control methodology exhibits excellent disturbance rejection capabilities, maintaining speed regulation within ±5 rpm under an 80% load disturbance at 8500 rpm while limiting q-axis current ripple to 2.5% of rated values. Experimental validation on a 2.2 kW PMSM-driven compressor test platform confirms stable operation at 4000 rpm with speed fluctuations constrained to 20 rpm (0.5% error) and precise current regulation, maintaining the d-axis current within ±0.07 A. The system demonstrates rapid dynamic response, achieving acceleration from 1320 rpm to 2365 rpm within one second during testing. The results confirm the method’s practical viability for enhancing reliability and reducing maintenance in industrial and automotive compressors systems. Full article
Show Figures

Figure 1

22 pages, 3174 KB  
Article
Research into the Influence of Volume Fraction on the Bending Properties of Selected Thermoplastic Cellular Structures from a Mechanical and Energy Absorption Perspective
by Katarina Monkova, Peter Pavol Monka, Damir Godec and Monika Torokova
Polymers 2025, 17(20), 2795; https://doi.org/10.3390/polym17202795 (registering DOI) - 19 Oct 2025
Abstract
The aim of the manuscript is to study the effect of volume fraction on the bending properties of selected thermoplastic cellular structures (Primitive, Diamond, and Gyroid) from a mechanical and energy absorption perspective, with a view to their promising prospects and use not [...] Read more.
The aim of the manuscript is to study the effect of volume fraction on the bending properties of selected thermoplastic cellular structures (Primitive, Diamond, and Gyroid) from a mechanical and energy absorption perspective, with a view to their promising prospects and use not only for bumpers, but also for various vehicle and aircraft components, or other applications. Samples belonging to the group of so-called complex structures with Triply Periodic Minimal Surfaces, dimensions of 20 × 20 × 250 mm, and volume fractions of 30, 35, 40, 45, and 55%, were prepared by PTC Creo 10.0 software and produced using the Fused Filament Fabrication technique from Nylon CF12 material, while the basic cell size of 10 × 10 × 10 mm was maintained for all samples and the volume fraction was controlled by the wall thickness of the structure. Experimental bending tests were performed on a Zwick 1456 machine and based on recorded data; in addition to the maximum forces, the stiffness, yield strength, and effective modulus of elasticity in bending were evaluated for individual structures and volume fractions. Furthermore, the amount of energy absorbed until reaching the maximum force and until failure was compared, as well as the ductility indices μd and μU (derived from deformation and absorbed energy, respectively), as an important dissipation factor in absorbers, based on which it is also possible to predict which of the structures will have better damping. Full article
(This article belongs to the Special Issue Polymeric Materials in Energy Conversion and Storage, 2nd Edition)
15 pages, 1153 KB  
Article
Differential Expression of Complement Pathway Components in Unexplained Infertility Versus Male Factor Infertility: Insights from an Exploratory Pilot Study
by Edwina Brennan, Marya K. E. A. Radhi, Zainab A. A. H. Husain, Thozhukat Sathyapalan, Abu Saleh Md Moin, Alexandra E. Butler and Stephen L. Atkin
Int. J. Mol. Sci. 2025, 26(20), 10168; https://doi.org/10.3390/ijms262010168 (registering DOI) - 19 Oct 2025
Abstract
Complement (C) proteins have been linked to infertility and reproductive outcomes. This study was undertaken to determine the association of complement proteins in non-obese women before in vitro fertilization (IVF) with unexplained infertility (UI) compared to women with male factor infertility (MFI) as [...] Read more.
Complement (C) proteins have been linked to infertility and reproductive outcomes. This study was undertaken to determine the association of complement proteins in non-obese women before in vitro fertilization (IVF) with unexplained infertility (UI) compared to women with male factor infertility (MFI) as controls. We hypothesized that complement protein factors may provide evidence for the underlying mechanism in UI. In this exploratory pilot study, 25 women (UI = 14 and MFI = 11) undergoing IVF had blood drawn on day 21 of the luteal phase. Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement was undertaken for 25 complement pathway-related proteins. Student’s t-test was used to compare group means and Pearson’s correlations to examine relationships with complement proteins. Baseline demographics and hormonal parameters did not differ between groups, and parameters of the response following IVF did not differ. In the UI group compared to the MFI group, there were lower levels of properdin (p = 0.03) that may reduce endometrial receptivity and impact follicular development, lower C3a anaphylatoxin des arginine (C3adesArg) (p = 0.02) that may reduce endometrial vascularity, lower C4 (C4) (p = 0.04), indicating reduced alternate pathway activation, and lower C8 (C8) (p = 0.04) that also may affect the endometrium. In UI alone, properdin negatively correlated with high-density lipoprotein cholesterol (HDL-c), and C8 positively correlated with thyroid-stimulating hormone (TSH) and Free-triiodothyronine (Free-T3) (p < 0.05). These preliminary findings indicate reduced complement activity among UI women, warranting further mechanistic investigation. Full article
(This article belongs to the Special Issue Reproductive Endocrinology Research)
Show Figures

Figure 1

19 pages, 10606 KB  
Article
Experimental Study on Flexural Performance of SFCB-Reinforced ECC-Concrete Composite Beams
by Yu Ling, Shuo Xu, Chaohao Bi, Zile Feng, Dian Liang and Yongjian Cai
Polymers 2025, 17(20), 2794; https://doi.org/10.3390/polym17202794 (registering DOI) - 19 Oct 2025
Abstract
Engineered Cementitious Composite (ECC) exhibits superior tensile strain-hardening behavior and enhanced crack control due to its distinctive multiple cracking characteristic. In contrast, Steel–Glass Fiber Reinforced Polymer (GFRP) Composite Bars (SFCBs) combine the ductility of steel with the corrosion resistance of GFRP. To investigate [...] Read more.
Engineered Cementitious Composite (ECC) exhibits superior tensile strain-hardening behavior and enhanced crack control due to its distinctive multiple cracking characteristic. In contrast, Steel–Glass Fiber Reinforced Polymer (GFRP) Composite Bars (SFCBs) combine the ductility of steel with the corrosion resistance of GFRP. To investigate the synergistic mechanisms for optimizing the performance of concrete structures, this study designed eight SFCB-reinforced ECC-concrete composite beams. Four-point bending tests were conducted to examine the influence of the ECC replacement height in the tension zone (hE/h = 0%, 16.67%, 33.33%, 50%) and the steel ratio in the bottom longitudinal reinforcement (As/Ab = 0%, 9%, 25%, 49%, 100%) on the flexural performance. The experimental results demonstrated the following: (1) Increasing the ECC replacement significantly improved both the ultimate bending capacity and ductility, while exerting a limited effect on flexural stiffness. Specifically, when increased from 0% to 50%, the ultimate bending strength and ductility index increased by 4.79% and 8.09%, respectively. (2) The steel ratio predominantly governed the yield behavior and crack development. Higher steel ratios resulted in increased flexural stiffness prior to yield, higher yield moments, improved ductility at failure, and superior crack control capability before yielding. (3) The synergistic mechanisms were identified: the ECC layer optimizes crack control by distributing crack-induced strains through multiple cracking, while the steel ratio within the SFCB regulates the ductile response. The findings of this study provide valuable theoretical guidance for enhancing the capacity and ductility of building structures. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

36 pages, 15614 KB  
Article
Non-Competitive AMPA Receptor Antagonist Perampanel Inhibits Ischemia-Induced Neurodegeneration and Behavioral Deficits in Focal Cortical Pial Vessel Disruption Stroke Model
by Michael G. Zaki, Mohamed Taha Moutaoufik, Mahboubeh Pordeli, Mohan Babu, Changiz Taghibiglou and Francisco S. Cayabyab
Cells 2025, 14(20), 1628; https://doi.org/10.3390/cells14201628 (registering DOI) - 19 Oct 2025
Abstract
Glutamate receptors represent a potential target for neuroprotection in neurodegenerative neurological conditions. Perampanel, a non-competitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist, is clinically approved for the management of epilepsy. Perampanel’s neuroprotective effects have been reported in global and focal cerebral ischemia models, but the [...] Read more.
Glutamate receptors represent a potential target for neuroprotection in neurodegenerative neurological conditions. Perampanel, a non-competitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist, is clinically approved for the management of epilepsy. Perampanel’s neuroprotective effects have been reported in global and focal cerebral ischemia models, but the cellular mechanisms remain incompletely understood. Therefore, we studied the potential neuroprotective effects of perampanel in rats using the pial vessel disruption (PVD) stroke model, an established focal cortical non-reperfusion ischemic stroke model. Perampanel was given once intraperitoneally (3 mg/kg body weight) 1 h after PVD surgery and repeated on days 2–3 post-surgery. On the fourth day post PVD, animal behavioral assays and imaging, biochemical, and electrophysiological analyses were performed. Compared to vehicle control, perampanel in PVD-treated rats significantly inhibited hippocampal neurodegeneration and long-term potentiation deficits. Perampanel also attenuated PVD-induced motor deficits, depressive/anxiety-like behaviors, and hippocampal-dependent cognitive impairment. In addition, perampanel prevented the PVD-induced downregulation of surface-expressed GluA1 and GluA2 AMPARs and increased phosphorylation of GluA1 at S831 and S845. Molecular docking analysis revealed perampanel binding to transmembrane regions M1, M3 and M4 of GluA1 and GluA2 subunits. Together, our results show that perampanel attenuated PVD-induced neurodegeneration and behavioral deficits by blocking AMPARs and decreasing GluA1 and GluA2 internalization. In addition, this study shows the neuroprotective potential of perampanel through the inhibition of neuroinflammation mediated by activated microglia and astrocytes following cerebral ischemia. This study is the first to evaluate perampanel in the pial vessel disruption model of ischemia without reperfusion, a clinically relevant stroke paradigm that differs fundamentally from middle cerebral carotid artery occlusion and photothrombosis stroke models. Full article
Show Figures

Figure 1

16 pages, 3727 KB  
Article
Plant Growth Regulators Improve Soybean Yield in Northwest China Through Nutritional and Hormonal Regulation
by Hao Cheng, Yucheng Gan, Xinna Zheng, Ziyi Meng, Feifei Zhao, Wenyue Feng, Renhui Guo, Xinghu Song and Qiang Zhao
Agronomy 2025, 15(10), 2422; https://doi.org/10.3390/agronomy15102422 (registering DOI) - 19 Oct 2025
Abstract
In Xinjiang, soybean yield potential is constrained by varietal limitations and abiotic stresses. Although plant growth regulators (PGRs) can enhance crop yield, their specific impacts on soybean production, endogenous hormone regulation, and nutrient dynamics in this region have not been well characterized. This [...] Read more.
In Xinjiang, soybean yield potential is constrained by varietal limitations and abiotic stresses. Although plant growth regulators (PGRs) can enhance crop yield, their specific impacts on soybean production, endogenous hormone regulation, and nutrient dynamics in this region have not been well characterized. This study evaluated the effects of different PGR treatments on yield formation, hormone levels, and nutrient contents through a field experiment conducted in Ili, Xinjiang, from 2023 to 2025. Foliar applications of naphthaleneacetic acid (NAA, 300 g ha−1), prohexadione-calcium (Pro-Ca, 450 g ha−1), and iron chlorine e6 (ICE6, 45 g ha−1) were applied twice—at the fourth trifoliolate and full-pod stages—with an untreated control (CK) for comparison. Compared with CK, PGR treatments increased biomass allocation to reproductive organs by 6.2%, nutrient accumulation of N, P, and K by 12.3%, 25.5%, and 6.5%, respectively, pod number by 6.92 pods per plant, seed number by 4.86 seeds per plant, and 100-seed weight by 0.47 g, resulting in 6.6–12.0% higher grain yield. Seed PGR residues were 0.009 mg kg−1. PGR application enhanced reproductive organ conversion capacity, nutrient uptake efficiency, and regulated endogenous hormone levels, clarifying internal yield-formation mechanisms and offering valuable reference for soybean research, particularly in similar latitudes. Full article
Show Figures

Figure 1

13 pages, 829 KB  
Article
Characterization of Metabolomic Response of Candida spp. to Heavy Metal Exposure
by Perla Nayeli Reyes-Sánchez, Jesús Alfonso Chairez-Ávila, Karol Karla García-Aguirre, Verónica Esparza-Cordero, María Fernanda Romo-García, Juan C. Medina-Llamas and Juan Ernesto López-Ramos
Microorganisms 2025, 13(10), 2394; https://doi.org/10.3390/microorganisms13102394 (registering DOI) - 19 Oct 2025
Abstract
As a result of anthropogenic activities, contaminants such as heavy metals have been introduced into the environment. Microorganisms, including Candida spp., have emerged as a viable alternative for their removal; however, the mechanism responsible for the removal process has not been fully characterized. [...] Read more.
As a result of anthropogenic activities, contaminants such as heavy metals have been introduced into the environment. Microorganisms, including Candida spp., have emerged as a viable alternative for their removal; however, the mechanism responsible for the removal process has not been fully characterized. This study aims to identify the secretome of Candida strains (C. albicans, C. glabrata, C. parapsilosis and C. tropicalis) contributing to their ability to withstand heavy metals. For this purpose, Candida spp. cultures were incubated at 28 °C under agitation for 72 h and exposed to different concentrations of Cd2+, Cu2+ and Zn2+. The cultures were then analyzed using GC-MS. In Candida spp. cultures exposed to heavy metals, 117 different compounds were identified compared with the control cultures. Among all Candida spp., 15 metabolites showed a fold change greater than two compared to the control conditions. These included hydrocarbons (3), fatty acids (5), aromatic compounds (5), a nonaromatic compound (1) and an organosiloxane (1), which were identified in the presence of heavy metals (Cd, Cu and Zn). Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

24 pages, 4301 KB  
Article
Control Deficits and Compensatory Mechanisms in Individuals with Chronic Ankle Instability During Dual-Task Stair-to-Ground Transition
by Yilin Zhong, Xuanzhen Cen, Xiaopan Hu, Datao Xu, Lei Tu, Monèm Jemni, Gusztáv Fekete, Dong Sun and Yang Song
Bioengineering 2025, 12(10), 1120; https://doi.org/10.3390/bioengineering12101120 (registering DOI) - 19 Oct 2025
Abstract
(1) Background: Chronic ankle instability (CAI), a common outcome of ankle sprains, involves recurrent sprains, balance deficits, and gait impairments linked to both peripheral and central neuromuscular dysfunction. Dual-task (DT) demands further aggravate postural control, especially during stair descent, a major source of [...] Read more.
(1) Background: Chronic ankle instability (CAI), a common outcome of ankle sprains, involves recurrent sprains, balance deficits, and gait impairments linked to both peripheral and central neuromuscular dysfunction. Dual-task (DT) demands further aggravate postural control, especially during stair descent, a major source of fall-related injuries. Yet the biomechanical mechanisms of stair-to-ground transition in CAI under dual-task conditions remain poorly understood. (2) Methods: Sixty individuals with CAI and age- and sex-matched controls performed stair-to-ground transitions under single- and dual-task conditions. Spatiotemporal gait parameters, center of pressure (COP) metrics, ankle inversion angle, and relative joint work contributions (Ankle%, Knee%, Hip%) were obtained using 3D motion capture, a force plate, and musculoskeletal modeling. Correlation and regression analyses assessed the relationships between ankle contributions, postural stability, and proximal joint compensations. (3) Results: Compared with the controls, the CAI group demonstrated marked control deficits during the single task (ST), characterized by reduced gait speed, increased step width, elevated mediolateral COP root mean square (COP-ml RMS), and abnormal ankle inversion and joint kinematics; these impairments were exacerbated under DT conditions. Individuals with CAI exhibited a significantly reduced ankle plantarflexion moment and energy contribution (Ankle%), accompanied by compensatory increases in knee and hip contributions. Regression analyses indicated that Ankle% significantly predicted COP-ml RMS and gait speed (GS), highlighting the pivotal role of ankle function in maintaining dynamic stability. Furthermore, CAI participants adopted a “posture-first” strategy under DT, with concurrent deterioration in gait and cognitive performance, reflecting strong reliance on attentional resources. (4) Conclusions: CAI involves global control deficits, including distal insufficiency, proximal compensation, and an inefficient energy distribution, which intensify under dual-task conditions. As the ankle is central to lower-limb kinetics, its dysfunction induces widespread instability. Rehabilitation should therefore target coordinated lower-limb training and progressive dual-task integration to improve motor control and dynamic stability. Full article
Show Figures

Figure 1

23 pages, 3580 KB  
Article
Inhibitory Effect of Boesenbergia rotunda and Its Major Flavonoids, Pinostrobin and Pinocembrin on Carbohydrate Digestive Enzymes and Intestinal Glucose Transport in Caco-2 Cells
by Sathid Aimjongjun, Nopawit Khamto, Vanatsanan Buangamdee, Thanet Sornda, Jukkarin Srivilai and Nanteetip Limpeanchob
Int. J. Mol. Sci. 2025, 26(20), 10158; https://doi.org/10.3390/ijms262010158 (registering DOI) - 19 Oct 2025
Abstract
Boesenbergia rotunda (L.) Mansf., commonly known as fingerroot or “Kra-Chai,” is a traditional Thai medicinal plant used for treating digestive and metabolic disorders. Recent evidence highlights its potential role in controlling hyperglycemia, though its active compounds and mechanisms remain unclear. This study evaluated [...] Read more.
Boesenbergia rotunda (L.) Mansf., commonly known as fingerroot or “Kra-Chai,” is a traditional Thai medicinal plant used for treating digestive and metabolic disorders. Recent evidence highlights its potential role in controlling hyperglycemia, though its active compounds and mechanisms remain unclear. This study evaluated the antidiabetic activity of B. rotunda crude extract and its major flavonoids, pinostrobin and pinocembrin, through in vitro enzyme inhibition and cellular glucose transport assays. Pinocembrin exhibited the strongest inhibition of both α-amylase and α-glucosidase, while pinostrobin and the crude extract showed moderate effects. In Caco-2 cells, the crude extract reduced glucose uptake, whereas both flavonoids markedly inhibited transport under glucose-depleted conditions, suggesting interaction with sodium-dependent glucose transporters (SGLTs). Under high-glucose conditions, their effects were minimal, indicating limited activity on facilitative glucose transporters (GLUTs). Moreover, molecular docking studies revealed that pinostrobin and pinocembrin bind within the glucose transporter channels of SGLT1 and SGLT2, blocking glucose passage and supporting the experimental findings. Overall, B. rotunda, particularly pinocembrin, demonstrates notable in vitro antidiabetic potential through enzyme inhibition and SGLT modulation. Further in vivo investigations are warranted to validate its hypoglycemic properties and identify additional active compounds. Full article
Show Figures

Graphical abstract

31 pages, 20777 KB  
Article
Depositional Processes and Paleoenvironmental Evolution of the Middle Eocene Lacustrine Shale in Beibu Gulf Basin, South China
by Chengkun Deng, Yifan Li, Zhiqian Gao, Juye Shi, Ruisi Li, Ruoxin Huang, Guocui Li and Xinsheng Wen
Appl. Sci. 2025, 15(20), 11191; https://doi.org/10.3390/app152011191 (registering DOI) - 19 Oct 2025
Abstract
This study focuses on the middle Eocene lacustrine shales of the Lower Member 2 of the Liushagang Formation (L–LS2) in the Weixi’nan Depression of the Beibu Gulf Basin. Employing an integrated approach that combines core observation, thin-section analysis, Scanning Electron Microscopy (SEM), X-ray [...] Read more.
This study focuses on the middle Eocene lacustrine shales of the Lower Member 2 of the Liushagang Formation (L–LS2) in the Weixi’nan Depression of the Beibu Gulf Basin. Employing an integrated approach that combines core observation, thin-section analysis, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and geochemical proxies, we systematically characterize the lithofacies, sedimentary processes, and paleoenvironmental evolution. Six distinct lithofacies were identified: clay-rich mudstone, calcium-bearing mudstone, clay-rich siltstone, siliceous siltstone, ankerite-bearing sandstone, and siliceous sandstone. Based on depositional processes and structural features, these are grouped into three lithofacies assemblages: interbedded lithofacies assemblage, laminated lithofacies assemblage, and matrix lithofacies assemblage. Vertical facies distribution shows that the interbedded lithofacies assemblage dominates the lower L–LS2, reflecting active faulting, volcanism, a low lake level, prevalent gravity flows, and episodic oxidative conditions. The laminated lithofacies assemblage dominates the middle section and results from the combined influence of chemical and mechanical deposition, indicating fluctuating climate conditions that affected water depth, salinity, and redox dynamics. The upper section is characterized by matrix lithofacies assemblage, representing a stable, deep water, anoxic environment with low energy suspension settling. We propose a depositional model in which tectonics and climate jointly control lacustrine shale deposition. During the middle Eocene, intensified tectonic activity expanded accommodation space and increased clastic input, while climate fluctuations influenced chemical weathering, nutrient supply, and salinity. Together, these factors drove lake deepening and variability, affecting sedimentary energy and redox conditions. This study not only clarifies the sedimentary evolution of L–LS2 but also provides a critical geological framework for lacustrine shale oil exploration. Full article
Show Figures

Figure 1

38 pages, 3193 KB  
Review
The Interplay Between lncRNAs–microRNAs Network Dysregulation and Cellular Hallmarks of Thyroid Cancer
by Maryam Hejazi, Ramin Heshmat, Gita Shafiee, Bagher Larijani, Amir Ali Mokhtarzadeh, Vida Ebrahimi and Seyed Mohammad Tavangar
Cancers 2025, 17(20), 3373; https://doi.org/10.3390/cancers17203373 (registering DOI) - 18 Oct 2025
Abstract
Background/Objectives: Thyroid cancer (TC) is the most common type of endocrine neoplasm and is increasing in incidence, particularly papillary thyroid carcinoma (PTC). Early-stage disease has a favorable prognosis; however, advanced forms, such as anaplastic thyroid carcinoma, complicate treatment. Long non-coding RNAs (lncRNAs), [...] Read more.
Background/Objectives: Thyroid cancer (TC) is the most common type of endocrine neoplasm and is increasing in incidence, particularly papillary thyroid carcinoma (PTC). Early-stage disease has a favorable prognosis; however, advanced forms, such as anaplastic thyroid carcinoma, complicate treatment. Long non-coding RNAs (lncRNAs), longer than 200 nucleotides and non-coding, together with microRNAs, have emerged as major regulators of TC pathogenesis. This review summarizes data on how dysregulated lncRNAs influence the hallmarks of cancer in thyroid malignancies. Methods: We reviewed the literature on the role of lncRNAs and microRNAs in TC, focusing on their functions as competing endogenous RNAs (ceRNAs), regulators of PI3K/AKT and Wnt/β-catenin pathways, and controllers of epigenetic alterations. Results: Dysregulated lncRNAs contribute to hallmarks including sustained growth, evading suppressors, resisting death, replicative immortality, angiogenesis, invasion, metabolic reprogramming, immune evasion, genomic instability, and tumor-promoting inflammation. ceRNA mechanisms amplify immune evasion by regulating checkpoint proteins and cytokines, altering immune cell activity. Altered lncRNA profiles correlate with aggressiveness, metastasis, and prognosis. Notable lncRNAs, such as H19, MALAT1, and DOCK9-AS2, dysregulate oncogenic pathways and represent potential biomarkers. Conclusions: Advances in therapeutics suggest inhibiting oncogenic lncRNAs or restoring tumor-suppressive lncRNAs via RNA interference, antisense oligonucleotides, or CRISPR/Cas9 editing. New technologies, including single-cell RNA sequencing and spatial transcriptomics, will improve understanding of heterogeneous lncRNA–microRNA networks in TC and support precision medicine. LncRNAs signify both molecular drivers and clinical targets for thyroid cancer. Full article
(This article belongs to the Special Issue MicroRNA and Cancer Immunology)
23 pages, 17232 KB  
Article
From Mechanical Instability to Virtual Precision: Digital Twin Validation for Next-Generation MEMS-Based Eye-Tracking Systems
by Mateusz Pomianek, Marek Piszczek, Paweł Stawarz and Aleksandra Kucharczyk-Drab
Sensors 2025, 25(20), 6460; https://doi.org/10.3390/s25206460 (registering DOI) - 18 Oct 2025
Abstract
The development of high-performance MEMS-based eye trackers, crucial for next-generation medical diagnostics and human–computer interfaces, is often hampered by the mechanical instability and time-consuming recalibration of physical prototypes. To address this bottleneck, we present the development and rigorous validation of a high-fidelity digital [...] Read more.
The development of high-performance MEMS-based eye trackers, crucial for next-generation medical diagnostics and human–computer interfaces, is often hampered by the mechanical instability and time-consuming recalibration of physical prototypes. To address this bottleneck, we present the development and rigorous validation of a high-fidelity digital twin (DT) designed to accelerate the design–test–refine cycle. We conducted a comparative study of a physical MEMS scanning system and its corresponding digital twin using a USAF 1951 test target under both static and dynamic conditions. Our analysis reveals that the DT accurately replicates the physical system’s behavior, showing a geometric discrepancy of <30 µm and a matching feature shift (1 µm error) caused by tracking dynamics. Crucially, the DT effectively removes mechanical vibration artifacts, enabling the precise analysis of system parameters in a controlled virtual environment. The validated model was then used to develop a pupil detection algorithm that achieved an accuracy of 1.80 arc minutes, a result that surpasses the performance of a widely used commercial system in our comparative tests. This work establishes a validated methodology for using digital twins in the rapid prototyping and optimization of complex optical systems, paving the way for faster development of critical healthcare technologies. Full article
(This article belongs to the Section Sensors and Robotics)
34 pages, 1121 KB  
Review
Sodium-Glucose Cotransporter-2 Inhibitors in Diabetes and Beyond: Mechanisms, Pleiotropic Benefits, and Clinical Use—Reviewing Protective Effects Exceeding Glycemic Control
by Julia Hanke, Katarzyna Romejko and Stanisław Niemczyk
Molecules 2025, 30(20), 4125; https://doi.org/10.3390/molecules30204125 (registering DOI) - 18 Oct 2025
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors, also known as gliflozins, are a class of antidiabetic agents that act independently of insulin by promoting renal glucose excretion. They modulate glucose reabsorption in proximal renal tubules. Initially, they were used for the treatment of type 2 diabetes [...] Read more.
Sodium-glucose cotransporter-2 (SGLT2) inhibitors, also known as gliflozins, are a class of antidiabetic agents that act independently of insulin by promoting renal glucose excretion. They modulate glucose reabsorption in proximal renal tubules. Initially, they were used for the treatment of type 2 diabetes mellitus (T2DM); however, numerous pleiotropic benefits beyond glycemic control were observed. Large clinical trials confirmed their efficacy in reducing cardiovascular mortality, heart failure hospitalizations, and progression of chronic kidney disease. SGLT2 inhibitors reduce oxidative stress and inflammation and induce favorable metabolic adaptations, including lowering ketosis and upregulation of erythropoiesis. They also exert protective effects on hepatic and cognitive function. Additionally, SGLT2 inhibitors lower serum uric acid and reduce adipose tissue mass, which usually results in weight loss. Although generally well-tolerated, they are associated with increased risk of urogenital infections, euglycemic ketoacidosis, and a potentially enlarged amputation risk. Current guidelines worldwide recommend their use not only for T2DM but also for heart failure and chronic kidney disease, marking a paradigm shift toward organ-protective therapies. This review provides a comprehensive synthesis of current evidence on the mechanisms, clinical benefits, and safety profile of SGLT2 inhibitors, highlighting their expanding role in cardiometabolic and multisystem disease management. Full article
(This article belongs to the Special Issue Natural Compounds for Disease and Health, 3rd Edition)
28 pages, 5501 KB  
Article
Electrospun Fabrication of 1–3-Type PVP/SbSI and PVP/SbSeI Nanocomposites with Excellent Piezoelectric Properties for Nanogenerators and Sensors
by Bartłomiej Toroń, Wiktor Matysiak, Anna Starczewska, Jan Dec, Piotr Szperlich and Marian Nowak
Energies 2025, 18(20), 5506; https://doi.org/10.3390/en18205506 (registering DOI) - 18 Oct 2025
Abstract
Electrospun one-dimensional nanocomposites composed of polyvinylpyrrolidone (PVP) matrices reinforced with antimony sulphoiodide (SbSI) or antimony selenoiodide (SbSeI) nanowires were fabricated for the first time. Their properties were investigated for applications in piezoelectric sensors and nanogenerators. Precise control of the electrospinning parameters produced nanofibres [...] Read more.
Electrospun one-dimensional nanocomposites composed of polyvinylpyrrolidone (PVP) matrices reinforced with antimony sulphoiodide (SbSI) or antimony selenoiodide (SbSeI) nanowires were fabricated for the first time. Their properties were investigated for applications in piezoelectric sensors and nanogenerators. Precise control of the electrospinning parameters produced nanofibres with diameters comparable to the lateral dimensions of the nanowires, ensuring parallel alignment and a 1–3 composite structure. Structural analysis confirmed uniform nanowire distribution and stoichiometry retention. In both nanocomposites, the alignment of the nanowires enables clear observation of the anisotropy of their piezoelectric properties. PVP/SbSI nanocomposites exhibited a ferroelectric–paraelectric transition near 290 K. Under air-pressure excitation of 17.03 bar, they generated a maximum piezoelectric voltage of 2.09 V, with a sensitivity of 229 mV/bar and a surface power density of 12.0 µW/cm2 for sandwich-type samples with nanowires aligned perpendicularly to the electrodes. PVP/SbSeI composites demonstrated stable semiconducting behaviour with a maximum piezoelectric voltage of 1.56 V, sensitivity of 130 mV/bar, and surface power density of 2.3 µW/cm2 for the same type of sample and excitation. The high piezoelectric coefficients d33 of 98 pC/N and 64 pC/N for PVP/SbSI and PVP/SbSeI, respectively, combined with mechanical flexibility, confirm the effectiveness of these nanocomposites as a practical solution for mechanical energy harvesting and pressure sensing in nanogenerators and sensors. Full article
(This article belongs to the Section D3: Nanoenergy)
Show Figures

Figure 1

Back to TopTop