Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (99)

Search Parameters:
Keywords = mechanical power and torque characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1371 KB  
Proceeding Paper
Design of a Forklift Hydraulic System with Unloading Valves for Load Handling
by Yordan Stoyanov, Atanasi Tashev and Penko Mitev
Eng. Proc. 2025, 104(1), 85; https://doi.org/10.3390/engproc2025104085 - 6 Sep 2025
Viewed by 922
Abstract
This paper presents the design and analysis of a forklift hydraulic system utilizing an open-center configuration equipped with unloading (safety-overflow) valves and an emergency lowering mechanism. The hydraulic system includes an external gear pump, double-acting power cylinders, hydraulic distributors, and control valves. A [...] Read more.
This paper presents the design and analysis of a forklift hydraulic system utilizing an open-center configuration equipped with unloading (safety-overflow) valves and an emergency lowering mechanism. The hydraulic system includes an external gear pump, double-acting power cylinders, hydraulic distributors, and control valves. A comprehensive approach is undertaken to select system components based on catalog data and to model the flow rate, required torque, and power characteristics of the pump, along with load handling performance as a function of cylinder dimensions and hydraulic pressure. System behavior under various operating conditions is simulated using Automation Studio, enabling performance optimization and fault response assessment. The inclusion of unloading valves and an emergency button enhances system safety by enabling controlled pressure relief and emergency actuation. The impact of thermal effects, filter efficiency, and reservoir design on hydraulic fluid integrity is also addressed. This study aims to improve reliability, efficiency, and safety in hydraulic forklift systems while supporting informed design decisions using simulation-driven methodologies. Full article
Show Figures

Figure 1

19 pages, 3895 KB  
Article
Enhanced Interior PMSM Design for Electric Vehicles Using Ship-Shaped Notching and Advanced Optimization Algorithms
by Ali Amini, Fariba Farrokh, Farshid Mahmouditabar, Nick J. Baker and Abolfazl Vahedi
Energies 2025, 18(17), 4527; https://doi.org/10.3390/en18174527 - 26 Aug 2025
Cited by 1 | Viewed by 622
Abstract
This paper compares two types of interior permanent magnet synchronous motors (IPMSMs) to determine the most effective arrangement for electric vehicle (EV) applications. The comparison is based on torque ripple, power, efficiency, and mechanical objectives. The study introduces a novel technique that optimizes [...] Read more.
This paper compares two types of interior permanent magnet synchronous motors (IPMSMs) to determine the most effective arrangement for electric vehicle (EV) applications. The comparison is based on torque ripple, power, efficiency, and mechanical objectives. The study introduces a novel technique that optimizes notching parameters in a selected motor topology by inserting a ship-shaped notch into the bridge area between double U-shaped layers. In addition, this study presents two comprehensive approaches of robust combinatorial optimization that are used in machines for the first time. In the first approach, modeling is performed to identify important variables using Pearson Correlation and the mathematical model of the Anisotropic Kriging model from the Surrogate model. Then, in the second approach, the proposed algorithm, Multi-Objective Genetics Algorithm (MOGA), and Surrogate Quadratic Programming (SQP) are combined and implemented on the Anisotropic Kriging model to choose a robust model with minimum error. The algorithm is then verified with FEM results and compared with other conventional optimization algorithms, such as the Genetics Algorithm (GA) and the Particle Swarm Optimization algorithm (PSO). The motor characteristics are analyzed using the Finite Element Method (FEM) and global map analysis to optimize the performance of the IPMSM for EV applications. A comparative study shows that the enhanced PMSM developed through the optimization process demonstrates superior performance indices for EVs. Full article
Show Figures

Figure 1

31 pages, 9665 KB  
Article
Motor Airgap Torque Harmonics Due to Cascaded H-Bridge Inverter Operating with Failed Cells
by Hamid Hamza, Ideal Oscar Libouga, Pascal M. Lingom, Joseph Song-Manguelle and Mamadou Lamine Doumbia
Energies 2025, 18(16), 4286; https://doi.org/10.3390/en18164286 - 12 Aug 2025
Viewed by 461
Abstract
This paper proposes the expressions for the motor airgap torque harmonics induced by a cascaded H-bridge inverter operating with failed cells. These variable frequency drive systems (VFDs), are widely used in oil and gas applications, where a torsional vibration evaluation is a critical [...] Read more.
This paper proposes the expressions for the motor airgap torque harmonics induced by a cascaded H-bridge inverter operating with failed cells. These variable frequency drive systems (VFDs), are widely used in oil and gas applications, where a torsional vibration evaluation is a critical challenge for field engineers. This paper proposes mathematical expressions that are crucial for an accurate torsional analysis during the design stage of VFDs, as required by international standards such as API 617, API 672, etc. By accurately reconstructing the electromagnetic torque from the stator voltages and currents in the (αβ0) reference frame, the obtained expressions enable the precise prediction of the exact locations of torque harmonics induced by the inverter under various real-world operating conditions, without the need for installed torque sensors. The neutral-shifted and peak-reduction fault-tolerant control techniques are commonly adopted under faulty operation of these VFDs. However, their effects on the pulsating torques harmonics in machine air-gap remain uncovered. This paper fulfils this gap by conducting a detailed evaluation of spectral characteristics of these fault-tolerant methods. The theoretical analyses are supported by MATLAB/Simulink 2024 based offline simulation and Typhoon based virtual real-time simulation results performed on a (4.16 kV and 7 MW) vector-controlled induction motor fed by a 7-level cascaded H-bridge inverter. According to the theoretical analyses- and simulation results, the Neutral-shifted and Peak-reduction approaches rebalance the motor input line-to-line voltages in the event of an inverter’s failed cells but, in contrast to the normal mode the carrier, all the triplen harmonics are no longer suppressed in the differential voltage and current spectra due to inequal magnitudes in the phase voltages. These additional current harmonics induce extra airgap torque components that can excite the lowly damped eigenmodes of the mechanical shaft found in the oil and gas applications and shut down the power conversion system due torsional vibrations. Full article
Show Figures

Figure 1

33 pages, 4686 KB  
Article
Modeling of Dynamics of Nonideal Mixer at Oscillation and Aperiodic Damped Mode of Driving Member Motion
by Kuatbay Bissembayev, Zharilkassin Iskakov, Assylbek Jomartov and Akmaral Kalybayeva
Appl. Sci. 2025, 15(15), 8391; https://doi.org/10.3390/app15158391 - 29 Jul 2025
Viewed by 487
Abstract
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction [...] Read more.
The dynamics of the vibrational mode of motion of the driving member of a nonideal system, a mixing–whipping device based on a simple slide-crank mechanism, was studied. The highly nonlinear differential equations of motion were solved numerically by the Runge–Kutta method. The interaction of the mixing–whipping device with the nonideal excitation source causes the rotational speed of the engine shaft and the rotation angle of the driving member to fluctuate, accomplishing a damped process. The parameters of the device and the nonideal energy source have an effect on the kinematic, vibrational and energy characteristics of the system. An increase in the engine’s torque, crank length, number and radius of piston holes, and piston mass, as well as a decrease in the fluid’s density, leads to a reduction in the oscillation range of the crank angle, amplitude and period of angular velocity oscillations of the engine shaft and the mixing–whipping force power. The effects of a nonideal energy source may be used in designing a mixing–whipping device based on a slider-crank mechanism to select effective system parameters and an energy-saving motor in accordance with the requirements of technological processes and products. Full article
(This article belongs to the Special Issue Dynamics and Vibrations of Nonlinear Systems with Applications)
Show Figures

Figure 1

21 pages, 9715 KB  
Article
Fault-Tolerant Control of Non-Phase-Shifted Dual Three-Phase PMSM Joint Motor for Open Phase Fault with Minimized Copper Loss and Reduced Torque Ripple
by Xian Luo, Guangyu Pu, Wenhao Han, Huaqi Li and Hanlin Zhan
Energies 2025, 18(15), 4020; https://doi.org/10.3390/en18154020 - 28 Jul 2025
Viewed by 510
Abstract
Dual three-phase PMSMs (DTP-PMSMs) have attracted increasing attention in the field of robotics industry for their higher power density and enhanced fault-tolerant ability. The non-phase-shifted DTP-PMSM (NPSDTP-PMSM), which shows naturally prevailed performance on zero-sequence current (ZSC) suppression, necessitates the investigation on the control [...] Read more.
Dual three-phase PMSMs (DTP-PMSMs) have attracted increasing attention in the field of robotics industry for their higher power density and enhanced fault-tolerant ability. The non-phase-shifted DTP-PMSM (NPSDTP-PMSM), which shows naturally prevailed performance on zero-sequence current (ZSC) suppression, necessitates the investigation on the control method with improved fault-tolerant performance. In this paper, a novel fault-tolerant control (FTC) method for NPSDTP-PMSM is proposed, which concurrently simultaneously reduces copper loss and suppresses torque ripple under single and dual open phase fault. Firstly, the mathematical model of NPSDTP-PMSM is established, where the ZSC self-suppressing mechanism is revealed. Based on which, investigations on open phase fault and the copper loss characteristics for NPSDTP-PMSM are conducted. Subsequently, a novel fault-tolerant control method is proposed for NPSDTP-PMSM, where the torque ripple is reduced by mutual cancellation of harmonic torques from two winding sets and minimized copper loss is achieved based on the convex characteristic of copper loss. Experimental validation on an integrated robotic joint motor platform confirms the effectiveness of the proposed method. Full article
Show Figures

Figure 1

40 pages, 3472 KB  
Review
The Current Development Status of Agricultural Machinery Chassis in Hilly and Mountainous Regions
by Renkai Ding, Xiangyuan Qi, Xuwen Chen, Yixin Mei and Anze Li
Appl. Sci. 2025, 15(13), 7505; https://doi.org/10.3390/app15137505 - 3 Jul 2025
Cited by 1 | Viewed by 1024
Abstract
The scenario adaptability of agricultural machinery chassis in hilly and mountainous regions has become a key area of innovation in modern agricultural equipment development in China. Due to the fragmented nature of farmland, steep terrain (often exceeding 15°), complex topography, and limited suitability [...] Read more.
The scenario adaptability of agricultural machinery chassis in hilly and mountainous regions has become a key area of innovation in modern agricultural equipment development in China. Due to the fragmented nature of farmland, steep terrain (often exceeding 15°), complex topography, and limited suitability for mechanization, traditional agricultural machinery experiences significantly reduced operational efficiency—typically by 30% to 50%—along with poor mobility. These limitations impose serious constraints on grain yield stability and the advancement of agricultural modernization. Therefore, enhancing the scenario-adaptive performance of chassis systems (e.g., slope adaptability ≥ 25°, lateral tilt stability > 30°) is a major research priority for China’s agricultural equipment industry. This paper presents a systematic review of the global development status of agricultural machinery chassis tailored for hilly and mountainous environments. It focuses on three core subsystems—power systems, traveling systems, and leveling systems—and analyzes their technical characteristics, working principles, and scenario-specific adaptability. In alignment with China’s “Dual Carbon” strategy and the unique operational requirements of hilly–mountainous areas (such as high gradients, uneven terrain, and small field sizes), this study proposes three key technological directions for the development of intelligent agricultural machinery chassis: (1) Multi-mode traveling mechanism design: Aimed at improving terrain traversability (ground clearance ≥400 mm, obstacle-crossing height ≥ 250 mm) and traction stability (slip ratio < 15%) across diverse landscapes. (2) Coordinated control algorithm optimization: Designed to ensure stable torque output (fluctuation rate < ±10%) and maintain gradient operation efficiency (e.g., less than 15% efficiency loss on 25° slopes) through power–drive synergy while also optimizing energy management strategies. (3) Intelligent perception system integration: Facilitating high-precision adaptive leveling (accuracy ± 0.5°, response time < 3 s) and enabling terrain-adaptive mechanism optimization to enhance platform stability and operational safety. By establishing these performance benchmarks and focusing on critical technical priorities—including terrain-adaptive mechanism upgrades, energy-drive coordination, and precision leveling—this study provides a clear roadmap for the development of modular and intelligent chassis systems specifically designed for China’s hilly and mountainous regions, thereby addressing current bottlenecks in agricultural mechanization. Full article
Show Figures

Figure 1

23 pages, 2350 KB  
Article
Comparative Evaluation of the Effects of Variable Spark Timing and Ethanol-Supplemented Fuel Use on the Performance and Emission Characteristics of an Aircraft Piston Engine
by Roussos Papagiannakis and Nikolaos Lytras
Energies 2025, 18(13), 3440; https://doi.org/10.3390/en18133440 - 30 Jun 2025
Viewed by 444
Abstract
Nowadays, there are many studies that have been conducted in order to reduce the emissions of modern reciprocating engines without, at the same time, having a negative impact on the performance characteristics. One method to accomplish that is by using ethanol-supplemented fuels instead [...] Read more.
Nowadays, there are many studies that have been conducted in order to reduce the emissions of modern reciprocating engines without, at the same time, having a negative impact on the performance characteristics. One method to accomplish that is by using ethanol-supplemented fuels instead of conventional gasoline. On the other side of the spectrum, spark timing is one of the most important parameters that affects the combustion mechanism inside a reciprocating engine and is basically controlled by the ignition advance of the engine. Therefore, the main purpose of this study is to investigate the effect of spark timing alteration on the performance characteristics and emissions of a modern reciprocating, naturally aspirated, aircraft SI engine (i.e., ROTAX 912s), operated under four different engine operating points (i.e., combination of engine speed and throttle opening), by using ethanol-supplemented fuel. The implementation of the aforementioned method is achieved through the use of an advanced simulating software (i.e., GT-POWER), which provides the user with the possibility to completely design a piston engine and parameterize it, by using a comprehensive single-zone phenomenological model, for any operating conditions in the entire range of its operating points. The predictive ability of the designed engine model is evaluated by comparing the results with the experimental values obtained from the technical manuals of the engine. For all test cases examined in the present work, the results are affiliated with important performance characteristics, i.e., brake power, brake torque, and brake-specific fuel consumption, as well as specific NO and CO concentrations. Thus, the primary objectives of this study were to examine and evaluate the results of the combination of using ethanol-supplemented fuel instead of gasoline and the alteration of the spark timing, to asses their effects on the basic performance characteristics and emissions of the aforementioned type of engine. By examining the results of this study, it is revealed that the increase in the ethanol concentration in the gasoline–ethanol fuel blend combined with the increase in the ignition advance might be an auspicious solution in order to meliorate both the performance and the environmental behavior of a naturally aspirated SI aircraft piston engine. In a nutshell, the outcoming results of this research show that the combination of the two methods examined may be a valuable solution if applied to existing reciprocating SI engines. Full article
(This article belongs to the Special Issue Internal Combustion Engine Performance 2025)
Show Figures

Figure 1

26 pages, 17582 KB  
Article
Effect Analysis of the V-Angle and Straight Edge Length on the Performance of V-Shaped Blades for a Savonius Hydrokinetic Turbine
by Bohan Wang, Xu Bai, Guoqiang Lei, Wen Zhang and Renwei Ji
J. Mar. Sci. Eng. 2025, 13(7), 1240; https://doi.org/10.3390/jmse13071240 - 27 Jun 2025
Cited by 2 | Viewed by 538
Abstract
This study investigated the performance of Savonius hydrokinetic turbine blades through three-dimensional computational fluid dynamics simulations conducted at a fixed tip speed ratio of 0.87. A multi-factor experimental design was employed to construct 45 V-shaped rotor blade models, systematically examining the effects of [...] Read more.
This study investigated the performance of Savonius hydrokinetic turbine blades through three-dimensional computational fluid dynamics simulations conducted at a fixed tip speed ratio of 0.87. A multi-factor experimental design was employed to construct 45 V-shaped rotor blade models, systematically examining the effects of a V-angle (30–140°) and straight-edge length (0.24 L–0.62 L) on hydrodynamic performance, where L = 25.46 mm (the baseline length of the straight edge). The results indicate that, as the V-angle and the straight-edge length vary independently, the performance of each blade first increases and then decreases. At TSR = 0.87, the maximum power coefficient (CP) of 0.2345 is achieved by the blade with a 70° V-Angle and a straight edge length of 0.335 L. Pressure and velocity field analyses reveal that appropriate geometric adjustments can optimize the high-pressure zone on the advancing blade and suppress negative torque on the returning blade, thereby increasing net output. The influence mechanisms of the V-angle and straight-edge length variations on blade performance were further explored and summarized through a comparative analysis of the vorticity characteristics. This study established a detailed performance dataset, providing theoretical and empirical support for V-shaped rotor blade design studies and offering engineering guidance for the effective use of low-flow hydropower. Full article
(This article belongs to the Special Issue Advances in Marine Engineering Hydrodynamics)
Show Figures

Figure 1

25 pages, 8320 KB  
Article
Transient Flow Pattern and Vortex Evolution During the Startup Process of Novel Tulip-Type Hydraulic Turbines
by Shanshan Wei, Meng Wang and Chuang Ren
J. Mar. Sci. Eng. 2025, 13(7), 1221; https://doi.org/10.3390/jmse13071221 - 25 Jun 2025
Viewed by 403
Abstract
The Computational Fluid Dynamics (CFD) method is used to analyze the transient flow patterns and vortex evolution during the startup process of a novel tulip-type hydraulic turbine rotor. The model is validated with experimental results for the rotor’s torque and power coefficients. The [...] Read more.
The Computational Fluid Dynamics (CFD) method is used to analyze the transient flow patterns and vortex evolution during the startup process of a novel tulip-type hydraulic turbine rotor. The model is validated with experimental results for the rotor’s torque and power coefficients. The results show that the tulip-type rotor exhibits unique flow patterns compared to the traditional rotor. Vortices at different locations around the rotor influence the startup moment, either enhancing or suppressing it. Vortices downstream of the rotor form on the convex side of the blades, creating negative pressure that enhances startup and rotational performance. The expanded top design of the tulip-type rotor substantially improves startup performance through four distinct aspects: smoothly guiding incoming flow, dissipating gap vortices, clearing vortices to prevent blockage, and enhancing fluid-blade interaction to increase energy conversion efficiency. These characteristics of transient flow patterns and vortex evolution reveal the startup mechanism of the tulip-type rotor, providing a foundation for understanding the fluid dynamics of novel rotor designs and supporting the optimization of hydraulic turbine performance. Full article
Show Figures

Figure 1

17 pages, 3568 KB  
Article
Multi-Objective Optimal Control of Variable Speed Alternating Current-Excited Pumped Storage Units Considering Electromechanical Coupling Under Grid Voltage Fault
by Tao Liu, Yu Lu, Xiaolong Yang, Ziqiang Man, Wei Yan, Teng Liu, Changjiang Zhan, Xingwei Zhou and Tianyu Fang
Energies 2025, 18(11), 2750; https://doi.org/10.3390/en18112750 - 26 May 2025
Viewed by 430
Abstract
Variable Speed AC-excited Pumped Storage Units (VSACPSUs) demonstrate advantages in flexibility, high efficiency, and fast response, and they play a crucial regulatory role in power systems with increasing renewable energy penetration. Typically connected to weak grids, conventional low-voltage ride-through (LVRT) control methods for [...] Read more.
Variable Speed AC-excited Pumped Storage Units (VSACPSUs) demonstrate advantages in flexibility, high efficiency, and fast response, and they play a crucial regulatory role in power systems with increasing renewable energy penetration. Typically connected to weak grids, conventional low-voltage ride-through (LVRT) control methods for these units suffer from single control objectives, poor adaptability, and neglect of electromechanical coupling characteristics. To address these limitations, this paper proposes a multi-objective optimization strategy considering electromechanical coupling under a grid voltage fault. Firstly, a positive/negative-sequence mathematical model of doubly-fed machines is established. Based on stator winding power expressions, the operational characteristics under a grid fault are analyzed, including stator current imbalance as well as oscillation mechanisms of active power, reactive power, and electromagnetic torque. Considering the differences in rotor current references under different control objectives, a unified rotor current reference expression is constructed by introducing a time-varying weighting factor according to expression characteristics and electromechanical coupling properties. The weighting factor can be dynamically adjusted based on operating conditions and grid requirements using turbine input power, grid current unbalance, and voltage dip depth as key indicators to achieve adaptive control optimization. Finally, a multi-objective optimization model incorporating coupling characteristics and operational requirements is developed. Compared with conventional methods, the proposed strategy demonstrates enhanced adaptability and significantly improved low-voltage ride-through performance. Simulation results verify its effectiveness. Full article
Show Figures

Figure 1

28 pages, 8860 KB  
Article
Active Torsional Vibration Suppression Strategy for Power-Split-HEV Driveline System Based on Dual-Loop Control
by Wei Zhang, Xiaocong Liang, Zhengda Han, Lei Bu, Jingang Liu, Bing Fu and Mozhang Jiang
Machines 2025, 13(5), 418; https://doi.org/10.3390/machines13050418 - 15 May 2025
Viewed by 808
Abstract
Power-split hybrid electric vehicles (power-split-HEVs) exhibit significant engine torque fluctuations due to their mechanical coupling with the driveline, leading to pronounced torsional vibration issues in the drive shaft. This study investigates an active torsional vibration suppression strategy based on drive motor control. First, [...] Read more.
Power-split hybrid electric vehicles (power-split-HEVs) exhibit significant engine torque fluctuations due to their mechanical coupling with the driveline, leading to pronounced torsional vibration issues in the drive shaft. This study investigates an active torsional vibration suppression strategy based on drive motor control. First, a dynamic model of the power-split-HEV driveline is established, and its intrinsic characteristics are analyzed. Subsequently, an engine excitation torque model is developed to identify the dominant response orders, while a vehicle dynamics model is constructed to elucidate the torsional vibration mechanisms in both hybrid and pure electric driving modes. Next, a torsional vibration feedback control framework is proposed, utilizing the electric motor as a secondary-channel torque disturbance compensator. Furthermore, a novel frequency-decoupled dual-loop control framework is proposed, with rigorous derivation of the sufficient conditions for decoupling. Based on this framework, two distinct vibration suppression algorithms are developed for the secondary-loop controller, each tailored for specific operational modes. Finally, the proposed algorithms are validated through simulation and hardware-in-the-loop (HIL) testing. The results demonstrate a torque fluctuation suppression ratio of up to 72.2%, confirming that the active suppression algorithm effectively mitigates driveline torsional vibration induced by engine harmonic torque disturbances. Full article
(This article belongs to the Special Issue Advances in Dynamic Analysis of Multibody Mechanical Systems)
Show Figures

Figure 1

19 pages, 10208 KB  
Article
Research on the Characteristics of a Range-Extended Hydraulic–Electric Hybrid Drive System for Tractor Traveling Systems
by Hanwen Wu, Long Quan, Yunxiao Hao, Zhijie Pan and Songtao Xie
Energies 2025, 18(8), 2075; https://doi.org/10.3390/en18082075 - 17 Apr 2025
Cited by 1 | Viewed by 807
Abstract
Pure electric tractors face challenges in complex operating conditions, including the excessive peak motor torque caused by frequent start–stop cycles and insufficient energy utilization. To address these issues, this study proposes a hydraulic–electric hybrid drive system for tractor traveling systems which is based [...] Read more.
Pure electric tractors face challenges in complex operating conditions, including the excessive peak motor torque caused by frequent start–stop cycles and insufficient energy utilization. To address these issues, this study proposes a hydraulic–electric hybrid drive system for tractor traveling systems which is based on a range-extended hybrid architecture. By combining the high-torque characteristics of hydraulic drive systems with the high control precision of electric motors, a hydraulic–electric dual-power coupling model was constructed. A logic-threshold-based operating mode division strategy and a hierarchical braking energy recovery mechanism were developed. The start–stop control dynamics and energy recovery efficiency of the system during plowing and transport operations were thoroughly analyzed. The simulation results demonstrate that while maintaining its acceleration and braking performance, the proposed system achieves 18.8% and 35.7% reductions in its peak motor torque during plowing and transport operations, respectively. Its braking energy recovery efficiency improved to 48.3% and 66.4% in the two scenarios; 18.5% and 25.7% reductions in overall energy consumption were seen. Full article
Show Figures

Figure 1

25 pages, 19035 KB  
Article
The Design, Analysis, and Verification of an Axial Flux Permanent Magnet Motor with High Torque Density
by Dapeng Quan, Caiting He, Chenyuan Li, Zeming Zhao, Xiaoze Yang, Limei Ma, Mingyang Li, Yong Zhao and Hongtao Wu
Appl. Sci. 2025, 15(6), 3327; https://doi.org/10.3390/app15063327 - 18 Mar 2025
Viewed by 2452
Abstract
Aiming at the defects of long axial size and low torque density of the existing radial flux permanent magnet motor, this paper proposes an axial flux permanent magnet synchronous motor (AFPMM) with a double-stator and single-rotor structure based on the design requirements of [...] Read more.
Aiming at the defects of long axial size and low torque density of the existing radial flux permanent magnet motor, this paper proposes an axial flux permanent magnet synchronous motor (AFPMM) with a double-stator and single-rotor structure based on the design requirements of the motor for mechanical dogs’ electric drive joints. The finite element method is employed to evaluate the static magnetic field, load characteristics, and associated losses. The analysis indicates that the average magnetic flux density in the air gap reaches approximately 0.95 T, with a rated torque of around 2.72 N.m, a peak torque of 7.6 N.m, and an efficiency of approximately 87.73%. The electromagnetic torque model is developed using the Maxwell tensor method, allowing for the effects of critical structural parameters on torque to be investigated. By optimizing the design for torque density, an improvement of nearly 20% is achieved. A prototype was fabricated and tested, demonstrating good agreement between simulation and experimental results. This research introduces a novel approach for designing axial flux motors with high torque and power densities. Full article
Show Figures

Figure 1

20 pages, 9264 KB  
Article
Research on Fuel Economy of Hydro-Mechanical Continuously Variable Transmission Rotary-Tilling Tractor
by Mingzhu Zhang, Ningning Wang and Sikang Zhou
Energies 2025, 18(6), 1490; https://doi.org/10.3390/en18061490 - 18 Mar 2025
Cited by 1 | Viewed by 520
Abstract
In response to the absence of an effective variable speed control strategy for tractors equipped with hydro-mechanical continuously variable transmission (HMCVT) during rotary-tillage operations, this study investigates the power transfer and fuel economy characteristics of the rotary-tilling tractor during operation. A dynamic analysis [...] Read more.
In response to the absence of an effective variable speed control strategy for tractors equipped with hydro-mechanical continuously variable transmission (HMCVT) during rotary-tillage operations, this study investigates the power transfer and fuel economy characteristics of the rotary-tilling tractor during operation. A dynamic analysis of the rotary-tilling tractor is conducted, and a dynamic model for the rotary-tilling tractor is developed. This model comprehensively incorporates factors such as the transmission efficiency of the HMCVT, the horizontal cutting force of the rotary tillage, and the torque coupling relationships between the various transmission subsystems and utilizes a backward modeling approach with dual inputs: walking load and rotary-tillage load. Based on the measured data of the effective fuel consumption rate from 64 engine groups within the study, a BP neural network model of the engine’s fuel characteristics is developed. Furthermore, it is proposed that fuel consumption per kilometer of rotary-tillage operation be used to characterize the fuel economy of the rotary-tilling tractor. The results demonstrate that the increase in forward speed concurrently enhances both the productivity and fuel economy of the rotary-tilling tractor. This finding provides a theoretical foundation for developing a variable speed control strategy for the rotary-tilling tractor. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

20 pages, 2954 KB  
Article
Research on Mode Shift Control of Multimode Hybrid Systems Based on Hybrid Model Prediction
by Xinxin Zhao, Jiadian Liu and Bing Li
World Electr. Veh. J. 2025, 16(3), 177; https://doi.org/10.3390/wevj16030177 - 17 Mar 2025
Viewed by 563
Abstract
A hybrid mining dump truck contains multiple power sources and has a variety of operating modes. When the vehicle switches between different operating modes, inappropriate control strategies will result in insufficient power or excessive output torque ripple. The resulting vehicle shock and the [...] Read more.
A hybrid mining dump truck contains multiple power sources and has a variety of operating modes. When the vehicle switches between different operating modes, inappropriate control strategies will result in insufficient power or excessive output torque ripple. The resulting vehicle shock and the dynamic characteristics of the dynamic clutch mechanism will affect ride comfort. In order to improve the performance of the hybrid mining dump truck in the mode switching process as much as possible, this paper takes power-split hybrid special transmission as the research object and proposes a hybrid model predictive control (HMPC) strategy. However, the simulation time of the HMPC algorithm is about 27% less than that of the MPC algorithm. HMPC can significantly shorten the control time while improving the vehicle ride comfort, reducing the sliding friction work during mode switching, and improving the real-time and robustness of mode switching. Full article
Show Figures

Figure 1

Back to TopTop