Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = meandered resonator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1322 KiB  
Article
A Compact Implantable Multiple-Input-Multiple-Output Antenna for Biotelemetry and Sensing Applications
by Jamel Smida, Mohamed Karim Azizi, Anandh Sam Chandra Bose and Mohamed I. Waly
Sensors 2025, 25(11), 3323; https://doi.org/10.3390/s25113323 - 25 May 2025
Viewed by 528
Abstract
Gastrointestinal (GI) tract diseases are among the most common diseases in the world, resulting in more than 8 million deaths. The majority of these deaths occur due to cancer or tumors. Early detection of these tumors can greatly lower the mortality rate. In [...] Read more.
Gastrointestinal (GI) tract diseases are among the most common diseases in the world, resulting in more than 8 million deaths. The majority of these deaths occur due to cancer or tumors. Early detection of these tumors can greatly lower the mortality rate. In this work, an implantable multiple-input-multiple-output (MIMO) antenna sensor is constructed for GI tract devices to detect the tumor. The implantable MIMO antenna sensor has two embedded antennas, each operating at 915 MHz. Both elements of the system are placed 0.6 mm apart from each other (edge-to-edge). The volume consumed by this design is measured to be 7 × 7 × 0.25 = 12.25 mm3. It occupies a very small volume due to miniaturization achieved using meandered resonating structures and a high-permittivity substrate. It maintains stable radiation performance (gain = −26.2 dBi at resonance). The antenna units are decoupled by maintaining a proper gap between them and adding a slot on the bottom side. An isolation level greater than 28.7 dB is achieved using these approaches. Since the MIMO system utilizes two antenna elements, its effectiveness is verified using MIMO parameters. At SNR = 20 dB, the channel capacity reaches 8.75 bps/Hz. The proposed antenna ensures high channel capacity and enables seamless communication while simultaneously acting as a sensor to monitor internal changes in the observed region. The frequency response change with variations in the permittivity of human tissue, enabling its sensing capability. Moreover, the antenna sensor maintains stable radiation and S-parameter performance throughout the sensing mechanism. Thus, the proposed solution is suitable for biomedical implants requiring both high-data-rate communication and sensing. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

11 pages, 6538 KiB  
Communication
Dual-Functional Cross-Meandering Resonator for Power Frequency Electromagnetic Shielding and Wireless Sensing Communication
by Fengyuan Gan, Xiangshuo Shang, Xuelei Yang, Shuo Li, Yi Zhou and Wei Li
Sensors 2024, 24(17), 5615; https://doi.org/10.3390/s24175615 - 29 Aug 2024
Cited by 1 | Viewed by 3598
Abstract
The research on MEMS wireless sensing technology adapted to strong power frequency electromagnetic field environments is of great significance to our energy security, economic society, and even national security. Here, we propose a subwavelength cross-meandering resonator (0.49λ0 × 0.49λ0 [...] Read more.
The research on MEMS wireless sensing technology adapted to strong power frequency electromagnetic field environments is of great significance to our energy security, economic society, and even national security. Here, we propose a subwavelength cross-meandering resonator (0.49λ0 × 0.49λ0) to simultaneously achieve power frequency electromagnetic field shielding and wireless communication signal transmission. The element size of the resonator is only λ0/11, which is much smaller than that of previous works. In the resonator, a resonance mode with the significant near-field enhancement effect (about 180 times that at f = 1 GHz) is supported. Based on the self-made shielding box experimental setup, the measured shielding effectiveness of the resonator sample can reach more than 33 dB. Moreover, by integrating the cross-meandering resonator with the MEMS sensor, a wireless communication signal can be successfully transmitted. A dual-function cross-meandering resonator integrated with sensors may find potential applications in many military and civilian industries associated with strong power frequency electromagnetic fields. Full article
(This article belongs to the Special Issue Antenna Technologies for Wireless Sensing and Communications)
Show Figures

Figure 1

18 pages, 4551 KiB  
Article
Miniaturized Microstrip Dual-Channel Diplexer Based on Modified Meander Line Resonators for Wireless and Computer Communication Technologies
by Yaqeen Sabah Mezaal, Shahad K. Khaleel, Ban M. Alameri, Kadhum Al-Majdi and Aqeel A. Al-Hilali
Technologies 2024, 12(5), 57; https://doi.org/10.3390/technologies12050057 - 24 Apr 2024
Cited by 9 | Viewed by 2723
Abstract
There has been a lot of interest in microstrip diplexers lately due to their potential use in numerous wireless and computer communication technologies, including radio broadcasts, mobile phones, broadband wireless, and satellite-based communication systems. It can do this because it has a communication [...] Read more.
There has been a lot of interest in microstrip diplexers lately due to their potential use in numerous wireless and computer communication technologies, including radio broadcasts, mobile phones, broadband wireless, and satellite-based communication systems. It can do this because it has a communication channel that can combine two distinct filters into one. This article presents a narrow-band microstrip diplexer that uses a stepped impedance resonator, a uniform impedance resonator, tiny square patches, and a meander line resonator. The projected diplexer might be made smaller than its initial dimensions by utilizing the winding construction. To model the microstrip diplexer topology for WiMAX and WIFI/WLAN at 1.66 GHz and 2.52 GHz, the Advanced Wave Research (AWR) solver was employed. It exhibited an insertion loss of 3.2 dB and a return loss of 16 dB for the first channel, while the insertion loss and return loss were 2.88 dB and 21 dB, respectively, for the second channel. When both filters were simulated, the band isolation was 31 dB. The projected microstrip diplexer has been fabricated using an FR4 epoxy laminate with dimensions of 32 × 26 mm2. The simulated S-parameters phase and group delay closely matched the measurements. Full article
Show Figures

Figure 1

49 pages, 29860 KiB  
Review
Planar Printed Structures Based on Matryoshka Geometries: A Review
by Alfredo Gomes Neto, Jefferson Costa e Silva, Joabson Nogueira de Carvalho and Custódio Peixeiro
Micromachines 2024, 15(4), 469; https://doi.org/10.3390/mi15040469 - 29 Mar 2024
Cited by 4 | Viewed by 1505
Abstract
A review on planar printed structures that are based on Matryoshka-like geometries is presented. These structures use the well-known principle of Matryoshka dolls that are successively nested inside each other. The well-known advantages of the planar printed technology and of the meandered nested [...] Read more.
A review on planar printed structures that are based on Matryoshka-like geometries is presented. These structures use the well-known principle of Matryoshka dolls that are successively nested inside each other. The well-known advantages of the planar printed technology and of the meandered nested Matryoshka geometries are combined to generate miniaturized, multi-resonance, and/or wideband configurations. Both metal and complementary slot structures are considered. Closed and open configurations were analyzed. The working principles were explored in order to obtain physical insight into their behavior. Low-cost and single-layer applications as frequency-selective surfaces, filters, antennas, and sensors, in the microwave frequency region, were reviewed. Potential future research perspectives and new applications are then discussed. Full article
(This article belongs to the Special Issue Recent Advances in Electromagnetic Devices)
Show Figures

Figure 1

17 pages, 4852 KiB  
Article
A Novel Compact Broadband Quasi-Twisted Branch Line Coupler Based on a Double-Layered Microstrip Line
by Fayyadh H. Ahmed, Rola Saad and Salam K. Khamas
Micromachines 2024, 15(1), 142; https://doi.org/10.3390/mi15010142 - 17 Jan 2024
Cited by 6 | Viewed by 1952
Abstract
A novel quasi-twisted miniaturized wideband branch line coupler (BLC) is proposed. The design is based on bisecting the conventional microstrip line BLC transversely and folding bisected sections on double-layered substrates with a common ground plane in between. The input and output terminals, each [...] Read more.
A novel quasi-twisted miniaturized wideband branch line coupler (BLC) is proposed. The design is based on bisecting the conventional microstrip line BLC transversely and folding bisected sections on double-layered substrates with a common ground plane in between. The input and output terminals, each with a length of λg/4, and the pair of quarter-wavelength horizontal parallel arms are converted into a Z-shaped meandered microstrip line in the designed structure. Conversely, the pair of quarter-wavelength vertical arms are halved into two lines and transformed into a periodically loaded slow-wave structure. The bisected parts of the BLC are placed on the opposite side of the doubled-layer substrate and connected through four vias passing through the common ground plane. This technique enabled a compact BLC size of 6.4 × 18 mm2, which corresponds to a surface area miniaturization by ~50% as compared to the classical BLC size of 10 × 23 mm2 at 6 GHz. Moreover, the attained relative bandwidth is 73.9% (4.6–10 GHz) for S11, S33, S21, and the phase difference between outputs (∠S21 − ∠S41). However, if a coupling parameter (S41) of up to −7.5 dB is considered, then the relative bandwidth reduces to 53.9% (4.6–10 GHz) for port 1 as the input. Similarly, for port 3 as the input, the obtained bandwidth is 75.8% (4.5–10 GHz) for S33, S11, S43, and the phase difference between outputs (∠S43 − ∠S23). Likewise, this bandwidth reduces to 56% (4.5–8 GHz) when a coupling parameter (S23) of up to −7.5 dB is considered. In contrast, the relative bandwidth for the ordinary BLC is 41% at the same resonant frequency. The circuit is constructed on a double-layered low-cost FR4 substrate with a relative permittivity of 4.3 and a loss tangent of 0.025. An isolation of −13 dB was realized in both S13 and S31 demonstrating an excellent performance. The transmission coefficients between input/output ports S21, S41, S23, and S43 are between −3.1 dB to −3.5 dB at a frequency of 6 GHz. Finally, the proposed BLC provides phase differences between output ports of 90.5° and 94.8° at a frequency of 6 GHz when the input ports 1 and 3 are excited, respectively. The presented design offers the potential of being utilized as a unit cell for building a Butler matrix (BM) for sub-6 GHz 5G beamforming networks. Full article
(This article belongs to the Special Issue Recent Advances in Electromagnetic Devices)
Show Figures

Figure 1

19 pages, 5900 KiB  
Article
A Fast Surrogate Model-Based Algorithm Using Multilayer Perceptron Neural Networks for Microwave Circuit Design
by Mohammad (Behdad) Jamshidi, Salah I. Yahya, Saeed Roshani, Muhammad Akmal Chaudhary, Yazeed Yasin Ghadi and Sobhan Roshani
Algorithms 2023, 16(7), 324; https://doi.org/10.3390/a16070324 - 30 Jun 2023
Cited by 10 | Viewed by 1999
Abstract
This paper introduces a novel algorithm for designing a low-pass filter (LPF) and a microstrip Wilkinson power divider (WPD) using a neural network surrogate model. The proposed algorithm is applicable to various microwave devices, enhancing their performance and frequency response. Desirable output parameters [...] Read more.
This paper introduces a novel algorithm for designing a low-pass filter (LPF) and a microstrip Wilkinson power divider (WPD) using a neural network surrogate model. The proposed algorithm is applicable to various microwave devices, enhancing their performance and frequency response. Desirable output parameters can be achieved for the designed LPF and WPD by using the proposed algorithm. The proposed artificial neural network (ANN) surrogate model is employed to calculate the dimensions of the LPF and WPD, resulting in their efficient design. The LPF and WPD designs incorporate open stubs, stepped impedances, triangular-shaped resonators, and meandered lines to achieve optimal performance. The compact LPF occupies a size of only 0.15 λg × 0.081 λg, and exhibits a sharp response within the transmission band, with a sharpness parameter of approximately 185 dB/GHz. The designed WPD, operating at 1.5 GHz, exhibits outstanding harmonics suppression from 2 GHz to 20 GHz, with attenuation levels exceeding 20 dB. The WPD successfully suppresses 12 unwanted harmonics (2nd to 13th). The obtained results demonstrate that the proposed design algorithm effectively accomplishes the LPF and WPD designs, exhibiting desirable parameters such as operating frequency and high-frequency harmonics suppression. The WPD demonstrates a low insertion loss of 0.1 dB (S21 = 0.1 dB), input and output return losses exceeding 30 dB (S11 = −35 dB, S22 = −30 dB), and an output ports isolation of more than 32 dB (S23 = −32 dB), making it suitable for integration into modern communication systems. Full article
Show Figures

Figure 1

16 pages, 10028 KiB  
Article
1-Bit Hexagonal Meander-Shaped Wideband Electronically Reconfigurable Transmitarray for Satellite Communications
by Qasim Ali, Yu Xiao, Shozab Shafiq, Wenhao Tan, Waseem Shahzad, Syed Muzahir Abbas and Houjun Sun
Electronics 2023, 12(9), 1957; https://doi.org/10.3390/electronics12091957 - 22 Apr 2023
Cited by 1 | Viewed by 2048
Abstract
This paper proposes a hexagonal meander-shaped wideband electronically reconfigurable transmitarray (HMRTA) at Ku band for satellite communications and radar applications. The proposed transmitarray offers high gain, low profile, and wideband characteristics with beam-scanning and beam-forming features. The cascaded structure is a low-profile and [...] Read more.
This paper proposes a hexagonal meander-shaped wideband electronically reconfigurable transmitarray (HMRTA) at Ku band for satellite communications and radar applications. The proposed transmitarray offers high gain, low profile, and wideband characteristics with beam-scanning and beam-forming features. The cascaded structure is a low-profile and compact transmitarray. The transmitter (Tx) layer has an angular hexagonal patch with a meandered shape and resonating parasitic patches to enhance the bandwidth. The receiver (Rx) layer comprises a two-part hexagonal receiver patch and a dual ring impedance-matching receiver layer. The current reversal phenomena have executed the 180° phase shift by integrating two diodes in opposite directions. The measured results of a unit cell achieve a minimum insertion loss of 0.86 dB and 0.92 dB for state I and state II. The maximum insertion loss is 2.58 dB from 14.12 GHz to 18.02 GHz and is about 24.83% at 16.5 GHz. The full-wave simulations of a 20 × 20 space-fed reconfigurable transmitarray were performed. Good radiation patterns at all scanning angles of two principal planes are achieved, and the cross-polarization level remains less than −20 dB. The simulated 3 dB gain fluctuation bandwidth of the array is 15.85~18.35 GHz, and the wideband characteristics are verified. The simulation results show that the array can perform beam scanning ±60° in the elevation (y-z) plane and obtain the beam-scanning characteristics for ±60° in the Azimuth (x-z) plane. Full article
(This article belongs to the Special Issue Sparse Array Design, Processing and Application)
Show Figures

Figure 1

13 pages, 10360 KiB  
Article
Low-Profile FSS Design Methodology to Increase Isolation between Vehicle-Borne Multifrequency Antennas
by Ailyn Estévez, Noemí Pérez, Daniel Valderas and Juan I. Sancho
Appl. Sci. 2023, 13(7), 4187; https://doi.org/10.3390/app13074187 - 25 Mar 2023
Cited by 2 | Viewed by 2301
Abstract
The present work describes a new approach for the design of a Frequency-Selective Surface (FSS) in the context of frequency filters to increase isolation between two vehicle-borne antennas. A compact FSS design based on nested square meandered resonators is optimized for multifrequency operation. [...] Read more.
The present work describes a new approach for the design of a Frequency-Selective Surface (FSS) in the context of frequency filters to increase isolation between two vehicle-borne antennas. A compact FSS design based on nested square meandered resonators is optimized for multifrequency operation. Furthermore, a design workflow is proposed. In general, the measurement of low-profile FSS does not correspond to simulation through Floquet modes based on periodic boundary conditions due to the lack of uniformity of mutual coupling among the FSS unit cells. The proposed method demonstrates the agreement between the infinite simulation and the measurement of the finite prototype once a convenient scale factor is applied, which facilitates the design workflow. In this case, an FSS is used as an efficient filter to increase the isolation between antennas by 6 dB in three representative bands (3GPP, WiFI I and II). In this way, multifrequency antennas can be placed at approximately half their actual distance with the same performance in spatial-constrained vehicular environments. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

17 pages, 10679 KiB  
Article
Low-Profile Meander Line Multiband Antenna for Wireless Body Area Network (WBAN) Applications with SAR Analysis
by Tania Islam and Sayan Roy
Electronics 2023, 12(6), 1416; https://doi.org/10.3390/electronics12061416 - 16 Mar 2023
Cited by 10 | Viewed by 3017
Abstract
In this work, we propose a novel multiband meander line antenna that can operate at three different frequency bands and offer suitable performance for wireless body area network (WBAN) applications. The net geometry of the antenna is 36 × 30 × 1.524 mm [...] Read more.
In this work, we propose a novel multiband meander line antenna that can operate at three different frequency bands and offer suitable performance for wireless body area network (WBAN) applications. The net geometry of the antenna is 36 × 30 × 1.524 mm3. The proposed low-profile antenna is analytically modeled and designed in full wave ANSYS HFSS using Rogers TMM4 as the substrate, followed by in-lab prototyping. The designed antenna resonates at 4.5 GHz, 5 GHz, and 5.8 GHz and maintains positive gain, efficiency, and acceptable specific absorption rates at each resonant band. The effectiveness of the antenna for WBAN applications is demonstrated using an in-lab manufactured phantom. The fabrication process of the phantom is described, and dielectric characterization of the phantom mimicking different human tissue layers is presented. Considering results with and without human body phantoms available in the full wave ANSYS HFSS tool, a comparative analysis between simulated and measured antenna parameters concludes this work. Both the simulated and measured results show good agreement. Full article
Show Figures

Figure 1

9 pages, 2330 KiB  
Article
Radio Frequency Identification Temperature/CO2 Sensor Using Carbon Nanotubes
by Ayesha Habib, Safia Akram, Mohamed R. Ali, Taseer Muhammad, Sajeela Zainab and Shafia Jehangir
Nanomaterials 2023, 13(2), 273; https://doi.org/10.3390/nano13020273 - 9 Jan 2023
Cited by 12 | Viewed by 2570
Abstract
In the world of digitization, different objects cooperate with the Internet of Things (IoT); these objects also amplify using sensing and data processing structures. Radio frequency identification (RFID) has been identified as a key enabler technology for IoT. RFID technology has been used [...] Read more.
In the world of digitization, different objects cooperate with the Internet of Things (IoT); these objects also amplify using sensing and data processing structures. Radio frequency identification (RFID) has been identified as a key enabler technology for IoT. RFID technology has been used in different conventional applications for security, goods storage, transportation and asset management. In this paper, a fully inkjet-printed chipless radio frequency identification (RFID) sensor tag is presented for the wireless identification of tagged objects. The dual polarized tag consists of two resonating structures functioning wirelessly. One resonator works for encoding purpose and other resonator is used as a CO2/temperature sensor. The sensing behavior of the tag relies on the integration of a meandered structure comprising of multi-wall carbon nanotubes (MWCNT). The MWCNT is highly sensitive to CO2 gas. The backscattered response of the square-shaped cascaded split ring resonators (SRR) is analyzed through a radar cross-section (RCS) curve. The overall tag dimension is 42.1 mm × 19.5 mm. The sensing performance of the tag is examined and optimized for two different flexible substrates, i.e., PET and Kapton®HN. The flexible tag structure has the capability to transmit 5-bit data in the frequency bands of 2.36–3.9 GHz and 2.37–3.89 GHz, for PET and Kapton®HN, respectively. The proposed chipless RFID sensor tag does not require any microchip or a power source, so it has a great potential for low-cost and automated temperature/CO2 sensing applications. Full article
(This article belongs to the Special Issue Gas Sensor Based on Carbon Nanomaterials)
Show Figures

Figure 1

18 pages, 7606 KiB  
Article
Compact Quad Band MIMO Antenna Design with Enhanced Gain for Wireless Communications
by Sanjukta Nej, Anumoy Ghosh, Sarosh Ahmad, Adnan Ghaffar and Mousa Hussein
Sensors 2022, 22(19), 7143; https://doi.org/10.3390/s22197143 - 21 Sep 2022
Cited by 23 | Viewed by 3141
Abstract
In this paper, a novel microstrip line-fed meander-line-based four-elements quad band Multiple Input and Multiple Output (MIMO) antenna is proposed with a gain enhancement technique. The proposed structure resonates at four bands simultaneously, that is, 1.23, 2.45, 3.5 and 4.9 GHz, which resemble [...] Read more.
In this paper, a novel microstrip line-fed meander-line-based four-elements quad band Multiple Input and Multiple Output (MIMO) antenna is proposed with a gain enhancement technique. The proposed structure resonates at four bands simultaneously, that is, 1.23, 2.45, 3.5 and 4.9 GHz, which resemble GPS L2, Wi-Fi, Wi-MAX and WLAN wireless application bands, respectively. The unit element is extended to four elements MIMO antenna structure exhibiting isolation of more than 22 dB between the adjacent elements without disturbing the resonant frequencies. In order to enhance the gain, two orthogonal microstrip lines are incorporated between the antenna elements which result in significant gain improvement over all the four resonances. Furthermore, the diversity performance of the MIMO structure is analyzed. The Envelope Co-Relation Coefficient (ECC), Diversity Gain (DG), Channel Capacity Loss (CCL), Mean Effective Gain (MEG) and Multiplexing Efficiency are obtained as 0.003, 10 dB, 0.0025 bps/Hz, −3 dB (almost) and 0.64 (min.), respectively, which are competent and compatible with practical wireless applications. The Total Active Reflection Coefficient (TARC) resembles the characteristic of the individual antenna elements. The layout area of the overall MIMO antenna is 0.33 λ × 0.29 λ, where λ is the free-space wavelength corresponding to the lowest resonance. The advantage of the proposed structure has been assessed by comparing it with previously reported MIMO structures based on number of antenna elements, isolation, gain, CCL and compactness. A prototype of the proposed MIMO structure is fabricated, and the measured results are found to be aligned with the simulated results. Full article
(This article belongs to the Special Issue Antenna Design and Sensors for Internet of Things)
Show Figures

Figure 1

21 pages, 5434 KiB  
Article
Body-Centered Double-Square Split-Ring Enclosed Nested Meander-Line-Shaped Metamaterial-Loaded Microstrip-Based Resonator for Sensing Applications
by Air Mohammad Siddiky, Mohammad Rashed Iqbal Faruque, Mohammad Tariqul Islam, Sabirin Abdullah, Mayeen Uddin Khandaker, Nissren Tamam and Abdelmoneim Sulieman
Materials 2022, 15(18), 6186; https://doi.org/10.3390/ma15186186 - 6 Sep 2022
Cited by 4 | Viewed by 2279
Abstract
The strong localization of the electric and magnetic fields in metamaterial-based structures has attracted a new era of radiation fields in the microwave range. In this research work, we represent a double split ring enclosed nested meander-line-shaped metamaterial resonator with a high effective [...] Read more.
The strong localization of the electric and magnetic fields in metamaterial-based structures has attracted a new era of radiation fields in the microwave range. In this research work, we represent a double split ring enclosed nested meander-line-shaped metamaterial resonator with a high effective medium ratio layered on a dielectric substrate to enhance the sensitivity for the material characterization. Tailoring a metallic design and periodical arrangement of the split ring resonator in a subwavelength range introduced field enhancement and strong localization of the electromagnetic field. The design methodology is carried out through the optimization technique with different geometric configurations to increase the compactness of the design. The CST microwave studio is utilized for the extraction of the scattering computational value within the defined boundary condition. The effective parameters from the reflection and transmission coefficient are taken into account to observe the radiation characteristics for the interaction with the applied electromagnetic spectrum. The proposed metamaterial-based sensor exhibits high sensitivity for different dielectric materials with low permittivity values. The numerical data of the frequency deviation for the different dielectric constants have shown good agreement using the linear regression analysis where the sensitivity is R2 = 0.9894 and the figure of merit is R2 = 0.9978. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

13 pages, 5118 KiB  
Communication
Low Profile Monopole Meander Line Antenna for WLAN Applications
by Husam Hamid Ibrahim, Mandeep Jit Singh, Samir Salem Al-Bawri, Sura Khalil Ibrahim, Mohammad Tariqul Islam, Mohamed S. Soliman and Md Shabiul Islam
Sensors 2022, 22(16), 6180; https://doi.org/10.3390/s22166180 - 18 Aug 2022
Cited by 7 | Viewed by 2608
Abstract
An antenna assumes a significant role in expanding the levels of communication to meet the demands of contemporary technologically based industry and private data services. In this paper, a printed compact meander line patch antenna array for wireless local-area network (WLAN) applications in [...] Read more.
An antenna assumes a significant role in expanding the levels of communication to meet the demands of contemporary technologically based industry and private data services. In this paper, a printed compact meander line patch antenna array for wireless local-area network (WLAN) applications in the frequency span of 2.3685–2.4643 GHz is presented. The impedance matching of the antenna is generated by applying a partial rectangular-shaped ground plane backside of the meander line antenna. The proposed antenna evolved on the Rogers RT5880 substrate with a dielectric permittivity of 2.2, and the height of the substrate was 1.575 mm to accomplish the lowest possible return loss. The proposed antenna was developed to achieve particular outcomes, for example, voltage standing wave ratio (VSWR) 1.32, reflection coefficient 20 dB with a bandwidth of 94.2 MHz, a gain of 2.8 dBi, and an efficacy measurement of 97%. This antenna is appropriate for WLAN applications that utilize a 2.4 GHz resonance frequency. The overall dimensions of the antenna are 15 mm × 90.86 mm. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

11 pages, 28404 KiB  
Article
Development of a Novel Gear-like Disk Resonator Applied in Gyroscope
by Liutao Gu, Weiping Zhang, Jun Feng and Zhihan Zhang
Appl. Sci. 2022, 12(14), 7342; https://doi.org/10.3390/app12147342 - 21 Jul 2022
Cited by 3 | Viewed by 1917
Abstract
This paper proposes a novel gear-like disk resonator (GDR). The design, fabrication, and characterization of GDR are presented. In comparison with a ring-like disk resonator (RDR), a GDR replaces the circular rings with meander-shaped rings consisting of linear beams. The finite element method [...] Read more.
This paper proposes a novel gear-like disk resonator (GDR). The design, fabrication, and characterization of GDR are presented. In comparison with a ring-like disk resonator (RDR), a GDR replaces the circular rings with meander-shaped rings consisting of linear beams. The finite element method (FEM) is implemented, and the simulation results show that the GDR has a much lower frequency and effective stiffness, higher quality factor (Q), and better immunity to crystal orientation error. Affected by high Q and small frequency splits, the mechanical sensitivity (Smech) is shown to increase greatly. GDR and RDR with the same structure parameters are built side-by-side on the same wafer, and prototypes are fabricated through the SOI fabrication technique. The frequency response test and ring-down test are implemented using a readout circuit under a vacuum condition (5 Pa) at room temperature. The frequency split (9.1 Hz) of the GDR is about 2.8 times smaller than that (25.8 Hz) of the RDR without electrostatic tuning. Compared with the RDR, the Q (19.2 k) and decay time constant (0.59 s) of the GDR are improved by 145% and 236%, respectively. The experimental results show great promise for the GDR being used as a gear-like disk resonator gyroscope (GDRG). Full article
Show Figures

Figure 1

13 pages, 5350 KiB  
Article
A Novel Meander Line Metamaterial Absorber Operating at 24 GHz and 28 GHz for the 5G Applications
by Syed Aftab Naqvi, Muhammad Abuzar Baqir, Grant Gourley, Adnan Iftikhar, Muhammad Saeed Khan and Dimitris E. Anagnostou
Sensors 2022, 22(10), 3764; https://doi.org/10.3390/s22103764 - 15 May 2022
Cited by 16 | Viewed by 3736
Abstract
Fifth generation (5G) communication systems deploy a massive MIMO technique to enhance gain and spatial multiplexing in arrays of 16 to 128 antennas. In these arrays, it is critical to isolate the adjacent antennas to prevent unwanted interaction between them. Fifth generation absorbers, [...] Read more.
Fifth generation (5G) communication systems deploy a massive MIMO technique to enhance gain and spatial multiplexing in arrays of 16 to 128 antennas. In these arrays, it is critical to isolate the adjacent antennas to prevent unwanted interaction between them. Fifth generation absorbers, in this regard, are the recent interest of many researchers nowadays. The authors present a dual-band novel metamaterial-based 5G absorber. The absorber operates at 24 GHz and 28 GHz and is composed of symmetric meander lines connected through a transmission line. An analytical model used to calculate the total number of required meander lines to design the absorber is delineated. The analytical model is based on the total inductance offered by the meander line structure in an impedance-matched electronic circuit. The proposed absorber works on the principal of resonance and absorbs two 5G bands (24 GHz and 28 GHz). A complete angular stability analysis was carried out prior to experiments for both transverse electric (TE) and transverse magnetic (TM) polarizations. Further, the resonance conditions are altered by changing the substrate thickness and incidence angle of the incident fields to demonstrate the functionality of the absorber. The comparison between simulated and measured results shows that such an absorber would be a strong candidate for the absorption in millimetre-wave array antennas, where elements are placed in proximity within compact 5G devices. Full article
(This article belongs to the Topic Antennas)
Show Figures

Figure 1

Back to TopTop