Miniaturized Microstrip Dual-Channel Diplexer Based on Modified Meander Line Resonators for Wireless and Computer Communication Technologies
Abstract
:1. Introduction
2. State of the Art
3. Design
4. Results and Discussion
5. Experimentation
6. Comparison with Other Reported Studies
7. Conclusions
8. Future Trends
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-Prieto, A.; Medina, F.; Martel, J. Narrowband coupled-resonator balanced bandpass filters and diplexers. In Balanced Microwave Filters; John Wiley & Sons: Hoboken, NJ, USA, 2018; pp. 423–514. [Google Scholar]
- Mezaal, S.M.; Khaleel, S.K.; Al-Hillal, A.A.; Azeez, A.R.; Hemza, M.S.; Al-Majdi, M. State of art on microstrip resonators, filters, diplexers and triplexers. Jmcms. 2024, 19. [Google Scholar] [CrossRef]
- Zhu, Z.L.; Li, J.L. Design of Dual-Mode Loop Resonator-Based Microwave Diplexers with Enhanced Performance. Radioengineering 2022, 31, 527–532. [Google Scholar] [CrossRef]
- Chen, C.F.; Tsai, Y.F.; Chen, B.H.; Yang, R.Y.; Zeng, Y.S. Multifunctional Quad-Channel Diplexer-Integrated Single-Pole Double-Throw Switch with Three Operating Modes. In IEEE Transactions on Circuits and Systems II: Express Briefs; IEEE: Piscataway, NJ, USA, 2024. [Google Scholar] [CrossRef]
- Ben Haddi, S.; Zugari, A.; Zakriti, A.; Achraou, S. High isolation microstrip bandpass diplexer for industry 4.0 communication. Microsyst. Technol. 2022, 28, 1167–1178. [Google Scholar] [CrossRef]
- Achraou, S.; Zakriti, A.; Ben Haddi, S.B.; El Ouahabi, M. Design of a Miniaturized Microstrip Diplexer Based on Hairpin and Short Stub for 5G and Wi-Fi Communications. Prog. Electromagn. Res. Lett. 2023, 112, 67–75. [Google Scholar] [CrossRef]
- Idrees, M.; Khalid, S.; Rehman, M.A.; Ullah, S.S.; Hussain, S.; Iqbal, J. Design of Multiplexers for IoT-Based Applications Using Stub-Loaded Coupled-Line Resonators. Micromachines 2023, 14, 1821. [Google Scholar] [CrossRef] [PubMed]
- Fang, D.G. Antenna Theory and Microstrip Antennas; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Abd El-Hameed, A.S.; Salem, D.A.; Abdallah, E.A.; Hashish, E.A. Fractal quasi-self complimentary miniaturized UWB antenna. In Proceedings of the 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, FL, USA, 7–13 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 15–16. [Google Scholar]
- El-Nady, S.; Elsharkawy, R.R.; Afifi, A.I.; El-Hameed, A.S. Performance improvement of substrate integrated cavity fed dipole array antenna using ENZ metamaterial for 5G applications. Sensors 2021, 22, 125. [Google Scholar] [CrossRef] [PubMed]
- Roshani, S.; Yahya, S.I.; Mezaal, Y.S.; Chaudhary, M.A.; Al-Hilali, A.A.; Mojirleilani, A.; Roshani, S. Design of a compact quad-channel microstrip diplexer for L and S band applications. Micromachines 2023, 14, 553. [Google Scholar] [CrossRef]
- Abdel-Aziz, M.; Abd El-Hameed, A.S.; Awamry, A.A.; Mohra, A.S. Dual-band broadside-coupled based BPF with improved performance. AEU-Int. J. Electron. Commun. 2021, 138, 153895. [Google Scholar] [CrossRef]
- Mezaal, Y.S.; Eyyuboglu, H.T.; Ali, J.K. A new design of dual band microstrip bandpass filter based on Peano fractal geometry: Design and simulation results. In Proceedings of the 2013 13th Mediterranean Microwave Symposium (MMS), Saida, Lebanon, 2–5 September 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–4. [Google Scholar]
- Deng, H.-W.; Zhao, Y.-J.; Fu, Y.; Ding, J.; Zhou, X.-J. Compact and high isolation microstrip diplexer for broadband and WLAN application. Prog. Electromagn. Res. 2013, 133, 555–570. [Google Scholar] [CrossRef]
- Yahya, S.I.; Rezaei, A.; Noori, L. Design and performance of microstrip diplexers: A review. ARO-THE Sci. J. KOYA Univ. 2020, 8, 38–49. [Google Scholar] [CrossRef]
- Rezaei, A.; Noori, L.; Mohammadi, H. Design of a miniaturized microstrip diplexer using coupled lines and spiral structures for wireless and WiMAX applications. Analog. Integr. Circuits Signal Process. 2019, 98, 409–415. [Google Scholar] [CrossRef]
- Yahya, S.I.; Rezaei, A.; Noori, L.; Jamaluddin, M.H. Wide Stopband Microstrip Diplexer Using a Novel Configuration for Frequency Division Duplex; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Li, Q.; Zhang, Y.; Wu, C.M. Compact and high-isolation microstrip diplexer using distributed coupling feeding line. Microw. Opt. Technol. Lett. 2018, 60, 192–196. [Google Scholar] [CrossRef]
- Dembele, S.N.; Bao, J.; Zhang, T.; Bukuru, D. Compact microstrip diplexer based on dual closed-loop stepped impedance resonator. Prog. Electromagn. Res. C 2019, 89, 233–241. [Google Scholar] [CrossRef]
- Yahya, S.I.; Rezaei, A. A very compact microstrip diplexer fabrication with superior performance for broadband wireless applications. Microw. Opt. Technol. Lett. 2020, 62, 2871–2880. [Google Scholar] [CrossRef]
- Rezaei, A.; Yahya, S.I.; Jamaluddin, M.H. A novel microstrip diplexer with compact size and high isolation for GSM applications. AEU-Int. J. Electron. Commun. 2020, 114, 153018. [Google Scholar] [CrossRef]
- Pradhan, N.C.; Subramanian, K.S.; Barik, R.K.; Cheng, Q.S. Design of a compact SIW diplexer with square cavities for C-band applications. In Proceedings of the 2020 URSI Regional Conference on Radio Science (URSI-RCRS), Varanasi, India, 12–14 February 2020; pp. 1–4. [Google Scholar]
- Upadhyaya, T.; Pabari, J.; Sheel, V.; Desai, A.; Patel, R.; Jitarwal, S. Compact and high isolation microstrip diplexer for future radio science planetary applications. AEU-Int. J. Electron. Commun. 2020, 127, 153497. [Google Scholar] [CrossRef]
- Hussein, H.A.; Mezaal, Y.S.; Alameri, B.M. Miniaturized microstrip diplexer based on fr4 substrate for wireless communications. Elektron. Ir Elektrotechnika 2021, 27, 34–40. [Google Scholar] [CrossRef]
- Yahya, S.I.; Rezaei, A.; Nouri, L. The use of artificial neural network to design and fabricate one of the most compact microstrip diplexers for broadband L-band and S-band wireless applications. Wirel. Networks 2021, 27, 663–676. [Google Scholar] [CrossRef]
- Chen, C.F.; Zhou, K.W.; Chen, R.Y.; Tseng, H.Y.; He, Y.H.; Li, W.J.; Weng, J.H. Design of microstrip multifunction integrated diplexers with frequency division, frequency selection, and power division functions. IEEE Access 2021, 9, 53232–53242. [Google Scholar] [CrossRef]
- Mezaal, Y.S.; Hashim, S.A.; H.Al-Fatlawi, A.; Hussein, H.A. New microstrip diplexer for recent wireless applications. Int. J. Eng. Technol. 2018, 7, 96–99. [Google Scholar] [CrossRef]
- Al-Majdi, K.; Mezaal, Y.S. Microstrip diplexer for recent wireless communities. Period. Eng. Nat. Sci. 2022, 10, 387–396. [Google Scholar] [CrossRef]
- Al-Majdi, K.; Mezaal, Y.S. New Miniature Narrow Band Microstrip Diplexer for Recent Wireless Communications. Electronics 2023, 12, 716. [Google Scholar] [CrossRef]
- Zayniyev, D. Development of Planar Filters and Diplexers for Wireless Transceiver Front Ends. Ph.D. Thesis, University of Westminster, London, England, 2010. [Google Scholar]
- Li, Y.; Li, W.; Jiang, T. Implementation and Investigation of a Compact Circular Wide Slot UWB Antenna with Dual Notched Band Characteristics using Stepped Impedance Resonators. Radioengineering 2012, 21, 517–527. [Google Scholar]
- Mezaal, Y.S. New printed slot antennas with etched SIR components in the ground plane. J. Electromagn. Waves Appl. 2022, 36, 388–406. [Google Scholar] [CrossRef]
- Al-Baghdadi, M.A.J. Design of a Microstrip Diplexer for Recent Wireless Communication Systems. Master’s Thesis, Altınbaş Üniversitesi/Lisansüstü Eğitim Enstitüsü, Bakırköy, Turkey, 2023. [Google Scholar]
- Namdar, J.H. New Compact Filters, Diplexers, and Triplexers for Modern Microwave Technologies. Master’s Thesis, Altınbaş Üniversitesi/Lisansüstü Eğitim Enstitüsü, Bakırköy, Turkey, 2023. [Google Scholar]
- Esmaeli, S.H.; Sedighy, S.H. A compact size, high isolation and low insertion loss microstrip diplexer. J. Circuits, Syst. Comput. 2018, 27, 1850211. [Google Scholar] [CrossRef]
- Rezaei, A.; Yahya, S.I.; Nouri, L.; Jamaluddin, M.H. Design of a low-loss microstrip diplexer with a compact size based on coupled meandrous open-loop resonators. Analog. Integr. Circuits Signal Process. 2020, 102, 579–584. [Google Scholar] [CrossRef]
- Chinig, A.; Errkik, A.; Abdellaoui, L.E.; Tajmouati, A.; Zbitou, J.; Latrach, M. Design of a microstrip diplexer and triplexer using open-loop resonators. J. Microwaves, Optoelectron. Electromagn. Appl. 2016, 15, 65–80. [Google Scholar] [CrossRef]
- Rezaei, A.; Yahya, S.I.; Noori, L.; Jamaluddin, M.H. Design and fabrication of a novel compact low-loss microstrip diplexer for WCDMA and WiMAX applications. J. Microwaves, Optoelectron. Electromagn. Appl. 2019, 18, 482–491. [Google Scholar] [CrossRef]
- Rezaei, A.; Yahya, S.I.; Noori, L.; Jamaluddin, M.H. Design of a novel wideband microstrip diplexer using artificial neural network. Analog. Integr. Circuits Signal Process. 2019, 101, 57–66. [Google Scholar] [CrossRef]
- Hayati, M.; Rezaei, A.; Noori, L. Design of a high–performance lowpass– bandpass diplexer using a novel microstrip structure for GSM and WiMAX applications. IET Circuits Devices Syst. 2019, 13, 361–367. [Google Scholar] [CrossRef]
- Wu, Y.; Hao, L.; Wang, W.; Yang, Y. Miniaturized and Low Insertion Loss Diplexer Using Novel Inter-Digital Capacitors and Microstrip Section Inductors. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4303–4307. [Google Scholar] [CrossRef]
- Liu, H.; Xu, W.; Zhang, Z.; Guan, X. Compact diplexer using slotline stepped impedance resonator. IEEE Microw. Wirel. Components Lett. 2013, 23, 75–77. [Google Scholar] [CrossRef]
- Chinig, A.; Zbitou, J.; Errkik, A.; Tajmouati, A.; El Abdellaoui, L.; Latrach, M.; Tribak, A. Microstrip diplexer using stepped impedance resonators. Wirel. Pers. Commun. 2015, 84, 2537–2548. [Google Scholar] [CrossRef]
Design Specifications | Descriptions |
---|---|
Substrate Type | FR4 |
Dielectric constant | 4.4 |
tan δ | 0.018 |
Thickness (mm) | 1.5 |
Fractional bandwidths | 4.94%, 5.12% |
Methodology | Meander line, UIR, SIR, patches |
Wireless Utilities | WiMAX, WIFI/WLAN |
Operating resonances (GHz) | 1.66 GHz, 2.52 GHz |
Frequency Response | Chebyshev |
S-Parameter | Frequency (GHz) | Group Delay (ns) |
---|---|---|
S11 | 1.66 | 12.93 |
2.52 | −9.376 | |
S21 | 1.66 | 3.109 |
2.52 | −1.059 | |
2.803 | 2.001 | |
S31 | 1.66 | −2.341 |
2.51 | 2.245 | |
2.69 | −5.036 | |
S32 | 1.66 | 3.109 |
2.52 | 1.695 | |
2.8 | 2.001 |
Reference | Resonances (GHz) | IL (dB) | RL (dB) | Isolation (dB) | Size (mm2) |
---|---|---|---|---|---|
This work | 1.66/2.52 | 3.2/2.88 | 16/21 | 31 | 32 × 26 |
[33] | 1.94/2.515 | 2.9/2.5 | 31.6/29.2 | 25 | 32 × 26 |
[34] | 3.06/4.6 | 0.09/0.01 | 17.1/27 | 27.8 | 18 × 24 |
[35] | 1.24/1.5 | 1.2/1.36 | 20/20 | 25 | 21 × 26 |
[36] | 1.67/1.88 | 0.43/0.35 | 16/19.6 | 22.13 | 27.5 × 22.3 |
[37] | 3.2/5.84 | 1.8/2 | 21/27 | 21 | 24 × 22 |
[38] | 2.12/3.94 | 0.25/0.26 | 18.45/17.47 | 24 | 23.4 × 16.9 |
[39] | 1.6/2.1 | 0.1/0.16 | 33/22 | 22 | 40.5 × 23.7 |
[40] | 1.88/3.56 | 0.12/0.10 | 19.2/36 | 20 | 15 × 20.2 |
[41] | 2.4/5.5 | 1.67/1.58 | 11.1/13.2 | 25.8 | 14.6 × 10.48 |
[42] | 1.8/2.45 | 2.05/2.15 | 15/15 | 25 | 50 × 53 |
[43] | 1.8/2.45 | 2.2/1.8 | 17/16 | 21 | 20.0 × 52.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezaal, Y.S.; Khaleel, S.K.; Alameri, B.M.; Al-Majdi, K.; Al-Hilali, A.A. Miniaturized Microstrip Dual-Channel Diplexer Based on Modified Meander Line Resonators for Wireless and Computer Communication Technologies. Technologies 2024, 12, 57. https://doi.org/10.3390/technologies12050057
Mezaal YS, Khaleel SK, Alameri BM, Al-Majdi K, Al-Hilali AA. Miniaturized Microstrip Dual-Channel Diplexer Based on Modified Meander Line Resonators for Wireless and Computer Communication Technologies. Technologies. 2024; 12(5):57. https://doi.org/10.3390/technologies12050057
Chicago/Turabian StyleMezaal, Yaqeen Sabah, Shahad K. Khaleel, Ban M. Alameri, Kadhum Al-Majdi, and Aqeel A. Al-Hilali. 2024. "Miniaturized Microstrip Dual-Channel Diplexer Based on Modified Meander Line Resonators for Wireless and Computer Communication Technologies" Technologies 12, no. 5: 57. https://doi.org/10.3390/technologies12050057
APA StyleMezaal, Y. S., Khaleel, S. K., Alameri, B. M., Al-Majdi, K., & Al-Hilali, A. A. (2024). Miniaturized Microstrip Dual-Channel Diplexer Based on Modified Meander Line Resonators for Wireless and Computer Communication Technologies. Technologies, 12(5), 57. https://doi.org/10.3390/technologies12050057