Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = marine ostracods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 26643 KiB  
Article
Biostratigraphy, Paleoenvironments, and Paleobiogeography of the Middle–Upper Eocene Ostracods from Northwestern and Northeastern Banks of the Nile Valley, Egypt
by Safaa Abu Bakr, Ibrahim M. Abd El-Gaied, Mostafa M. Sayed, Petra Heinz, Michael Wagreich and Abdelaziz Mahmoud
Diversity 2025, 17(4), 293; https://doi.org/10.3390/d17040293 - 19 Apr 2025
Viewed by 535
Abstract
The middle and upper Eocene sedimentary successions exposed along the northwestern and northeastern portions of the Nile Valley, Egypt, have been thoroughly examined for their ostracod assemblages. This study enhances the understanding of biostratigraphic zonations and evaluates the paleobiogeographic distribution and paleoenvironmental conditions [...] Read more.
The middle and upper Eocene sedimentary successions exposed along the northwestern and northeastern portions of the Nile Valley, Egypt, have been thoroughly examined for their ostracod assemblages. This study enhances the understanding of biostratigraphic zonations and evaluates the paleobiogeographic distribution and paleoenvironmental conditions that prevailed during the deposition of this sedimentary record. Lithostratigraphically, the studied successions are subdivided into four stratigraphic units, arranged in ascending order as follows: the Qarara, the El Fashn, the Gehannam, and the Beni Suef formations. A total of 125 rock samples were selected and well analyzed, resulting in the identification of sixty-five ostracod species and subspecies belonging to thirty-three genera, fifteen families, and three superfamilies. The stratigraphic distribution of the recorded ostracod taxa contributed to the construction of four local biozones, spanning the interval from the upper Lutetian to lower Priabonian: Schizocythere fadlensis Zone (upper Lutetian–lower Bartonian), Loxoconcha pseudopunctatella Zone, Dygmocythere ismaili Zone (Bartonian), and Asymmetricythere hiltermanni Zone (Bartonian–Priabonian). These biozones are well described, discussed, and correlated with those previously documented in different areas of Egypt and neighboring countries. The statistical analysis, supported by ternary plot diagrams, indicates that the depositional environments of the studied rock units fluctuated between shallow inner neritic and deeper outer neritic marine environments. The identified taxa display a wide geographic distribution and show a significant similarity with those identified in the southern, northern, and eastern Tethyan provinces, suggesting a direct marine connection during the Eocene. Full article
Show Figures

Figure 1

32 pages, 5647 KiB  
Article
Tidal Exclusion Barriers Fragment an Invertebrate Community into Taxonomically and Functionally Distinct Estuarine and Wetland Assemblages
by Sorcha Cronin-O’Reilly, Alan Cottingham, Linda H. Kalnejais, Kath Lynch and James R. Tweedley
J. Mar. Sci. Eng. 2025, 13(4), 635; https://doi.org/10.3390/jmse13040635 - 22 Mar 2025
Cited by 2 | Viewed by 556
Abstract
Various types of tidal barriers are used in estuaries to reduce saltwater intrusion and regulate freshwater discharge, but they often alter the physicochemical environment and faunal composition. With the use of these structures expected to increase due to climate change, there is a [...] Read more.
Various types of tidal barriers are used in estuaries to reduce saltwater intrusion and regulate freshwater discharge, but they often alter the physicochemical environment and faunal composition. With the use of these structures expected to increase due to climate change, there is a need to understand their impacts. A tidal exclusion barrier in the Ramsar-listed Vasse–Wonnerup Estuary (Australia) was found to act as an ecotone, fragmenting the estuarine gradient into two distinct components, a relatively stable marine-like environment downstream and a highly variable oligohaline to hypersaline (~0 to >100 ppt) environment upstream. The downstream regions contained a speciose and functionally rich estuarine fauna, comprising mainly polychaetes and bivalves. The upstream regions were taxonomically and functionally depauperate, containing insects, gastropods, and ostracods typically found in saline wetlands. The fragmentation of the estuary has likely impacted the provision of ecosystem services, with the fauna downstream mainly comprising burrowing species that bioturbate and, thus, aid in nutrient cycling. In contrast, the environmental conditions caused by the barrier and the resultant epifaunal invertebrate assemblages upstream aid little in bioturbation, but provide nutrition for avian fauna. These results may help in understanding the impacts of constructing new barriers in coastal ecosystems in response to climate change. Full article
(This article belongs to the Special Issue Benthic Ecology in Coastal and Brackish Systems—2nd Edition)
Show Figures

Graphical abstract

32 pages, 10090 KiB  
Article
Late Glacial and Holocene Paleoenvironmental Reconstruction of the Submerged Karst Basin Pirovac Bay on the Eastern Adriatic Coast
by Nikolina Ilijanić, Dea Brunović, Slobodan Miko, Valentina Hajek Tadesse, Ozren Hasan, Ivan Razum, Martina Šparica Miko and Saša Mesić
J. Mar. Sci. Eng. 2025, 13(1), 175; https://doi.org/10.3390/jmse13010175 - 19 Jan 2025
Viewed by 2332
Abstract
This study focuses on the analysis of sediment core retrieved from the deepest part (25 m) of Pirovac Bay. A long sedimentary sequence (7.45 m) supplemented by a shorter sediment core (1.45 m) from a shallower part of the bay was analyzed for [...] Read more.
This study focuses on the analysis of sediment core retrieved from the deepest part (25 m) of Pirovac Bay. A long sedimentary sequence (7.45 m) supplemented by a shorter sediment core (1.45 m) from a shallower part of the bay was analyzed for sedimentological, mineralogical, geochemical, and micropaleontological (ostracod) parameters. The sediment thickness above the underlying karst paleorelief (karstic bedrock) is up to 12 m. Sediments recorded a transition from a freshwater to a marine environment starting from post-Neapolitan Yellow Tuff tephra sedimentation. First, the floodplain developed in Pirovac Bay, with intermittent pools and ponds, followed by wetland environment. The formation of a shallow freshwater paleolake during the Middle Holocene at 10 cal kyr BP was enabled by the rising sea level and high freshwater input from the karstified underground from the adjacent Lake Vrana (Biograd na Moru). The onset of marine intrusions through the karstified underground is evident with formation of a brackish lake in the Pirovac Bay basin. Marine transgression and flooding of the bay occurred at 7.3 cal kyr BP, evidenced by the geochemical and ostracod parameters, providing crucial insights into the dynamics of coastal inundation under past climate change. Intriguingly, freshwater ostracod species were still present in the marine sediments, brought into the bay from Lake Vrana through surficial canal Prosika and groundwater discharge (numerous estavelles) along the northeastern shores of the bay, proving their mutual influence. This submerged Holocene freshwater paleolake, reported here for the first time, underlines the sensitivity of coastal karst systems to the rise in sea level and serves to stress how important understanding of these processes is for effective management in coastal zone and climate change adaptation strategies. The findings provided evidence supporting the existence of coastal marine basins as freshwater lakes prior to being flooded by seawater as a consequence of the Holocene post-glacial sea level rise. Full article
(This article belongs to the Special Issue Sediment Geochemical Proxys and Processes in Paleomarine Ecosystems)
Show Figures

Figure 1

29 pages, 77315 KiB  
Article
Reconstructing the Environmental Conditions in the Prehistoric Coastal Landscape of SE Lemnos Island (Greece) Since the Late Glacial
by Olga Koukousioura, Katerina Kouli, Myrsini Gkouma, Nikolaos Theocharidis, Maria Ntinou, Areti Chalkioti, Vasiliki-Grigoria Dimou, Eugenia Fatourou, Valentini Navrozidou, Aikaterini Kafetzidou, Panagiotis Tsourlos, Elina Aidona, Pavlos Avramidis, Konstantinos Vouvalidis, George Syrides and Nikos Efstratiou
Water 2025, 17(2), 220; https://doi.org/10.3390/w17020220 - 15 Jan 2025
Cited by 4 | Viewed by 1709
Abstract
Agia Bay is located on the southeastern coast of Lemnos Island. The coastal area today is characterized by aeolian sandy deposits (dunes). The systematic investigation of a 15.5-m long sediment core from the coastal plain of Agia Bay aimed to shed light to [...] Read more.
Agia Bay is located on the southeastern coast of Lemnos Island. The coastal area today is characterized by aeolian sandy deposits (dunes). The systematic investigation of a 15.5-m long sediment core from the coastal plain of Agia Bay aimed to shed light to the paleoenvironmental evolution of the area that prehistoric groups occupied. The exhaustive study of the faunal and floral remains of the deposits including benthic foraminifera, ostracods, mollusks, pollen, and dinoflagellate cysts as well as plant remains was further supported by sedimentological, micromorphological, and elemental analyses, magnetic susceptibility measurements, ERT, and absolute dating. Four main evolutionary stages have been identified since the Late Glacial. At the base of the sequence, the fluvial activity dominated the sedimentation in the area forming a small shallow wetland, while after 12,500 cal BP, a marine signal was observed at the wetland. At 7500 cal BP, the wetland increased in size and depth, whereas at 6000 up to 4000 cal BP, a connection of the wetland to the sea was established, and an inner lagoon formed. After 4000 cal BP, a nearshore environment developed due to the sea-level rise. Pollen assemblages record the occurrence of a mixed deciduous oak forest in the island interior around 6000 cal BP, while after 5000 cal BP, an expansion of Mediterranean vegetation, shaped by human activity, is inferred. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

26 pages, 4220 KiB  
Review
Review of the Fossil Heritage Potential of Shenzhen (Guangdong, China): A Promising Area for Palaeontological Research
by David Marius Kroeck, Yanxin Gong, He Chen, Lan Li and Tong Bao
Geosciences 2024, 14(12), 316; https://doi.org/10.3390/geosciences14120316 - 22 Nov 2024
Viewed by 1102
Abstract
The area of the city of Shenzhen at the Pearl River Delta in Guangdong Province, China, comprises rocks that preserve, with few interruptions, around 1.8 billion years of geological history. However, to date, only few scientific studies within a palaeontological context have been [...] Read more.
The area of the city of Shenzhen at the Pearl River Delta in Guangdong Province, China, comprises rocks that preserve, with few interruptions, around 1.8 billion years of geological history. However, to date, only few scientific studies within a palaeontological context have been conducted on the sediment rocks in Shenzhen. Herein, the fossil record and heritage potential of Shenzhen is reviewed. The few existing previous investigations revealed a rich terrestrial and marine fossil record and show the great potential of this area for future palaeontological research, particularly on the upper Palaeozoic and Mesozoic strata: Carboniferous successions show plant remains and a diverse benthic marine fauna; fossils from Upper Triassic–Middle Jurassic sediment rocks provide important data for terrestrial and marine palaeoecosystems of this time; and the discovery of dinosaur nests in the Upper Cretaceous strata complements the previously known distribution of dinosaurs in South China. Additionally, micropalaeontological and palynological data from the upper Palaeozoic as well as Cenozoic successions in Shenzhen reveal diverse assemblages of foraminifera, ostracods, diatoms, and sporomorphs. Moreover, fossil finds in equivalent rocks in adjacent areas indicate great potential for the units in the Shenzhen area, in which, so far, no fossils have been found. Full article
(This article belongs to the Section Geoheritage, Geoparks and Geotourism)
Show Figures

Figure 1

17 pages, 17933 KiB  
Article
Boreal (Eemian) Transgression in the Northeastern White Sea Region: Multiproxy Evidence from Bychye-2 Section
by Ekaterina Taldenkova, Yaroslav Ovsepyan, Olga Rudenko, Anna Stepanova and Henning A. Bauch
Quaternary 2024, 7(1), 3; https://doi.org/10.3390/quat7010003 - 5 Jan 2024
Cited by 1 | Viewed by 2253
Abstract
Reconstructing interglacial marine environments helps us understand the climate change mechanisms of the past. To contribute to this body of knowledge, we studied a high-resolution 455 cm-thick sediment sequence of the Boreal (Eemian) marine beds directly overlying Moscovian (Saalian) moraine in the Bychye-2 [...] Read more.
Reconstructing interglacial marine environments helps us understand the climate change mechanisms of the past. To contribute to this body of knowledge, we studied a high-resolution 455 cm-thick sediment sequence of the Boreal (Eemian) marine beds directly overlying Moscovian (Saalian) moraine in the Bychye-2 section on the Pyoza River. We analyzed lithological and microfossil (foraminifers, ostracods, pollen, aquatic palynomorphs) variations at the studied site. Stratigraphical zonation is based on the local and well-established regional pollen zones, correlated with the western European pollen zones. The studied marine beds accumulated from the end of the Moscovian glacial (>131 ka) until ca. 119.5 ka. We distinguished three successive phases: a seasonally sea-ice-covered, relatively deep, freshened basin in the initial rapid flooding stage (>131–130.5 ka); a deep basin in the maximum flooding phase with less extensive sea ice cover (130.5–130.25 ka); and a shallow basin with reduced sea ice cover (130.25–119.5 ka). According to a pollen zone comparison with other sites, the regional glacioisostatic rebound started ca. 130 ka. The diverse warm-water assemblages of benthic foraminifers and ostracods containing typical Baltic Sea species occurred during the regression, mainly 128–124 ka, thus giving evidence for a relatively long-lasting connection between the White and Baltic Seas. Full article
Show Figures

Figure 1

13 pages, 4739 KiB  
Article
Sedimentary Sequence and Age of Core NTCJ1 in the Sheyang Estuary, Western South Yellow Sea: A Re-Interpretation
by Fei Xia, Yongzhan Zhang, Li Wang and Dezheng Liu
Water 2023, 15(20), 3617; https://doi.org/10.3390/w15203617 - 16 Oct 2023
Cited by 2 | Viewed by 1533
Abstract
The Sheyang estuary is located on the northern Jiangsu muddy coast, in the western South Yellow Sea, and in the transition area between the eroded coast of the abandoned Yellow River delta and the silted coast of the central Jiangsu. This area is [...] Read more.
The Sheyang estuary is located on the northern Jiangsu muddy coast, in the western South Yellow Sea, and in the transition area between the eroded coast of the abandoned Yellow River delta and the silted coast of the central Jiangsu. This area is also one of the key areas of interactions between the paleo-Yellow River and paleo-Changjiang River during the late Quaternary. In order to investigate deeply the late Quaternary sedimentary sequence models of coasts and continental shelves under the interactions of the above two large rivers, the sedimentary sequence and age of the core NTCJ1 drilled at the Sheyang estuary were re-examined and re-interpreted recently, based on the existing data on lithology, grain size, ostracods, foraminifera, clay minerals, geochemical elements, and Electron Spin Resonance (ESR) dating, together with other adjacent key cores and shallow seismic profiles. The three new perspectives were summarized as follows: Firstly, the 22.00 m-long core NTCJ1 recorded the evolution of the sedimentary environments since Marine Isotope Stage 5 (MIS 5), and the first continental facies layer formed in MIS 4-2 is supposed to be missing; therefore, the MIS 1 marine facies layer directly overlays on the MIS 5 marine facies layer. Furthermore, the second continental facies layer formed in MIS 6 and/or the stage of the relatively low sea-level of MIS 5 has not been drilled yet. Secondarily, the middle-upper part of the NTCJ1 core sediments (0.00–17.95 m) are characterized by a finer grain, with a predominantly silty texture and dark yellow tone, and from bottom to top it shows a change from fine to coarse and then to fine in grain size, which could be substantially interpreted as the abandoned Yellow River deltaic deposits mainly formed in 1128–1855 CE, and may contain a small amount of Holocene coastal-shallow marine deposits at the bottom; however, it is difficult to identify them currently. Thirdly, the lower part of the NTCJ1 core sediments (17.95–22.00 m) have not yet been drilled through and are characterized by a coarser grain, with a predominantly fine sandy texture and dark grey tone, which could be interpreted as a delta front deposit in the MIS 5 tidal estuary and were obviously influenced by the paleo-Yellow River. Full article
(This article belongs to the Special Issue Landscape Dynamics and Fluvial Geomorphology)
Show Figures

Figure 1

21 pages, 4519 KiB  
Article
Evidence for Conductivity- and Macroinvertebrate-Driven Segregation of Ostracod Assemblages in Endorheic Depression Wetlands in North West Province of South Africa
by Agata Szwarc, Koen Martens, Włodzimierz Meissner and Tadeusz Namiotko
Diversity 2023, 15(5), 614; https://doi.org/10.3390/d15050614 - 30 Apr 2023
Cited by 4 | Viewed by 2796
Abstract
Our knowledge of the ecology of non-marine Ostracoda inhabiting endorheic wetlands (pans) of the semi-arid regions of South Africa is very scarce. The present study investigates the distribution of ostracod species in grass, open, and salt pans in the central part of the [...] Read more.
Our knowledge of the ecology of non-marine Ostracoda inhabiting endorheic wetlands (pans) of the semi-arid regions of South Africa is very scarce. The present study investigates the distribution of ostracod species in grass, open, and salt pans in the central part of the North West province and tests ostracod response to abiotic and biotic predictor variables operating at a local scale. Distance-based linear models revealed three variables (pan type, water electrical conductivity and abundance of macroinvertebrate predators, and collector-gatherers) that best explained variation in the ostracod dataset. Ostracod assemblages from the three studied pan types differed by the dominance structure rather than by the species composition. Salt pans with high conductivity and high ratio of predaceous macroinvertebrates were dominated by Heterocypris giesbrechti, with accessory presence of Plesiocypridopsis newtoni. In open pans with low conductivities and the lowest ratio of predators (but highest ratio of collector-gatherers) Potamocypris mastigophora was typically a dominant species, while in grass pans, all the three mentioned species had similar relative abundances. Although our findings lend provisional support to some models of ostracod assemblage diversity across different pan types, more studies replicating endorheic depression wetlands in other regions are required before generalizations can be made. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

21 pages, 7217 KiB  
Article
Ostracod and Foraminifer Responses to Late Pleistocene–Holocene Volcanic Activity in Northern Victoria Land as Recorded in Ross Sea (Antarctica) Marine Sediments
by Gianguido Salvi, Romana Melis, Paola Del Carlo and Alessio Di Roberto
Geosciences 2023, 13(2), 35; https://doi.org/10.3390/geosciences13020035 - 28 Jan 2023
Viewed by 2269
Abstract
The impacts on ostracods and foraminifers caused by three Late Quaternary ashfalls of different intensities and recovered in the ANTA02-NW2 core sediments (Drygalski Basin, western Ross Sea) were analysed for the first time. Albeit with different timing, both associations demonstrated similar response patterns [...] Read more.
The impacts on ostracods and foraminifers caused by three Late Quaternary ashfalls of different intensities and recovered in the ANTA02-NW2 core sediments (Drygalski Basin, western Ross Sea) were analysed for the first time. Albeit with different timing, both associations demonstrated similar response patterns associated with the deposition of material from volcanic eruptions. In particular, based on the palaeontological evidence, it was possible to divide the cores into four intervals/phases recording the evolution of the ecosystem before and after the deposition events: (1) Pre-extinction phase (high abundance and high diversity values). (2) Extinction phase, characterised by the complete disappearance of ostracod fauna; the foraminiferal assemblage, although not entirely absent, records extremely low values of abundance and diversity (survivor assemblage). (3) Recovery phase (increasing abundance and diversity values), characterised by the recolonisation of some opportunistic taxa; species such as Australicythere devexa and Australicythere polylyca dominate the ostracod assemblage. (4) Post-extinction phase (high abundance and high diversity values), with the return to an environmental equilibrium characterised by the colonisation of specialised taxa such as Argilloecia sp., Cytheropteron sp., Echinocythereis sp., and Hemicytherura spp. Our results may aid in the understanding of how communities (i.e., ostracods and foraminifers) recovered after the impact of direct deposits of volcanic ash into ocean waters. The mechanisms by which disappearance and/or mortality was induced are still not clear. The release of toxic metals during the reaction of the volcanic ash with seawater, the resulting chemical alteration in the seawater, and the change in pH, together with the possible suppression of planktonic organisms, may have caused the two main extinction phases recorded by the ANTA02-NW2 core sediments. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

20 pages, 8378 KiB  
Article
Multidisciplinary Study of the Rybachya Core in the North Caspian Sea during the Holocene
by Alina Berdnikova, Elena Lysenko, Radik Makshaev, Maria Zenina and Tamara Yanina
Diversity 2023, 15(2), 150; https://doi.org/10.3390/d15020150 - 21 Jan 2023
Cited by 7 | Viewed by 2953
Abstract
Mollusk fauna is an important component of the Caspian Sea ecosystem alongside ostracods and diatoms. These faunal proxies are essential indicators of hydrological shifts reflecting global and regional climate changes. Adding lithological, geochemical, and geochronological (radiocarbon) data, we revealed paleogeographic events of different [...] Read more.
Mollusk fauna is an important component of the Caspian Sea ecosystem alongside ostracods and diatoms. These faunal proxies are essential indicators of hydrological shifts reflecting global and regional climate changes. Adding lithological, geochemical, and geochronological (radiocarbon) data, we revealed paleogeographic events of different scales recorded in the sequence of the Rybachya core from the North Caspian Sea. Here, we present the reconstruction of Mangyshlak paleovalley sediments during the Holocene multi-stage Neocaspian transgression, reflecting global and regional climate changes varying in scale and direction. The determined age of paleovalley-fill sediments, 8070 ± 110 cal yr BP and 7020 ± 140 cal yr BP, suggests that sedimentation processes with extended warming and humidification started later and lasted longer than was assumed earlier. Biological proxies indicate quasi-cyclic variability and shifts from brackish to freshwater conditions throughout the studied interval. Rybachya core was obtained from the early Khvalynian deposits. The Mangyshlak flow formed the depression and eroded the late Khvalynian deposits, which we did not observe in the core structure. It possibly collapsed into paleodepression and acted as a host material for the freshwater lentic faunal association. During the Holocene, we detected a transition from a tranquil water regime to a more dynamic one during the paleovalley gradual filling, followed by marine conditions typical for the modern Caspian Sea. Full article
(This article belongs to the Special Issue Continental Mollusca under Global Change)
Show Figures

Figure 1

16 pages, 2864 KiB  
Article
Characterization of Intertidal Macrofaunal Communities of Two Sandy Beaches under Different Anthropogenic Pressures
by Cristina Gioia Di Camillo, Giorgia Luzi, Afghan Danial, Luciano Di Florio, Barbara Calcinai, Sabrina Lo Brutto, Jéssica Luana Santana Mendonça de Oliveira, Agnese Fumanti and Carlo Cerrano
J. Mar. Sci. Eng. 2022, 10(12), 1976; https://doi.org/10.3390/jmse10121976 - 12 Dec 2022
Cited by 5 | Viewed by 3690
Abstract
The macrofauna in the intertidal zone of sandy beaches provides the trophic connectivity between land and sea, by linking microbiome, meiofauna, and megafauna, representing a food source for several terrestrial animals, including shorebirds and mammals. However, the macrozoobenthos in urbanised beaches is subjected [...] Read more.
The macrofauna in the intertidal zone of sandy beaches provides the trophic connectivity between land and sea, by linking microbiome, meiofauna, and megafauna, representing a food source for several terrestrial animals, including shorebirds and mammals. However, the macrozoobenthos in urbanised beaches is subjected to intense disturbances, such as breakwater barriers and tourism, which limit or impede the energy transfer from the marine to the terrestrial habitats. Because the information about diversity and abundance of the macrozoobenthos of the intertidal zone on the Mediterranean sandy coasts is scant, the main objective of this study is to increase the knowledge on the macrofauna living in this habitat and to identify taxa sensitive to cumulative human-induced stresses. To achieve this purpose, the structure and dynamics of macrozoobenthic communities from (1) a highly frequented beach characterized by breakwater barriers and (2) a marine protected area (MPA) in the Adriatic Sea were compared. The hypotheses that macrofauna composition and abundance changed in the two sites and over time were tested. Results highlighted that the macrozoobenthos in the MPA is mainly dominated by juvenile bivalves, which peaked from autumn to winter, and to a lesser extent by ostracods and mysids. Conversely, ostracods and the bivalve Lentidium mediterraneum (O. G. Costa, 1830) are particularly abundant in the highly disturbed beach, while the gastropod Tritia neritea (Linnaeus, 1758) increased only during summer. A possible combined effect of breakwater barriers and intense trampling has been theorized to explain the main differences between the two sites especially in the summer. Full article
Show Figures

Graphical abstract

28 pages, 17396 KiB  
Article
Sedimentology and Diagenesis of the Early–Middle Eocene Carbonate Deposits of the Ceno-Tethys Ocean
by Ahmer Bilal, Renchao Yang, Muhammad Saleem Mughal, Hammad Tariq Janjuhah, Muhammad Zaheer and George Kontakiotis
J. Mar. Sci. Eng. 2022, 10(11), 1794; https://doi.org/10.3390/jmse10111794 - 21 Nov 2022
Cited by 25 | Viewed by 4428
Abstract
An integrated study based on field observation, petrography, and scanning electron microscopy (SEM) on the Early–Middle Eocene carbonate rocks has been carried out, which were deposited in the Ceno-Tethys Ocean. The study area of the Yadgaar Section lies on the eastern margin of [...] Read more.
An integrated study based on field observation, petrography, and scanning electron microscopy (SEM) on the Early–Middle Eocene carbonate rocks has been carried out, which were deposited in the Ceno-Tethys Ocean. The study area of the Yadgaar Section lies on the eastern margin of the Upper Indus Basin, Pakistan. The Early–Middle Eocene Margalla Hill Limestone and Chorgali Formation act as reservoir rocks in other parts of the basin and are also present in the Yadgaar Section. The lack of comprehensive study in this area makes these reservoir rocks highly attractive for sedimentological evaluations and future exploration of hydrocarbons. The Early–Middle Eocene carbonate rocks are divided into nine microfacies: dolomicritic foraminiferal mudstone–wackestone microfacies (EMI); green algae dominated, mixed foraminiferal wackestone–packstone microfacies (EMII); ostracod, green algae and gypsum dominating mudstone–wackestone microfacies (EMIII); algae and mixed foraminiferal wackestone–packstone microfacies (EMIV); Nummulites dominating mudstone–wackestone microfacies (EMV); algal limestone mudstone microfacies (EMVI); Assilina bed wackestone–packstone microfacies (EMVII); micritized larger benthic foraminiferal wackestone–packstone microfacies (EMVIII); and algal limestone, mudstone microfacies (EMIX). The transgressive-regressive environment in the Ceno-Tethys Ocean leads to the deposition of these microfacies in the platform interior, open marine platform, platform edge, platform margin reef, toe of the slope apron, arid–humid platform interior, platform edge, open marine platform interior, and restricted marine platform interior, respectively. Initial post-depositional diagenetic stages are identified from the base to the top of the strata by their respective cement types, i.e., the base–lower middle part of the strata demonstrates an eogenetic sub-stage with the appearance of drusy cement, the middle section indicates a mesogenetic sub-stage by the appearance of blocky cement, while the top portion again reveals an eogenetic sub-stage of diagenesis by the presence of drusy and blocky types of cement. The ascending–descending hierarchy of cement generations is directly proportional to the grade of diagenesis from the base to the top of the carbonate strata. Variable diagenetic effects on the various microfacies also increase the secondary porosity range and enhance the reservoir characteristics of the Formations. The presence of foraminifera microfossils determined that these carbonate formations date from the Early–Middle Eocene. Full article
(This article belongs to the Special Issue Recent Advances in Sedimentology)
Show Figures

Figure 1

15 pages, 9515 KiB  
Article
Early Carboniferous Ostracods (Crustacea) from Death Valley, California, USA
by Mark A. S. McMenamin
Geosciences 2022, 12(8), 300; https://doi.org/10.3390/geosciences12080300 - 3 Aug 2022
Viewed by 2591
Abstract
Silicified ostracods from the Tin Mountain Limestone provide new information regarding the Carboniferous paleontology of the Death Valley Region, California, USA. Acid maceration of marine limestones yielded the following ostracods: Acratia spp., Bairdia quasilecta, Bairdia sp. cf. B. orientalis, Ceratobairdia sp., [...] Read more.
Silicified ostracods from the Tin Mountain Limestone provide new information regarding the Carboniferous paleontology of the Death Valley Region, California, USA. Acid maceration of marine limestones yielded the following ostracods: Acratia spp., Bairdia quasilecta, Bairdia sp. cf. B. orientalis, Ceratobairdia sp., Kirkbya panamintensis sp. nov., Rectobairdia sp. cf. R. legumen, and Silenites sp. This is the first report of Ceratobairdia and Silenites from the Tin Mountain Limestone. These ostracods occupied a carbonate ramp environment that formed during a major Paleozoic transgression. The ostracods played an important paleoecological role, likely as benthic marine scavengers in a shallow marine biotope along the northern shores of Pangea. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

27 pages, 12858 KiB  
Article
Recent Ostracod Fauna of the Western Ross Sea (Antarctica): A Poorly Known Ingredient of Polar Carbonate Factories
by Gianguido Salvi, John B. Anderson, Marco Bertoli, Pasquale Castagno, Pierpaolo Falco, Michele Fernetti, Paolo Montagna and Marco Taviani
Minerals 2022, 12(8), 937; https://doi.org/10.3390/min12080937 - 25 Jul 2022
Cited by 2 | Viewed by 2504
Abstract
Ostracoda are a minor but recurrent component of Southern Ocean marine carbonate factories, and their low-Mg calcitic skeletal mineralogy helps in ensuring a noteworthy post-mortem resilience. Our study, based upon surface sediment occurrences, contributes to the better definition of their distribution vs. potential [...] Read more.
Ostracoda are a minor but recurrent component of Southern Ocean marine carbonate factories, and their low-Mg calcitic skeletal mineralogy helps in ensuring a noteworthy post-mortem resilience. Our study, based upon surface sediment occurrences, contributes to the better definition of their distribution vs. potential controlling factors in Antarctic waters. The ostracod fauna from the Western Ross Sea Shelf appears dominated by Australicythere polylyca, Australicythere devexa, Xestoleberis rigusa, Loxoreticulatum fallax, Cativella bensoni, Austrotrachyleberis antarctica and Patagonacythere longiducta, colonizing a variety of shelf environments along a wide bathymetric range. The abundance and richness values correlate well to nutrient distribution and sediment supply, primarily related to the circulation of different oceanographic regimes affecting the floor of the Ross Sea Shelf. Circumpolar Deep Water could represent the main factor controlling the distribution of ostracods. Similar results (high abundance and richness in ostracod values) were also recorded in the Terra Nova Bay and in a nearby area characterized by warm water rich in nutrients and composed of water of circumpolar origin flowing from the open ocean southwards onto the continental shelf. Particulate Fe (pFe), in suspended particulate matter (SPM), and other particulate trace metals in TNB could support the hypothesis that biogenic iron may significantly contribute to the bioavailable iron pool, sustaining both primary production and ostracod fauna richness in this area. Full article
(This article belongs to the Special Issue Polar Marine Carbonates)
Show Figures

Figure 1

17 pages, 3381 KiB  
Article
Ostracod Response to a Major Middle Jurassic Sea-Level Fall: A Case Study from Southern Tunisia (North Gondwana) with Implications on Regional Stratigraphy and Palaeoenvironmental Reconstruction
by Khaled Trabelsi, Lassad Tiss, Benjamin Sames, Yassine Houla, Amine Hanini, Faycel Elferhi, Ahmed Skanji, Fekri Kamoun, Mohamed Faouzi Zagrarni and Michael Wagreich
Geosciences 2022, 12(2), 93; https://doi.org/10.3390/geosciences12020093 - 17 Feb 2022
Viewed by 3147
Abstract
Marginal-marine to non-marine ostracod assemblages from the Bajocian (Mid-Jurassic) of southern Tunisia, precisely from the Krachoua Formation at the Kef El Anneba section near the Beni Kheddache area, are here described and tested for their utility to improve the stratigraphic accuracy and palaeoenvironmental [...] Read more.
Marginal-marine to non-marine ostracod assemblages from the Bajocian (Mid-Jurassic) of southern Tunisia, precisely from the Krachoua Formation at the Kef El Anneba section near the Beni Kheddache area, are here described and tested for their utility to improve the stratigraphic accuracy and palaeoenvironmental reconstructions. This particular microfauna consists of 11 species belonging to 6 genera and represents 2 distinct types of species-rich assemblages from this time interval, allowing the interpretation of the depositional setting of the fossiliferous horizon from which the samples derive. The first ostracod assemblage is mainly composed of the brackish to shallow marine species Fastigatocythere sp. Mette, 1995; Vernoniella aff. V. bajociana Bate, 1965b; Paracypris sp. A, Paracypris sp. B, Fabanella sarda Malz et al., 1985; Marslatourella aff. M. bathonica Andreu, 1999; and Fabanella aff. F. bathonica Oertli, 1957. This ostracod biofacies reflects marginal marine (shallow platform, restricted lagoon) conditions in the studied area. In contrast, the second ostracod assemblage is exclusively dominated by the non-marine limnic species Alicenula sp., Theriosynoecum pusilla Rohr, 1976; Theriosynoecum aff. T. aveyronensis Rohr, 1976; and Theriosynoecum sp. Such ostracod biofacies reflects the establishment of (a) permanent freshwater lake(s) in the studied area, triggered by the total emersion of the Bajocian Krachoua platform, presumably as response to the short-term sea-level fall event JBj3 of Haq (2017). The recognized ostracod species from the upper part of the Krachoua Formation at Kef El Anneba section (Medenine area) are particularly similar to those already described from the neighbouring sections of Kezzani (Dhaher area) and Krachoua (Tataouine area), facilitating a stratigraphic calibration of the Krachoua Formation, as well as regional correlations of the respective Bajocian continental event within the southern Tunisian palaeogeographic domain. Moreover, the biogeography of the studied ostracod microfauna from the Mid-Jurassic of southern Tunisia provides further arguments to support the hypothesis of significant biological exchanges between Laurasian and Gondwanan islands, as recently demonstrated by means of a charophyte microflora, indicating that Peri-Tethyan biogeography remained relatively uniform during that time interval and challenging the previous assumption of their endemism. Full article
(This article belongs to the Special Issue Jurassic Paleoenvironments)
Show Figures

Figure 1

Back to TopTop