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Abstract: The macrofauna in the intertidal zone of sandy beaches provides the trophic connectivity
between land and sea, by linking microbiome, meiofauna, and megafauna, representing a food
source for several terrestrial animals, including shorebirds and mammals. However, the macro-
zoobenthos in urbanised beaches is subjected to intense disturbances, such as breakwater barriers
and tourism, which limit or impede the energy transfer from the marine to the terrestrial habitats.
Because the information about diversity and abundance of the macrozoobenthos of the intertidal
zone on the Mediterranean sandy coasts is scant, the main objective of this study is to increase the
knowledge on the macrofauna living in this habitat and to identify taxa sensitive to cumulative
human-induced stresses. To achieve this purpose, the structure and dynamics of macrozoobenthic
communities from (1) a highly frequented beach characterized by breakwater barriers and (2) a
marine protected area (MPA) in the Adriatic Sea were compared. The hypotheses that macrofauna
composition and abundance changed in the two sites and over time were tested. Results highlighted
that the macrozoobenthos in the MPA is mainly dominated by juvenile bivalves, which peaked from
autumn to winter, and to a lesser extent by ostracods and mysids. Conversely, ostracods and the
bivalve Lentidium mediterraneum (O. G. Costa, 1830) are particularly abundant in the highly disturbed
beach, while the gastropod Tritia neritea (Linnaeus, 1758) increased only during summer. A possible
combined effect of breakwater barriers and intense trampling has been theorized to explain the main
differences between the two sites especially in the summer.

Keywords: Adriatic Sea; macrozoobenthos; biodiversity; artificial barriers; marine protected areas

1. Introduction

Benthic macrofauna living in soft substrates is a diverse and complex community
of organisms, playing a pivotal role in the mixing, ventilation, oxygenation, and irriga-
tion of sediments (phenomena commonly known as bioturbation) [1–4]. The bioturbation
activity improves nutrients cycling [1,5], substrate permeability [6], redistribution of food re-
sources [4], buffering against nutrient enrichment [7], and benthic–pelagic coupling [8–10].
The chemical reactions in general (e.g., redox) are positively influenced [1] and the depth of
the oxic layer is extended over the anoxic one [1,11].

All these benefits can contribute to the increase or the maintenance of alpha and
beta biodiversity [12] as well as influence the complex environment that these organisms
inhabit [1]. Macrofauna can indeed act as an “ecosystem engineer” [4,13–15] that creates,
modifies, and maintains the habitat and its complexity, being able to model the sediment
structure by constructing tubes, or by digging channels and burrows [16].
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The macrofauna of sandy coastal habitats is a key ring in the trophic chain, connect-
ing microbiome, meiofauna and megafauna. Specifically, macrofauna in the intertidal
zone represents a food source for several terrestrial species, including mammals [17] and
shorebirds [18]. For example, the Kentish plover, Charadrius alexandrinus Linnaeus, 1758,
feeding on small crustaceans, molluscs, and polychaetes [19,20], is a species included in the
Annex I of the EU Birds Directive, the Annex II of the Bern Convention and considered as
Threatened Species, LC (Least Concern), in the IUCN Red List.

The community structure of macro-, meio-, and microfauna hosted in beach environ-
ments is influenced by several natural physical and biological factors, acting synergistically
or independently, such as sand granulometry, mineralogy, tides, beach exposure [21–25];
nutrients and food supply [26], organic matter content [27], hypoxia [28], local hydrody-
namic conditions [29], sediments texture and heterogeneity [30]; competition for limited
resources, predation and physical disturbance [31]. Thus, the alteration of natural beach
dynamics due to human impacts, such as trampling, bait collection, and mechanical beach
cleaning [32–34], could potentially affect the ecological traits of these organisms and the
overall functioning of the beach ecosystem [35,36].

The ecological status of submerged sandy beaches can be assessed by analyzing the
composition and abundance of benthic macrofauna as macrofauna living in the intertidal
zone can be particularly vulnerable to beach activities and disturbances [37–40]. Even if
the data on specific impacts influencing macrofauna are limited, the number of studies
regarding the response of macrofaunal communities and populations towards physical
disturbances has increased in recent decades [41–49]. Some of the studies are based on
single indicator species, while others are focused on the overall macrofaunal community.
Especially the organisms living buried in the sand, such as polychaetes, molluscs and
crustaceans that are directly damaged by beach activities [39]. However, different taxa have
different levels of sensitivity to disturbance, with certain species having been reported to
be more vulnerable than others [42].

The main objective of this study is to define the structure and the dynamics of macro-
zoobenthic communities of two sandy beaches characterized by different anthropic pres-
sures. The hypotheses that there are no differences in macrofauna composition and abun-
dance (1) among considered sites and (2) among different periods of the year (quarters,
see ahead) were tested. The obtained results will help in characterizing the macrofaunal
elements of the mentioned sites that could be used to set future assessments of the beach
health status.

2. Materials and Methods
2.1. Study Areas

The two selected sites are Torre del Cerrano (thereinafter: Torre Cerrano, 42◦35′5′′ N,
14◦5′26′′ E) and Palombina (43◦36′59′′ N, 13◦25′46′′ E), both along the North-Central
Adriatic Sea (Figure 1). Torre Cerrano is a small Marine Protected Area (Silvi-Pineto, Italy).
divided into three different zones with increasing degree of protection (D, C, B) while
no reserve zone A is present. The sampling area is in the B zone, whose backshore is
characterized by the presence of scarcely developed sand dunes, and absence of beach
facilities; however, the site is frequented from May to September by people walking along
the beach or bathers. Vegetal detritus of marine and land origin (mainly brought by nearby
rivers and sea current) is often observed along the emerged beach, while the submerged
beach is characterized by nearshore sandbars [50].
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chaeta, Ostracoda, Mysida, Tanaidacea, Amphipoda, Isopoda, Cumacea, Decapoda, 
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Figure 1. Study area in the north-central Adriatic Sea (Italian coast). (A). Torre Cerrano MPA.
(B). Palombina. Arrows indicate sandbars; the insets show casts of burrowers containing oxic
and anoxic sediments in Torre Cerrano and Palombina, respectively. Background photos from
Google Earth.

Palombina (Ancona, Italy, Figure 1B) is characterized by many touristic facilities, while
its backshore is neighbored by a railway track. Originally, it was a dissipative beach [21],
but breakwater barriers placed in the 1970s at about 150 m from the coast modified the
waves’ interaction with the shoreline [51]. Here, sediments are anoxic 4 cm ± 2 cm SD
below the surface (Figure 1, insets). Most mechanical beach cleaning activities occur at the
beginning of spring.

Local environmental agencies (EAs) classified the ecological status of the stretch of
coast including Palombina as ‘Sufficient’ [52], and that of Torre Cerrano as ‘Good’ [53],
while the quality of bathing waters was labelled as ‘Excellent’ at both sites [54].

2.2. Sampling Design and Fieldwork

Monthly samplings were carried out at low tide in Palombina and Torre Cerrano
(Figure 1) from February to December 2019. The distance of sampling points from the
shore was around 40 m, where the depth was about 50–70 cm. Each month, 15 samples
of sediments were randomly collected at daytime along a 150 m transect parallel to the
coast. Sediment samples were collected with PVC corer (
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: 9.5 cm, h: 70 cm) equipped
with a handle; the height of the sediment core was 15 cm. Therefore, the volume of
each core was 4.25 × 10−3 m3. Once the samples of sediments were collected from the
intertidal zone, they were gently sieved using a 500 µm mesh for macrofauna. The collected
sediment samples containing macrofaunal components were preserved in 95% alcohol and
transported carefully to the laboratory for sorting.

The sieved sediments were sorted to obtain the living component, i.e., macrofaunal
organisms alive at time of samplings, which were grouped in 13 main taxa (Gastropoda,
Bivalves≤ 5 mm, Bivalves > 5 mm, Lentidium mediterraneum (O. G. Costa, 1830), Polychaeta,
Ostracoda, Mysida, Tanaidacea, Amphipoda, Isopoda, Cumacea, Decapoda, Ophiuroidea,
Table 1) for data analysis.
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Table 1. List of living-component items detected in the samples; PAL = Palombina; TC = Torre Cerrano. The last column indicates main taxa considered for
data elaboration.

Phylum Class Superorder Order Family Taxon PAL TC Analysed as

Annelida Polychaeta - - Capitellidae Capitella capitata (Fabricius, 1780) X Polychaeta
Annelida Polychaeta - - Magelonidae Magelona sp. X Polychaeta
Annelida Polychaeta - Phyllodocida Glyceridae Glycera sp. X X Polychaeta
Annelida Polychaeta - Phyllodocida Phyllodocidae Eteone sp. X Polychaeta
Annelida Polychaeta - Phyllodocida Sigalionidae Sigalion mathildae Audouin & Milne Edwards, 1832 X X Polychaeta
Annelida Polychaeta - Spionida Spionidae Scolelepis sp. X X Polychaeta
Annelida Polychaeta - Spionida Spionidae Spionidae X X Polychaeta
Annelida Polychaeta - Terebellida Cirratulidae Cirratulidae X Polychaeta
Annelida Polychaeta - Terebellida Terebellidae Terebellidae X Polychaeta
Arthropoda Malacostraca Eucarida Decapoda Callianassidae Gilvossius candidus (Olivi, 1792) X Decapoda
Arthropoda Malacostraca Eucarida Decapoda Diogenidae Diogenes pugilator (Roux, 1829) X Decapoda
Arthropoda Malacostraca Peracarida Amphipoda Bathyporeiidae Bathyporeia guilliamsoniana (Spence Bate, 1857) X X Amphipoda
Arthropoda Malacostraca Peracarida Amphipoda Caprellidae Caprellidae X Amphipoda
Arthropoda Malacostraca Peracarida Amphipoda Gammaridae Echinogammarus stocki G. Karaman, 1970 X X Amphipoda
Arthropoda Malacostraca Peracarida Amphipoda Oedicerotidae Pontocrates altamarinus (Spence Bate & Westwood, 1862) X X Amphipoda
Arthropoda Malacostraca Peracarida Cumacea Bodotriidae Cumopsis sp. X X Cumacea
Arthropoda Malacostraca Peracarida Cumacea Pseudocumatidae Pseudocuma sp. X X Cumacea
Arthropoda Malacostraca Peracarida Isopoda Cirolanidae Eurydice spinigera Hansen, 1890 X X Isopoda
Arthropoda Malacostraca Peracarida Isopoda Idoteidae Idotea pelagica Leach, 1816 X X Isopoda
Arthropoda Malacostraca Peracarida Mysida Mysidae Paramysis (Longidentia) helleri (G.O. Sars, 1877) X X Mysida
Arthropoda Malacostraca Peracarida Tanaidacea Apseudidae Apseudopsis latreillii (Milne Edwards, 1828) X X Tanaidacea
Arthropoda Ostracoda - - - Ostracoda X X Ostracoda
Echinodermata Ophiuroidea - - - Ophiuroidea X Ophiuroidea
Echinodermata Ophiuroidea Ophintegrida Ophiurida Amphiuridae Amphiura chiajei Forbes, 1843 X Ophiuroidea
Mollusca Bivalvia - - - Bivalvia ≤ 5 mm X X Bivalvia ≤ 5 mm
Mollusca Bivalvia Imparidentia Cardiida Donacidae Donax trunculus Linnaeus, 1758 X X Bivalvia > 5 mm
Mollusca Bivalvia Imparidentia Myida Corbulidae Lentidium mediterraneum (O. G. Costa, 1830) X X Lentidium
Mollusca Bivalvia Imparidentia Venerida Veneridae Chamelea gallina (Linnaeus, 1758) X X Bivalvia > 5 mm
Mollusca Gastropoda - Littorinimorpha Naticidae Neverita josephinia Risso, 1826 X Gastropoda
Mollusca Gastropoda - Neogastropoda Nassariidae Tritia neritea (Linnaeus, 1758) X Gastropoda
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In order to verify that the composition of the biogenic sand reflected that of the living
component, the non-living fraction of the sediments (i.e., skeletal fragments of benthic
organisms and vegetal detritus, Table 2) was sorted. Litter of anthropogenic origin was
also quantified.

Table 2. Categories of non-living components.

Items Description

Polychaetes soft tubes Empty tubes made of cemented sand grains belonging
to polychaetes

Hard tubes Carbonatic tubes of serpulids and tusk shells (Scaphopoda)
Tube fragments Other fragments of tubes of unidentified organisms
Ophiuroid vertebrae Ophiuroid skeletal elements (complete vertebrae)
Sea urchin fragments Fragments of tests > 5 mm

Sea urchin spines Only frgments including the basal part by which the spine is
attached to the test.

Gastropod shells Entire, empty shells
Anthropogenic litter Every kind of rubbish

Vegetal detritus Vegetal detritus both of marine and land origin (Wood, seeds,
plant and algal fragments > 5 mm)

The macrofauna was identified to the lowest possible taxonomic level using a stere-
omicroscope, therefore, the living and non-living items were counted to determine their
abundance (n. of items m−3) in the examined volume of sediment. Successively, data from
each site were averaged per quarter (Q1–Q4, Q1 = January, February, March; Q2 = April;
May, June; Q3 = July August, September; Q4 = October, November, December), correspond-
ing to the Italian winter, spring, summer, and autumn seasons. A dataset is available as
supplementary material.

Additional sediment samples (3 per quarter) were collected with the same method
described above to evaluate the granulometry. The sediment samples were dried in an
oven and granulometric analysis was performed using a sieve shaker. The limits of the
different granulometric classes have been fixed following the Udden-Wentworth scale [55].

Daily maximal wave heights (m) and sea temperature (◦C) from the Adriatic station
nearest to the considered localities (i.e., Ancona), were retrieved from the National tide
gauge network [56–58] (Creative Commons Attribution 4.0 International License) for the
period 1 January 2019–31 December 2019. The frequency of calm/rough sea conditions was
calculated for each quarter.

2.3. Data Elaboration

The PRIMER (Plymouth Routines in Multivariate Ecological Research) version 7
package [59] and the Paleontological Statistics software [60] were used to analyse the
collected data.

Two-way SIMPER analysis was used to identify taxa that mostly contributed to the
similarity in the abundance among factors ‘Sites’ ((PAL = Palombina, TC = Torre Cerrano))
and ‘Quarters’ (Q1–Q4, Q1 = January, February, March; Q2 = April, May, June; Q3 = July
August, September; Q4 = October, November, December).

Data on macrofauna from each site were processed by the function DIVERSE of
PRIMER to measure diversity (number of taxa (S), total number of individuals (N), species
richness (Margalef, d), Pielou’s evenness (J’), and Shannon (H’ loge)) indexes.

The hypothesis that the indexes’ means would not change in space and time was tested
by two-way ANOVA on normalised data across factors ‘Sites’ (PAL, TC) and ‘Quarters’
(Q1–Q4).

Non-parametric multivariate techniques were applied to abundance data of the living
and the non-living components. Ranked lower triangular similarity matrices were con-
structed using the Bray–Curtis similarity measure on square root transformed, standardized
(%) abundance data. Th analysis of similarity (two-way ANOSIM) permutation test was
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used to check the significance of differences between groups [61,62]. Bootstrap averages
were computed as well to display clustering patterns among ‘Quarters’ in each site.

3. Results
3.1. Temporal Variations in Abundance of Living and Non-Living Components

A total of 28 and 21 taxa were found in Palombina and Torre Cerrano respectively
with a few exclusive for each site (Table 1). At both sites and in all quarters the taxon
‘bivalves ≤ 5 mm’ dominated the assemblage contributing from 75% to 96% of the similarity
(Figures 2 and S1 and Table S1). Taxa mostly contributing to dissimilarity among sites across
quarters are ostracods (27.9%), Lentidium mediterraneum (17.22%), and bivalves ≤ 5 mm
(12.6%), while those accounting for dissimilarity among quarters across sites are ostra-
cods, Lentidium mediterraneum, Paramysis helleri, Scolelepis sp., Pseudocuma sp., Bathyporeia
guilliamsoniana, and Tritia neritea (Table S1).
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Bivalves ≤ 5 mm were showed in (A,D), because their high abundance values would have over-
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(C,F) Percent composition of less represented taxa. Outliers not showed.

In Torre Cerrano (Figure 2A), bivalves≤ 5 mm peaked in Q4 (about 112 × 103 items m−3

± 111 × 103 SD) and Q1 (142 × 103 items m−3 ± 205 × 103 SD). Other taxa (Figures 2B,C
and S2A) are almost 4 times less abundant than in Palombina. Ostracods were present
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in all the quarters and more conspicuous in Q4 (103 items m−3 ± 2.2 × 103 SD), while
polychaetes peaked at Q1 (878 items m−3 ± 103 SD). The mysid Paramysis helleri peaked
in Q2 (940 items m−3 ± 2.4 × 103 SD; 16.7%), while L. mediterraneum increased in Q3
(500 items m−3 ± 3 × 103 SD). Amphipods decreased in Q4, were absent in Q1, and peaked
in Q3, with Bathyporeia guilliamsoniana (Spence Bate, 1857) showing an average abundance
of 919 items m−3 ± 1.9 × 103 SD.

In Palombina, bivalves ≤ 5 mm peaked in Q4 (Figure 2D) with values comparable to
those in Torre Cerrano (120 × 103 items m−3 ± 371 × 103 SD), while in Q1 their abundance
was 2.6 times lower than in the MPA (54 × 103 items m−3 ± 39 × 103 SD).

Regarding the other taxa (Figure 2E,F and Figure S2B), L. mediterraneum was particu-
larly abundant in the urban beach in all quarters and reached the highest abundance in
Q4 (9 × 103 items m−3 ± 11 × 103 SD) and in Q3 (5.2 × 103 items m−3 ± 4.7 × 103 SD),
respectively. The gastropods, represented by Tritia neritea (Linnaeus, 1758), peaked in Q3
(334 items m−3 ± 103 SD), in concomitance to the period with the highest beach frequenta-
tion (summer).

The non-living component in Torre Cerrano (Figure 3A,B) throve in Q2, dominated by
vegetal detritus and sea urchin fragments, and in Q4, where the most representative items
were again the fragments of sea urchins and gastropod shells. In Palombina, abundance
values in Q1–Q3 are quite similar. Conversely, the non-living component was minimal in
Q4. Vegetal detritus and gastropods dominated the assemblage even in Palombina.
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3.2. Data elaboration

Regarding the living component (macrofauna), the two-way crossed ANOSIM (details
in Table S1), testing for differences between unordered ‘Quarter’ groups across ‘Sites’,
gave a low R value (0.067). This indicates that there are no significant differences among
Quarters. A certain significance is found in testing for differences between unordered
‘Site’ groups (R = 0.428) with a 0.1% significance level of sample statistics. Similarly, there
are no significant differences among Quarters (R = 0.064) or Sites (R = 0.123) for the non-
living components.
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The 2D-metric multidimensional scaling ordination plots based on bootstrap averages
of the living (Figure 4A,C) and non-living components (Figure 4B,D) among the quarters
(Q1–Q4) display that, for the living component, the Q2 pattern differs from those of the
other quarters in Torre Cerrano, while in Palombina Q1 and Q3 are the most diverse.
Regarding the non-living component, Q1 and Q2 are clearly discernible in Torre Cerrano as
Q4 is in Palombina.
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Regarding diversity metrics (Figure 5A–E, Table S2), in Torre Cerrano, the highest
diversity (H’ = 0.39) and evenness (J’ = 0.49) occurred in Q2 (April, May, June), when the
number of individuals (N) and the species richness had the lowest values. In Palombina,
the number of individuals (N) was constant in Q1, Q2, and Q3 and increased in the most
uneven quarter, Q4. The number of species, as well as species richness (d = 0.51), peaked in
Q1. Diversity (H’ = 0.36) and evenness (J’ = 0.23) were higher in Q3.

Two-way ANOVA (Table S2) highlighted significant differences in the values across
‘Quarters’ but not across ‘Sites’ for all the considered indices.
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Figure 5. Diversity measured in Torre Cerrano and Palombina, PAST elaboration. In Torre Cerrano
(green line), the number of individuals (N) (A), the number of species (S) (B) and species richness
(d) (D) had the lowest values in Q2 (April, May, June), while diversity (H’ = 0.39) (C) and evenness
(J’ = 0.49) (E) peaked in the same quarter. In Palombina (blue line), the number of individuals (N)
(A) was constant in Q1, Q2 and Q3 and increased in the most uneven quarter, the Q4. The number
of species (B) peaked in Q1, as well as species richness (d = 0.51) (D). Diversity (H′ = 0.36) (C) and
evenness (J’ = 0.23) (E) were higher in Q3.

3.3. Environmental Parameters

Concerning the granulometry of the two sites (Figure 6A,B), the most represented
fraction in all the quarters in Torre Cerrano is the ‘Fine sand (125–250 µm)’ class (Figure 6A),
while Palombina is mainly characterized by the ‘Very fine sand (63–125 µm)’ (Figure 6B).
The fraction ‘Medium sand (251–500 µm)’ is more consistent in Torre Cerrano (ranging
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from about 8.5% to 16%) than in Palombina (up to 8.6%), above all during Q1. In Palombina,
the collected sediments were dark grey at 4 cm below the surface.
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Figure 6. Environmental parameters. (A,B). Granulometric classes of sediments collected in Torre
Cerrano MPA (A) and Palombina (B). (C). Temporal variations in superficial sea temperature. (D).
Frequency of calm/rough sea conditions in the Adriatic Sea on the base of maximal wave height (m)
recorded for each quarter (data source: [56–58]).

In the considered basin, sea water temperature sharply varies according to seasonal
variations [63] with the lowest average value in Q1 (about 9 ◦C) and the highest in Q3
(25.6 ◦C).

Regarding the sea conditions, in 2019, Q3 included the most prolongated period with
calm waters (wave height < 1 m, 67% of the events), while rough sea conditions were
mainly recorded in Q2 (wave height 1.6–2 m, 62%; wave height > 2 m, 12.5%) and Q4 (wave
height 1.6–2 m, 17.5%; wave height > 2 m, 15%). Wave incidence, due to the prevailing
winds, Bora and Scirocco, is considered comparable [50].

4. Discussion
4.1. Overview of the Characteristics of the Two Sites

The composition and the abundance of macrozoobenthos from two sandy beaches
along the western coast of the Adriatic Sea were analyzed. The two sampling sites are
subjected to comparable morphodynamic conditions [64] and to different levels of an-
thropic pressure. At both sites, storm events are more frequent in winter (Q1), spring (Q2),
and autumn (Q4), while the longest period with calm waters is summer (Q3). Both the
macrofauna and the non-living component have a more irregular trend in Torre Cerrano
than in Palombina (Figure S1), probably because storms have a stronger impact in the
natural site due to the lack of the breakwater barriers. Diversity in Torre Cerrano in Q1 and
Q4 is low, while the number of individuals is high, suggesting that in these quarters the
assemblage is dominated by the species adapted to withstand rough sea conditions.
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In Torre Cerrano MPA, the major (mechanical) anthropic stress for the macrofauna is
represented by people walking on the intertidal zone, which may be responsible, at least in
part, for the lower diversity in Q3.

Summer trampling in Palombina is much more intense than in Torre Cerrano with
the presence of rows of sun umbrellas on the backshore reducing the width of the beach
and forcing people to walk very close to the shoreline or into the water. Breakwater
barriers in Palombina defuse the wave effects, limit water exchange, and favor fine sand
accumulation [65–68], as confirmed by the results of the granulometric analysis. It is also
likely that water quality is low in this site because of short but numerous episodes of
discharge of untreated wastewater due to overflow following heavy rains [69]. These
considerations suggest that species surviving in the intertidal zone in Palombina should be
very tolerant to cumulative anthropic stresses.

4.2. Living and Non-Living Components in the Collected Sediments

Notwithstanding the strong differences in types and intensity of stresses in the two
study sites in the considered periods, the statistical analysis did not highlight significant
differences among quarters while differences among sites were slight. However, it was
possible to discriminate the two sites by interpreting the temporal variations in abundance
and diversity indexes.

In Q3, in concomitance with the peak of presence on the beach, diversity and evenness
were higher in Palombina, where the assemblage was dominated by Lentidium mediterra-
neum. This bivalve is one of the most commonly species found in the Northern-Central
Adriatic beaches comprising up to 95% of the community [64]. It is likely that it tolerates the
disturbance linked to the touristic season (i.e., trampling, sediment resuspension) probably
because of its ability to burrow rapidly [70].

High abundance of Tritia neritea in Palombina in Q3 is due first to seasonality since
they were observed at juvenile stages in early summer and mature towards the end of
summer. This gastropod shows a flat, thick shell very resistant to mechanical disturbances
(personal observation). Moreover, T. neritea is tolerant to sudden changes in temperature,
high salinity, and dissolved hydrogen sulphide, and it can avoid the anoxic layer close
to the substrate thanks to its ability to extend its inhalant siphon beyond the surface of
sediments [71]. The high tolerance of this opportunistic species to extreme environmental
conditions explains why this is so common in Palombina at summertime.

Ostracods from Palombina are quite abundant all year round and have a consider-
able decrease in Q3. Ostracods are largely used as an indicator of anthropic impact and
hypoxia [45,72,73]. However, a shift towards opportunistic and more tolerant assemblages
has been documented in the North Adriatic Sea over the last 20 years [73]. Even if fur-
ther investigations are needed to establish whether natural drivers or anthropic pressures
caused the decline of these crustaceans during summertime, it is possible that they are
mechanically damaged by trampling [74].

At both sites, the non-living component is characterized by exogenous material domi-
nated by vegetal detritus. In Torre Cerrano, the macrofauna diversity increased in Q2 likely
as a consequence of the presence of vegetal detritus which shapes biodiversity and initiates
trophic chains [75].

In the MPA natural predators in the intertidal zone may contribute to the decline in
polychaete’s abundance observed in spring (Q2), such as the Kentish plover, whose diet
includes polychaetes [19]. It is likely that Charadrius alexandrinus Linnaeus, 1758 and its
chicks, common in the protected area, feed on macrofauna above all during reproductive
and hatching season [76] as confirmed by several shots from amateur photographers
(Figure S3). Long-term studies demonstrated that invertebrate prey depletion is one of
main factors causing declines in abundance and delays in migration in shorebirds [18],
since the birds need to assimilate enough high-quality food to build up food reserves prior
to departure.
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These considerations highlight the importance of preserving the intertidal zone be-
ing the macrofauna diversity positively related to secondary production [77], while al-
lochthonous inputs plays a crucial role in biodiversity maintenance [78]. However, main
EU Directives implemented in MPAs [79–81] include monitoring programs for the dune
system and the sandbank, while there are no specific protocols to assess the quality status
of the intertidal zone, nor plans to improve its conservation.

5. Conclusions and Future Perspectives

This work highlights the importance of characterizing macrofauna assemblages at
local scale and to identify main human pressures influencing the biodiversity on sandy
beaches. The collected data could be used to define protocols to assess human impact, to
regulate the access to the intertidal zone, and to establish the socio-ecological carrying
capacity of a beach [82].

Assessing multiple stressors is crucial to mitigate the effects of human disturbance on
benthic invertebrates [83]. Armoring, dune suppression, trampling, and beach cleaning are
among the most destructive impacts on supralittoral invertebrates, such as Ocypodidae,
Hippidae (decapods), and Talitridae (amphipods) [41,84]. However, beachgoers also walk
in shallow waters, influencing the dynamics of species living in the submerged beach,
such as mollusks and polychaetes [85]. Conversely, the lower beach is less studied [63],
notwithstanding its relevance for the survival of other species.

In the considered study area, mysids, cumaceans, and likely ostracods could be used
as an indicator of trampling, while the bivalve Lentidium mediterraneum and the gastropod
Tritia neritea are more tolerant taxa to both the mechanical impact and the low-quality
environmental conditions occurring during summertime in the urbanized site.

Our observations suggest that the influence of breakwaters should be further inves-
tigated as they create a sheltered and impoverished habitat where opportunistic species
may develop, which may be unsuitable for bathers [86], and where the economic, social
and ecological value of beaches are affected [87].

Future studies should focus on the behavior, trophic relationships, and life histories of
less abundant taxa, to better understand their functional role in the intertidal communities
and their relationship with the non-living component.
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