Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = marine natural products (MNP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2234 KiB  
Article
Impact of Co-Presence of Endotoxins and Microplastics on Seawater Biophysicochemical Indicators
by Hasan Saygin and Asli Baysal
Int. J. Mol. Sci. 2025, 26(15), 7178; https://doi.org/10.3390/ijms26157178 - 25 Jul 2025
Viewed by 163
Abstract
Micro/nanoplastics (MNP) and endotoxin, typical emerging contaminants, can be found in marine aqueous systems due to various natural and anthropogenic activities, and their co-occurrence may influence the biophysicochemical characteristics of seawater. Moreover, endotoxins may be transported by the micro/nanoplastics or increase the deformation [...] Read more.
Micro/nanoplastics (MNP) and endotoxin, typical emerging contaminants, can be found in marine aqueous systems due to various natural and anthropogenic activities, and their co-occurrence may influence the biophysicochemical characteristics of seawater. Moreover, endotoxins may be transported by the micro/nanoplastics or increase the deformation of these substances, comprising other risks to the ecosystem. However, the impacts of the co-occurrence of micro/nanoplastics and endotoxins in seawater remain unknown. We studied the effects of endotoxin at three concentration levels in seawater and its combined impact with micro/nanoplastics at three doses on biophysicochemical processes in seawater through spectroscopic analysis, leaching indicators (turbidity and humidification index), oxidative potential, antioxidant activity, and biofilm production. The results showed that the UV–VIS spectra of seawater changed with their co-occurrence. The co-presence of MNPs and endotoxins increased the turbidity in seawater, indicating the leaching of micro/nanoplastic in the presence of endotoxins. A higher humification index in seawater showed the formation of dissolved organic substances in micro/nanoplastic and endotoxin seawater compared to the results for untreated seawater. Dithioerythritol assay revealed the differences in oxidative potentials of plain seawater and seawater in the co-presence of micro/nanoplastics and endotoxins. An important biochemical reaction in seawater was tested using biofilm formation. The results showed higher biofilm formation in their co-presence. This study provides new insights into the effects of micro/nanoplastics and their composite pollution with endotoxins on biophysiochemical indicators in seawater. Full article
Show Figures

Figure 1

65 pages, 7602 KiB  
Review
Advanced Technologies for Large Scale Supply of Marine Drugs
by Henar Martínez, Mercedes Santos, Lucía Pedraza and Ana M. Testera
Mar. Drugs 2025, 23(2), 69; https://doi.org/10.3390/md23020069 - 7 Feb 2025
Cited by 2 | Viewed by 2580
Abstract
Marine organisms represent a source of unique chemical entities with valuable biomedical potentialities, broad diversity, and complexity. It is essential to ensure a reliable and sustainable supply of marine natural products (MNPs) for their translation into commercial drugs and other valuable products. From [...] Read more.
Marine organisms represent a source of unique chemical entities with valuable biomedical potentialities, broad diversity, and complexity. It is essential to ensure a reliable and sustainable supply of marine natural products (MNPs) for their translation into commercial drugs and other valuable products. From a structural point of view and with few exceptions, MNPs of pharmaceutical importance derive from the so-called secondary metabolism of marine organisms. When production strategies rely on marine macroorganisms, harvesting or culturing coupled with extraction procedures frequently remain the only alternative to producing these compounds on an industrial scale. Their supply can often be implemented with laboratory scale cultures for bacterial, fungal, or microalgal sources. However, a diverse approach, combining traditional methods with modern synthetic biology and biosynthesis strategies, must be considered for invertebrate MNPs, as they are usually naturally accumulated in only very small quantities. This review offers a comprehensive examination of various production strategies for MNPs, addressing the challenges related to supply, synthesis, and scalability. It also underscores recent biotechnological advancements that are likely to transform the current industrial-scale manufacturing methods for pharmaceuticals derived from marine sources. Full article
Show Figures

Figure 1

35 pages, 1776 KiB  
Review
Marine Microorganism Molecules as Potential Anti-Inflammatory Therapeutics
by Malia Lasalo, Thierry Jauffrais, Philippe Georgel and Mariko Matsui
Mar. Drugs 2024, 22(9), 405; https://doi.org/10.3390/md22090405 - 3 Sep 2024
Cited by 5 | Viewed by 4933
Abstract
The marine environment represents a formidable source of biodiversity, is still largely unexplored, and has high pharmacological potential. Indeed, several bioactive marine natural products (MNPs), including immunomodulators, have been identified in the past decades. Here, we review how this reservoir of bioactive molecules [...] Read more.
The marine environment represents a formidable source of biodiversity, is still largely unexplored, and has high pharmacological potential. Indeed, several bioactive marine natural products (MNPs), including immunomodulators, have been identified in the past decades. Here, we review how this reservoir of bioactive molecules could be mobilized to develop novel anti-inflammatory compounds specially produced by or derived from marine microorganisms. After a detailed description of the MNPs exerting immunomodulatory potential and their biological target, we will briefly discuss the challenges associated with discovering anti-inflammatory compounds from marine microorganisms. Full article
(This article belongs to the Special Issue Pharmacological Potential of Marine Natural Products)
Show Figures

Figure 1

24 pages, 3145 KiB  
Article
Cheminformatics-Guided Exploration of Synthetic Marine Natural Product-Inspired Brominated Indole-3-Glyoxylamides and Their Potentials for Drug Discovery
by Darren C. Holland, Dale W. Prebble, Mark J. Calcott, Wayne A. Schroder, Francesca Ferretti, Aaron Lock, Vicky M. Avery, Milton J. Kiefel and Anthony R. Carroll
Molecules 2024, 29(15), 3648; https://doi.org/10.3390/molecules29153648 - 1 Aug 2024
Viewed by 2664
Abstract
Marine natural products (MNPs) continue to be tested primarily in cellular toxicity assays, both mammalian and microbial, despite most being inactive at concentrations relevant to drug discovery. These MNPs become missed opportunities and represent a wasteful use of precious bioresources. The use of [...] Read more.
Marine natural products (MNPs) continue to be tested primarily in cellular toxicity assays, both mammalian and microbial, despite most being inactive at concentrations relevant to drug discovery. These MNPs become missed opportunities and represent a wasteful use of precious bioresources. The use of cheminformatics aligned with published bioactivity data can provide insights to direct the choice of bioassays for the evaluation of new MNPs. Cheminformatics analysis of MNPs found in MarinLit (n = 39,730) up to the end of 2023 highlighted indol-3-yl-glyoxylamides (IGAs, n = 24) as a group of MNPs with no reported bioactivities. However, a recent review of synthetic IGAs highlighted these scaffolds as privileged structures with several compounds under clinical evaluation. Herein, we report the synthesis of a library of 32 MNP-inspired brominated IGAs (2556) using a simple one-pot, multistep method affording access to these diverse chemical scaffolds. Directed by a meta-analysis of the biological activities reported for marine indole alkaloids (MIAs) and synthetic IGAs, the brominated IGAs 2556 were examined for their potential bioactivities against the Parkinson’s Disease amyloid protein alpha synuclein (α-syn), antiplasmodial activities against chloroquine-resistant (3D7) and sensitive (Dd2) parasite strains of Plasmodium falciparum, and inhibition of mammalian (chymotrypsin and elastase) and viral (SARS-CoV-2 3CLpro) proteases. All of the synthetic IGAs tested exhibited binding affinity to the amyloid protein α-syn, while some showed inhibitory activities against P. falciparum, and the proteases, SARS-CoV-2 3CLpro, and chymotrypsin. The cellular safety of the IGAs was examined against cancerous and non-cancerous human cell lines, with all of the compounds tested inactive, thereby validating cheminformatics and meta-analyses results. The findings presented herein expand our knowledge of marine IGA bioactive chemical space and advocate expanding the scope of biological assays routinely used to investigate NP bioactivities, specifically those more suitable for non-toxic compounds. By integrating cheminformatics tools and functional assays into NP biological testing workflows, we can aim to enhance the potential of NPs and their scaffolds for future drug discovery and development. Full article
(This article belongs to the Special Issue Recent Advances in the Organic Synthesis of Bioactive Compounds)
Show Figures

Graphical abstract

33 pages, 4554 KiB  
Review
Nortopsentins as Leads from Marine Organisms for Anticancer and Anti-Inflammatory Agent Development
by Camilla Pecoraro, Francesca Terrana, Giovanna Panzeca, Barbara Parrino, Stella Cascioferro, Patrizia Diana, Elisa Giovannetti and Daniela Carbone
Molecules 2023, 28(18), 6450; https://doi.org/10.3390/molecules28186450 - 5 Sep 2023
Cited by 11 | Viewed by 2508
Abstract
The marine environment is an excellent source of molecules that have a wide structural diversity and a variety of biological activities. Many marine natural products (MNPs) have been established as leads for anticancer drug discovery. Most of these compounds are alkaloids, including several [...] Read more.
The marine environment is an excellent source of molecules that have a wide structural diversity and a variety of biological activities. Many marine natural products (MNPs) have been established as leads for anticancer drug discovery. Most of these compounds are alkaloids, including several chemical subclasses. In this review, we focus on the bis-indolyl alkaloid Nortopsentins and their derivatives with antiproliferative properties. Nortopsentins A–C were found to exhibit in vitro cytotoxicity against the P388 murine leukaemia cell line. Their structural manipulation provided a wide range of derivatives with significant anti-tumour activity against human cell lines derived from different cancer types (bladder, colon, gastric, CNS, liver, lung, breast, melanoma, ovarian, pancreatic, prostate, pleural mesothelioma, renal, sarcoma, and uterus). In vivo assays on animal models also proved that Nortopsentins and related bis-indolyl compounds have potent anti-inflammatory activity. These remarks set the foundation for future investigations into the development of new Nortopsentin derivatives as new anticancer and anti-inflammatory agents. Full article
Show Figures

Figure 1

26 pages, 14657 KiB  
Article
Antiproliferative, Antioxidant, Chemopreventive and Antiangiogenic Potential of Chromatographic Fractions from Anemonia sulcata with and without Its Symbiont Symbiodinium in Colorectal Cancer Therapy
by Mercedes Peña, Cristina Mesas, Gloria Perazzoli, Rosario Martínez, Jesús M. Porres, Kevin Doello, Jose Prados, Consolación Melguizo and Laura Cabeza
Int. J. Mol. Sci. 2023, 24(14), 11249; https://doi.org/10.3390/ijms241411249 - 8 Jul 2023
Cited by 4 | Viewed by 2313
Abstract
Anemonia sulcata may be a source of marine natural products (MNPs) due to the antioxidant and antitumor activity of its crude homogenates shown in vitro in colon cancer cells. A bioguided chromatographic fractionation assay of crude Anemonia sulcata homogenates with and without its [...] Read more.
Anemonia sulcata may be a source of marine natural products (MNPs) due to the antioxidant and antitumor activity of its crude homogenates shown in vitro in colon cancer cells. A bioguided chromatographic fractionation assay of crude Anemonia sulcata homogenates with and without its symbiont Symbiodinium was performed to characterize their bioactive composition and further determine their biological potential for the management of colorectal cancer (CRC). The 20% fractions retained the in vitro antioxidant activity previously reported for homogenates. As such, activation of antioxidant and detoxifying enzymes was also evaluated. The 40% fractions showed the greatest antiproliferative activity in T84 cells, synergistic effects with 5-fluoruracil and oxaliplatin, overexpression of apoptosis-related proteins, cytotoxicity on tumorspheres, and antiangiogenic activity. The predominantly polar lipids and toxins tentatively identified in the 20% and 40% fractions could be related to their biological activity in colon cancer cells although further characterizations of the active fractions are necessary to isolate and purify the bioactive compounds. Full article
Show Figures

Graphical abstract

44 pages, 9503 KiB  
Review
Marine Natural Products from the Beibu Gulf: Sources, Chemistry, and Bioactivities
by Jiamin Wang, Yuning Qin, Miaoping Lin, Yingying Song, Humu Lu, Xinya Xu, Yonghong Liu, Xuefeng Zhou, Chenghai Gao and Xiaowei Luo
Mar. Drugs 2023, 21(2), 63; https://doi.org/10.3390/md21020063 - 19 Jan 2023
Cited by 8 | Viewed by 3403
Abstract
Marine natural products (MNPs) play an important role in the discovery and development of new drugs. The Beibu Gulf of South China Sea harbors four representative marine ecosystems, including coral reefs, mangroves, seaweed beds, and coastal wetlands, which are rich in underexplored marine [...] Read more.
Marine natural products (MNPs) play an important role in the discovery and development of new drugs. The Beibu Gulf of South China Sea harbors four representative marine ecosystems, including coral reefs, mangroves, seaweed beds, and coastal wetlands, which are rich in underexplored marine biological resources that produce a plethora of diversified MNPs. In our ongoing efforts to discover novel and biologically active MNPs from the Beibu Gulf, we provide a systematic overview of the sources, chemical structures, and bioactive properties of a total of 477 new MNPs derived from the Beibu Gulf, citing 133 references and covering the literature from the first report in November 2003 up to September 2022. These reviewed MNPs were structurally classified into polyketides (43%), terpenoids (40%), nitrogen-containing compounds (12%), and glucosides (5%), which mainly originated from microorganisms (52%) and macroorganisms (48%). Notably, they were predominantly found with cytotoxic, antibacterial, and anti-inflammatory activities. This review will shed light on these untapped Beibu Gulf-derived MNPs as promising lead compounds for the development of new drugs. Full article
Show Figures

Graphical abstract

23 pages, 8849 KiB  
Article
Chetomin, a SARS-CoV-2 3C-like Protease (3CLpro) Inhibitor: In Silico Screening, Enzyme Docking, Molecular Dynamics and Pharmacokinetics Analysis
by Mahmoud A. A. Ibrahim, Alaa H. M. Abdelrahman, Dina E. M. Mohamed, Khlood A. A. Abdeljawaad, Mohamed Ahmed Naeem, Gamal A. Gabr, Ahmed M. Shawky, Mahmoud E. S. Soliman, Peter A. Sidhom, Paul W. Paré and Mohamed-Elamir F. Hegazy
Viruses 2023, 15(1), 250; https://doi.org/10.3390/v15010250 - 15 Jan 2023
Cited by 5 | Viewed by 3362
Abstract
The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 6 million deaths. The 3C-like protease (3CLpro) enzyme of the SARS-CoV-2 virus is an attractive druggable target for exploring therapeutic [...] Read more.
The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 6 million deaths. The 3C-like protease (3CLpro) enzyme of the SARS-CoV-2 virus is an attractive druggable target for exploring therapeutic drug candidates to combat COVID-19 due to its key function in viral replication. Marine natural products (MNPs) have attracted considerable attention as alternative sources of antiviral drug candidates. In looking for potential 3CLpro inhibitors, the MNP database (>14,000 molecules) was virtually screened against 3CLpro with the assistance of molecular docking computations. The performance of AutoDock and OEDocking software in anticipating the ligand-3CLpro binding mode was first validated according to the available experimental data. Based on the docking scores, the most potent MNPs were further subjected to molecular dynamics (MD) simulations, and the binding affinities of those molecules were computed using the MM-GBSA approach. According to MM-GBSA//200 ns MD simulations, chetomin (UMHMNP1403367) exhibited a higher binding affinity against 3CLpro than XF7, with ΔGbinding values of −55.5 and −43.7 kcal/mol, respectively. The steadiness and tightness of chetomin with 3CLpro were evaluated, revealing the high stabilization of chetomin (UMHMNP1403367) inside the binding pocket of 3CLpro throughout 200 ns MD simulations. The physicochemical and pharmacokinetic features of chetomin were also predicted, and the oral bioavailability of chetomin was demonstrated. Furthermore, the potentiality of chetomin analogues –namely, chetomin A-D– as 3CLpro inhibitors was investigated. These results warrant further in vivo and in vitro assays of chetomin (UMHMNP1403367) as a promising anti-COVID-19 drug candidate. Full article
(This article belongs to the Special Issue Viral Enzyme Inhibitors: Structure and Dynamics)
Show Figures

Figure 1

26 pages, 14167 KiB  
Review
Psammaplysins: Insights from Natural Sources, Structural Variations, and Pharmacological Properties
by Diaa T. A. Youssef and Lamiaa A. Shaala
Mar. Drugs 2022, 20(11), 663; https://doi.org/10.3390/md20110663 - 25 Oct 2022
Cited by 6 | Viewed by 2367
Abstract
Marine natural products (MNPs) continue to be in the spotlight in the global drug discovery endeavor. Currently, more than 32,000 structurally diverse secondary metabolites from marine sources have been isolated, making MNPs a vital source for researchers to look for novel drug candidates. [...] Read more.
Marine natural products (MNPs) continue to be in the spotlight in the global drug discovery endeavor. Currently, more than 32,000 structurally diverse secondary metabolites from marine sources have been isolated, making MNPs a vital source for researchers to look for novel drug candidates. The marine-derived psammaplysins possess the rare and unique 1,6-dioxa-2-azaspiro [4.6] undecane backbone and are represented by 44 compounds in the literature, mostly from sponges of the order Verongiida. Compounds with 1,6-dioxa-2-azaspiro [4.6] undecane moiety exist in the literature under five names, including psammaplysins, ceratinamides, frondoplysins, ceratinadins, and psammaceratins. These compounds displayed significant biological properties including growth inhibitory, antimalarial, antifouling, protein tyrosine phosphatase inhibition, antiviral, immunosuppressive, and antioxidant effects. In this review, a comprehensive literature survey covering natural occurrence of the psammaplysins and related compounds, methods of isolation, structural differences, the biogenesis, and biological/pharmacological properties, will be presented. Full article
(This article belongs to the Section Marine Chemoecology for Drug Discovery)
Show Figures

Figure 1

17 pages, 1097 KiB  
Review
Natural Products of Marine Origin for the Treatment of Colorectal and Pancreatic Cancers: Mechanisms and Potential
by Nasrin Fares Amer and Tal Luzzatto Knaan
Int. J. Mol. Sci. 2022, 23(14), 8048; https://doi.org/10.3390/ijms23148048 - 21 Jul 2022
Cited by 8 | Viewed by 4083
Abstract
Gastrointestinal cancer refers to malignancy of the accessory organs of digestion, and it includes colorectal cancer (CRC) and pancreatic cancer (PC). Worldwide, CRC is the second most common cancer among women and the third most common among men. PC has a poor prognosis [...] Read more.
Gastrointestinal cancer refers to malignancy of the accessory organs of digestion, and it includes colorectal cancer (CRC) and pancreatic cancer (PC). Worldwide, CRC is the second most common cancer among women and the third most common among men. PC has a poor prognosis and high mortality, with 5-year relative survival of approximately 11.5%. Conventional chemotherapy treatments for these cancers are limited due to severe side effects and the development of drug resistance. Therefore, there is an urgent need to develop new and safe drugs for effective treatment of PC and CRC. Historically, natural sources—plants in particular—have played a dominant role in traditional medicine used to treat a wide spectrum of diseases. In recent decades, marine natural products (MNPs) have shown great potential as drugs, but drug leads for treating various types of cancer, including CRC and PC, are scarce. To date, marine-based drugs have been used against leukemia, metastatic breast cancer, soft tissue sarcoma, and ovarian cancer. In this review, we summarized existing studies describing MNPs that were found to have an effect on CRC and PC, and we discussed the potential mechanisms of action of MNPs as well as future prospects for their use in treating these cancers. Full article
(This article belongs to the Special Issue Cytotoxicity, Antioxidant and Anticancer Activity of Natural Products)
Show Figures

Figure 1

20 pages, 1378 KiB  
Review
Recent Advances in the Heterologous Expression of Biosynthetic Gene Clusters for Marine Natural Products
by Yushan Xu, Xinhua Du, Xionghui Yu, Qian Jiang, Kaiwen Zheng, Jinzhong Xu and Pinmei Wang
Mar. Drugs 2022, 20(6), 341; https://doi.org/10.3390/md20060341 - 24 May 2022
Cited by 22 | Viewed by 7263
Abstract
Marine natural products (MNPs) are an important source of biologically active metabolites, particularly for therapeutic agent development after terrestrial plants and nonmarine microorganisms. Sequencing technologies have revealed that the number of biosynthetic gene clusters (BGCs) in marine microorganisms and the marine environment is [...] Read more.
Marine natural products (MNPs) are an important source of biologically active metabolites, particularly for therapeutic agent development after terrestrial plants and nonmarine microorganisms. Sequencing technologies have revealed that the number of biosynthetic gene clusters (BGCs) in marine microorganisms and the marine environment is much higher than expected. Unfortunately, the majority of them are silent or only weakly expressed under traditional laboratory culture conditions. Furthermore, the large proportion of marine microorganisms are either uncultivable or cannot be genetically manipulated. Efficient heterologous expression systems can activate cryptic BGCs and increase target compound yield, allowing researchers to explore more unknown MNPs. When developing heterologous expression of MNPs, it is critical to consider heterologous host selection as well as genetic manipulations for BGCs. In this review, we summarize current progress on the heterologous expression of MNPs as a reference for future research. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Graphical abstract

28 pages, 11828 KiB  
Review
Approaches to Configuration Determinations of Flexible Marine Natural Products: Advances and Prospects
by Zong-Qing Huo, Feng Zhu, Xing-Wang Zhang, Xiao Zhang, Hong-Bao Liang, Jing-Chun Yao, Zhong Liu, Gui-Min Zhang, Qing-Qiang Yao and Guo-Fei Qin
Mar. Drugs 2022, 20(5), 333; https://doi.org/10.3390/md20050333 - 19 May 2022
Cited by 14 | Viewed by 4696
Abstract
Flexible marine natural products (MNPs), such as eribulin and bryostatin, play an important role in the development of modern marine drugs. However, due to the multiple chiral centers and geometrical uncertainty of flexible systems, configuration determinations of flexible MNPs face great challenges, which, [...] Read more.
Flexible marine natural products (MNPs), such as eribulin and bryostatin, play an important role in the development of modern marine drugs. However, due to the multiple chiral centers and geometrical uncertainty of flexible systems, configuration determinations of flexible MNPs face great challenges, which, in turn, have led to obstacles in druggability research. To resolve this issue, the comprehensive use of multiple methods is necessary. Additionally, configuration assignment methods, such as X-ray single-crystal diffraction (crystalline derivatives, crystallization chaperones, and crystalline sponges), NMR-based methods (JBCA and Mosher’s method), circular dichroism-based methods (ECCD and ICD), quantum computational chemistry-based methods (NMR calculations, ECD calculations, and VCD calculations), and chemical transformation-based methods should be summarized. This paper reviews the basic principles, characteristics, and applicability of the methods mentioned above as well as application examples to broaden the research and applications of these methods and to provide a reference for the configuration determinations of flexible MNPs. Full article
Show Figures

Graphical abstract

16 pages, 38481 KiB  
Review
Discovery of Marine Natural Products as Promising Antibiotics against Pseudomonas aeruginosa
by Haoran Li, Mireguli Maimaitiming, Yue Zhou, Huaxuan Li, Pingyuan Wang, Yang Liu, Till F. Schäberle, Zhiqing Liu and Chang-Yun Wang
Mar. Drugs 2022, 20(3), 192; https://doi.org/10.3390/md20030192 - 4 Mar 2022
Cited by 19 | Viewed by 6984
Abstract
Pseudomonas aeruginosa, one of the most intractable Gram-negative bacteria, has become a public health threat due to its outer polysaccharide layer, efflux transporter system, and high level of biofilm formation, all of which contribute to multi-drug resistance. Even though it is a [...] Read more.
Pseudomonas aeruginosa, one of the most intractable Gram-negative bacteria, has become a public health threat due to its outer polysaccharide layer, efflux transporter system, and high level of biofilm formation, all of which contribute to multi-drug resistance. Even though it is a pathogen of the highest concern, the status of the antibiotic development pipeline is unsatisfactory. In this review, we summarize marine natural products (MNPs) isolated from marine plants, animals, and microorganisms which possess unique structures and promising antibiotic activities against P. aeruginosa. In the last decade, nearly 80 such MNPs, ranging from polyketides to alkaloids, peptides, and terpenoids, have been discovered. Representative compounds exhibited impressive in vitro anti-P. aeruginosa activities with MIC values in the single-digit nanomolar range and in vivo efficacy in infectious mouse models. For some of the compounds, the preliminary structure-activity-relationship (SAR) and anti-bacterial mechanisms of selected compounds were introduced. Compounds that can disrupt biofilm formation or membrane integrity displayed potent inhibition of multi-resistant clinical P. aeruginosa isolates and could be considered as lead compounds for future development. Challenges on how to translate hits into useful candidates for clinical development are also proposed and discussed. Full article
Show Figures

Graphical abstract

26 pages, 3453 KiB  
Article
From the North Sea to Drug Repurposing, the Antiseizure Activity of Halimide and Plinabulin
by Daniëlle Copmans, Sara Kildgaard, Emma Roux, Michèle Partoens, Gert Steurs, Xinhui Wang, Wim M. De Borggraeve, Camila V. Esguerra, Alexander D. Crawford, Thomas O. Larsen and Peter A. M. de Witte
Pharmaceuticals 2022, 15(2), 247; https://doi.org/10.3390/ph15020247 - 18 Feb 2022
Cited by 10 | Viewed by 4862
Abstract
PharmaSea performed large-scale in vivo screening of marine natural product (MNP) extracts, using zebrafish embryos and larvae, to identify compounds with the potential to treat epilepsy. In this study, we report the discovery of two new antiseizure compounds, the 2,5-diketopiperazine halimide and its [...] Read more.
PharmaSea performed large-scale in vivo screening of marine natural product (MNP) extracts, using zebrafish embryos and larvae, to identify compounds with the potential to treat epilepsy. In this study, we report the discovery of two new antiseizure compounds, the 2,5-diketopiperazine halimide and its semi-synthetic analogue, plinabulin. Interestingly, these are both known microtubule destabilizing agents, and plinabulin could have the potential for drug repurposing, as it is already in clinical trials for the prevention of chemotherapy-induced neutropenia and treatment of non-small cell lung cancer. Both halimide and plinabulin were found to have antiseizure activity in the larval zebrafish pentylenetetrazole (PTZ) seizure model via automated locomotor analysis and non-invasive local field potential recordings. The efficacy of plinabulin was further characterized in animal models of drug-resistant seizures, i.e., the larval zebrafish ethyl ketopentenoate (EKP) seizure model and the mouse 6 Hz psychomotor seizure model. Plinabulin was observed to be highly effective against EKP-induced seizures, on the behavioral and electrophysiological level, and showed activity in the mouse model. These data suggest that plinabulin could be of interest for the treatment of drug-resistant seizures. Finally, the investigation of two functional analogues, colchicine and indibulin, which were observed to be inactive against EKP-induced seizures, suggests that microtubule depolymerization does not underpin plinabulin’s antiseizure action. Full article
(This article belongs to the Special Issue Chemistry and Biomedical Potential of Marine Natural Products)
Show Figures

Graphical abstract

20 pages, 6386 KiB  
Article
Predicting Antifouling Activity and Acetylcholinesterase Inhibition of Marine-Derived Compounds Using a Computer-Aided Drug Design Approach
by Susana P. Gaudêncio and Florbela Pereira
Mar. Drugs 2022, 20(2), 129; https://doi.org/10.3390/md20020129 - 8 Feb 2022
Cited by 17 | Viewed by 4801
Abstract
Biofouling is the undesirable growth of micro- and macro-organisms on artificial water-immersed surfaces, which results in high costs for the prevention and maintenance of this process (billion €/year) for aquaculture, shipping and other industries that rely on coastal and off-shore infrastructure. To date, [...] Read more.
Biofouling is the undesirable growth of micro- and macro-organisms on artificial water-immersed surfaces, which results in high costs for the prevention and maintenance of this process (billion €/year) for aquaculture, shipping and other industries that rely on coastal and off-shore infrastructure. To date, there are still no sustainable, economical and environmentally safe solutions to overcome this challenging phenomenon. A computer-aided drug design (CADD) approach comprising ligand- and structure-based methods was explored for predicting the antifouling activities of marine natural products (MNPs). In the CADD ligand-based method, 141 organic molecules extracted from the ChEMBL database and literature with antifouling screening data were used to build the quantitative structure–activity relationship (QSAR) classification model. An overall predictive accuracy score of up to 71% was achieved with the best QSAR model for external and internal validation using test and training sets. A virtual screening campaign of 14,492 MNPs from Encinar’s website and 14 MNPs that are currently in the clinical pipeline was also carried out using the best QSAR model developed. In the CADD structure-based approach, the 125 MNPs that were selected by the QSAR approach were used in molecular docking experiments against the acetylcholinesterase enzyme. Overall, 16 MNPs were proposed as the most promising marine drug-like leads as antifouling agents, e.g., macrocyclic lactam, macrocyclic alkaloids, indole and pyridine derivatives. Full article
(This article belongs to the Special Issue Marine Drug Discovery through Computer-Aided Approaches)
Show Figures

Graphical abstract

Back to TopTop