
Citation: Ibrahim, M.A.A.;

Abdelrahman, A.H.M.; Mohamed,

D.E.M.; Abdeljawaad, K.A.A.;

Naeem, M.A.; Gabr, G.A.; Shawky,

A.M.; Soliman, M.E.S.; Sidhom, P.A.;

Paré, P.W.; et al. Chetomin, a

SARS-CoV-2 3C-like Protease

(3CLpro) Inhibitor: In Silico Screening,

Enzyme Docking, Molecular

Dynamics and Pharmacokinetics

Analysis. Viruses 2023, 15, 250.

https://doi.org/10.3390/v15010250

Academic Editor: Krishan K. Pandey

Received: 16 November 2022

Revised: 10 January 2023

Accepted: 13 January 2023

Published: 15 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

Chetomin, a SARS-CoV-2 3C-like Protease (3CLpro) Inhibitor: In
Silico Screening, Enzyme Docking, Molecular Dynamics and
Pharmacokinetics Analysis
Mahmoud A. A. Ibrahim 1,2,* , Alaa H. M. Abdelrahman 1 , Dina E. M. Mohamed 1,
Khlood A. A. Abdeljawaad 1 , Mohamed Ahmed Naeem 3, Gamal A. Gabr 4,5 , Ahmed M. Shawky 6 ,
Mahmoud E. S. Soliman 7, Peter A. Sidhom 8,* , Paul W. Paré 9 and Mohamed-Elamir F. Hegazy 10

1 Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University,
Minia 61519, Egypt

2 School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
3 Ain Shams University Specialized Hospital, Ain Shams University, Cairo 11588, Egypt
4 Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University,

Al-Kharj 11942, Saudi Arabia
5 Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza 12619, Egypt
6 Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia
7 Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of

KwaZulu-Natal, Westville, Durban 4000, South Africa
8 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
9 Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
10 Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki,

Giza 12622, Egypt
* Correspondence: m.ibrahim@compchem.net (M.A.A.I.); peter.ayoub@pharm.tanta.edu.eg (P.A.S.)

Abstract: The emergence of the Coronavirus Disease 2019 (COVID-19) pandemic caused by severe
acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to over 6 million deaths. The 3C-like
protease (3CLpro) enzyme of the SARS-CoV-2 virus is an attractive druggable target for exploring
therapeutic drug candidates to combat COVID-19 due to its key function in viral replication. Marine
natural products (MNPs) have attracted considerable attention as alternative sources of antiviral
drug candidates. In looking for potential 3CLpro inhibitors, the MNP database (>14,000 molecules)
was virtually screened against 3CLpro with the assistance of molecular docking computations. The
performance of AutoDock and OEDocking software in anticipating the ligand-3CLpro binding mode
was first validated according to the available experimental data. Based on the docking scores, the
most potent MNPs were further subjected to molecular dynamics (MD) simulations, and the binding
affinities of those molecules were computed using the MM-GBSA approach. According to MM-
GBSA//200 ns MD simulations, chetomin (UMHMNP1403367) exhibited a higher binding affinity
against 3CLpro than XF7, with ∆Gbinding values of −55.5 and −43.7 kcal/mol, respectively. The
steadiness and tightness of chetomin with 3CLpro were evaluated, revealing the high stabilization of
chetomin (UMHMNP1403367) inside the binding pocket of 3CLpro throughout 200 ns MD simulations.
The physicochemical and pharmacokinetic features of chetomin were also predicted, and the oral
bioavailability of chetomin was demonstrated. Furthermore, the potentiality of chetomin analogues
–namely, chetomin A-D– as 3CLpro inhibitors was investigated. These results warrant further in vivo
and in vitro assays of chetomin (UMHMNP1403367) as a promising anti-COVID-19 drug candidate.

Keywords: marine natural products (MNPs); SARS-CoV-2 3CLpro; docking computations; MD
simulation; ADMET study

1. Introduction

COVID-19 is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-
2), which has produced a global health emergency [1,2]. In December 2019, SARS-CoV-2
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was first identified in Wuhan, China, and quickly spread around the world [3–5]. As of
October 2022, over 623 million COVID-19 cases were confirmed, resulting in over 6.5 million
deaths. COVID-19 has exposed the fragility of public health and healthcare systems in
many nations [6]. Despite the predictions of viral abatement due to widespread vaccine
production using next-generation technologies, rapidly evolving variants combined with
vaccine hesitancy and limited vaccine availability have thwarted plans for viral control [7].
Indeed, now that the SARS-CoV-2 pandemic has been raging for two-and-a-half years,
most people have either been vaccinated against and/or infected by the virus. The threats
of the appearance of more genetic variations with greater virulence and the elevated rate
of viral impedance to authorized therapeutics are driving an uninterrupted necessity for
exploring efficient anti-COVID-19 therapies.

SARS-CoV-2 3C-like protease (3CLpro/Mpro/NSP5) is a vital enzyme in viral gene
replication, transcription, and expression [8–11]. Since the outbreak of COVID-19, several
experimental and computational trials have been conducted to repurpose various drugs
to inhibit 3CLpro and combat this disease [12,13]. Among the repurposed drugs, remde-
sivir, lopinavir, umifenovir, ritonavir, and favipiravir, have been promoted for clinical
investigation as COVID-19 medications [14,15]. Very recently, the FDA (US Food and
Drug Administration) granted a contingency utilizing permission for a combination of
nirmatrelvir and ritonavir as therapeutics for COVID-19 treatment.

Plant-based natural products (NPs) have been considered a substantial source of cura-
tive agents. Indeed, NPs have robust antiviral activity and have demonstrated inhibitory
efficiency against numerous viral enzymes [16,17]; exploratory antiviral drugs include
cyclosporine and cyanovirin-N [18,19].

An alternate source of natural products is marine secondary metabolites [20,21]. The
marine environment is a rich source of chemically diverse and biologically active natural
molecules. It has been reported that MNPs demonstrate antimalarial, antifungal, antibacte-
rial, and antiviral activities [22,23]. The antiviral activity of MNPs has been investigated for
dengue, influenza, SARS, and other viruses [24,25]. For instance, polyphenol and coumarin
derivatives from MNP sources demonstrated high in vitro activities toward 3CLpro [26,27].
However, the potentiality of MNPs as 3CLpro inhibitors has yet to be examined exten-
sively. Here, we explore MNPs as 3CLpro inhibitors by screening a database containing
>14,000 compounds using in Silico molecular docking techniques. The most effective MNPs
were submitted for molecular dynamics simulations. MNPs-3CLpro binding affinities were
calculated utilizing the MM-GBSA approach. These in Silico calculations in combination
with predicted physicochemical and pharmacokinetics characteristics, identified multiple
drug candidates for COVID-19 treatment.

2. Materials and Methods
2.1. 3CLpro Preparation

The 3D structure of 3CLpro complexed with a noncovalent inhibitor ((5S)-5-(3-{3-
chloro-5-[(2-chlorophenyl)methoxy]phenyl}-2-oxo [2H-[1,3’-bipyridine]]-5-yl)pyrimidine-
2,4(3H,5H)-dione; XF7) was retrieved from the PDB database (PDB ID: 7L13 [28], resolution:
2.17 Å) and employed as a template for the current study. All heteroatoms, ligands, ions,
and crystallographic water molecules were removed. The H++ server was utilized to
identify residues’ protonation states, and missing hydrogen atoms were added [29].

2.2. Database Preparation

The marine natural product (MNP) database was downloaded in an SDF format from
Prof. Encinar’s website (http://docking.umh.es/downloaddb (accessed on 11 February
2022)). The 3D chemical structures were generated using Omega2 software with a maxi-
mum of 200 conformers generated within a 10 kcal/mol energy window [30,31]; the lowest
energy conformer was selected for further studies. The protonation state of each MNP was
investigated using fixpka within QUACPAC software [32]. The Gasteiger–Marsili method
was used to appoint the MNP atomic charges [33]. Based on the InChIKey (IUPAC interna-
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tional chemical identifier keys), duplicated molecules were eliminated [34]. The prepared
MNP library is accessible via www.compchem.net/ccdb. The schematic diagram of the
utilized in Silico computations for the filtration process of the MNP library is represented in
Figure 1.
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Figure 1. A schematic diagram of the utilized in Silico computations in the filtration process of marine
natural products (MNP) database.

2.3. Molecular Docking

The initial molecular docking computations were performed using AutoDock4.2.6 [35]
and OEDocking3.0.1 [36,37] software. For the AutoDock4.2.6 calculations, the pdbqt file of
3CLpro was created in accordance with the AutoDock protocol with the assistance of the
molecular graphics laboratory (MGL) tools 1.5.7 [38]. The internal conformational search
was executed by the LGA (Lamarckian Genetic Algorithm) [39]. The LGA population size
and the maximum number of generations were 300 and 27,000, respectively. Three accuracy
levels of docking computations were utilized, namely, fast, moderate, and expensive (i.e.,
more computational cost and time) calculations. The GA (number of genetic algorithms)
run variables were 25, 100, and 250 for fast, moderate, and expensive molecular docking
computations, respectively. In addition, the eval (maximum number of energy evaluations)
was 2,500,000, 10,000,000, and 25,000,000 for fast, moderate, and expensive molecular
docking computations, respectively. The grid dimensions (60 × 60 × 60 Å3) were able to
embrace the complete binding pocket of 3CLpro. The coordinates of the grid center were
x = −13.069, y = 9.740, z = 64.83. The employed grid is depicted in Figure S1. The predicted
poses were clusterized using the internal conformational cluster engine with an RMSD

www.compchem.net/ccdb
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tolerance value of 1.0 Å. The representative docking mode was chosen from the largest
cluster with the lowest docking score. For OEDocking3.0.1 software, the resolution of the
exhaustive search was set to high, and the best scoring pose was retained. Based on the
complex of the co-crystallized XF7 ligand with 3CLpro, the active site was determined. XF7
was found to be one of the most potent noncovalent inhibitors toward 3CLpro with an IC50
value of 0.018 µM [28].

2.4. MD Simulations

MD (molecular dynamics) simulations were performed for the most potent MNPs
complexed with 3CLpro with the assistance of AMBER16 software [40]. The details of
the utilized protocol for the MD simulations are described elsewhere [41–45]. Briefly, the
investigated MNPs were parameterized by a general AMBER force field (GAFF2) [46].
3CLpro was characterized using the AMBER force field of 14SB [47]. In the current study,
implicit and explicit water solvent MD simulations were performed.

In the context of implicit water solvent MD simulation, the investigated MNPs were
optimized at MMFF94S, and the atomic charges of the MNP were assigned using the
AM1-BCC approach [48]. For the nonbonded interactions, the cutoff value was adjusted
to 999 Å. Additionally, non-periodic boundary conditions were utilized. Moreover, the
solvent model (implicit generalized born (igb) = 1) was employed to estimate the solvation
impact [49]. The docked MNPs complexed with 3CLpro were initially minimized based on
500 cycles. The minimized complexes were slowly heated from 0 to 310 K throughout 10 ps
in six steps. After that, the investigated systems were equilibrated over a 50 ps simulation.
Ultimately, the equilibrated systems underwent a production stage of 1 ns.

In the context of explicit water solvent MD, the investigated MNPs were optimized at
HF/6-31G* level of theory by Gaussian09 software [50]. The RESP (restrained electrostatic
potential) approach was subsequently applied to compute the charges of the MNPs [51].
All of the MNP-3CLpro complexes were solvated utilizing TIP3P water molecules in an
octahedral box with a minimal distance of 12 Å. Using the tleap tool implemented inside
AMBER16 software, the counter-ions (52 Na+ and/or 48 Cl−) were inserted to attain 0.15 M
NaCl concentration. Afterward, minimization was conducted using combined steepest
descent and conjugate gradient algorithms for 5000 cycles to eliminate any unsuitable
geometries or steric clashes. The minimized systems were progressively heated up to 310 K
over 50 ps. Thereafter, the investigated systems were equilibrated for 10 ns. Eventually,
the equilibrated systems were subjected to production runs over 5, 25, and 200 ns MD. For
electrostatics, the Particle-Mesh Ewald (PME) algorithm was used [52]. An atomic cutoff
distance of 12 Å was utilized for short-range nonbonded interactions [52]. All of the bonds
that included hydrogen atoms were constrained using a SHAKE algorithm [53]. All of
the MD simulations were conducted utilizing a GPU-accelerated MD engine in AMBER16
(pmemd.cuda). The CompChem GPU/CPU hybrid cluster was used to perform all in Silico
computations. All graphical representations were visualized utilizing BIOVIA Discovery
Studio Visualizer 2020 [54].

2.5. Binding Affinity Computations

The molecular mechanical-generalized Born surface area (MM-GBSA) approach within
the AMBER16 software was used to compute the binding affinities for the most potent
MNPs complexed with 3CLpro [55]. For MM-GBSA calculations, the frames were collected
every 10 ps and the ∆Gbinding was estimated according to the following equation:

∆Gbinding = GComplex − (GMNP + G3CLpro )

where the G term is:
G = GGB + Eele + GSA + Evdw

GGB stands for electrostatic solvation-free energy. Eele is electrostatic energy. GSA
refers to the nonpolar solvation-free energy that is evaluated from the SASA (solvent-
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accessible surface area) with the assistance of an LCPO algorithm [56]. Evdw is van der
Waals energy. Because of its greater computational costs, the computation of entropy (S)
was overlooked [57,58].

2.6. Physicochemical Features

The physicochemical characteristics of the most potent MNP were estimated utilizing
the SwissADME server [59]. Under the framework of the Lipinski’s rule, five characteristics
were considered, including the molecular weight (MWt ≤ 500 g/mol), hydrogen bond
donors (HBD ≤ 5), log p value (log po/w ≤ 5), demonstrating good oral and intestinal
absorption, topological polar surface area (TPSA ≤ 140 Å2), revealing that the compounds
have eminent oral absorption or membrane permeability, and hydrogen bond acceptors
(HBA ≤ 10). Passing these characteristics indicates that a given MNP is orally bioavailable.

2.7. Pharmacokinetic Characteristics

An online pkCSM tool was employed to anticipate the ADMET properties of the most
potent MNPs [60]. Absorption (A) involves skin permeability, Caco2 permeability, HIA
(human intestinal absorption), skin permeability, and P-glycoprotein substrate and inhibitor.
Distribution (D) includes fraction unbound, CNS (central nervous system) permeability,
VDss (steady-state volume of distribution), and BBB (blood–brain barrier) permeability. The
metabolism (M) depends on factors such as CYP2D6/CYP3A4 substrate and cytochrome
P450 inhibitors. The excretion (E) is estimated via inhibitor total clearance. The toxicity (T)
is anticipated via AMES toxicity and skin sensitization.

3. Results and Discussion

The COVID-19 epidemic and its emerging variants underline the necessity to develop
alternative treatments, as vaccines alone do not provide complete protection against illness.
The 3C-like protease (3CLpro) has a vital function in viral replication and, as such, is
deemed an effective druggable target. Moreover, marine natural products (MNPs) include
several metabolites with antiviral properties and, as such, are potential drug candidates for
COVID-19 treatment [61]. Here, we utilized in silico approaches to screen a chemical library
containing > 14,000 MNP metabolites as potential SARS-CoV-2 3CLpro inhibitors.

3.1. Docking Assessment

Two molecular docking engines, AutoDock and OEDocking, were used to validate
the inhibitor-3CLpro binding mode. Initially, the binding mode of the XF7, a co-crystallized
ligand in the 3CLpro binding pocket, was predicted and compared with the resolved
native structure (PDB ID: 7L13 [28]) (Figure 2). The predicted docking pose was almost
identical to the native binding mode with RMSD values of 0.20 and 0.43 Å for AutoDock
and OEDocking, respectively (Figure 2). Comparing the RMSD values of AutoDock and
OEDocking, it can be seen that AutoDock predicted the native inhibitor-3CLpro binding
mode better than OEDocking. As a result, AutoDock was selected in the filtration process
of the MNP database.

3.2. MNP Database Screening

Initially, the MNP database was screened against 3CLpro using fast docking compu-
tation. On the basis of the anticipated docking scores, 2686 MNPs displayed docking
scores lower than that of the XF7 ligand, with a value of −8.1 kcal/mol against 3CLpro.
Consequently, those 2686 MNPs were subjected to moderate docking computations. The
computed docking scores for the top 2686 MNPs are summarized in Table S1. According to
the estimated moderate docking scores, 1092 MNPs showed docking scores less than that
of the XF7 ligand, with a value of −9.2 kcal/mol. Thus, the 1092 MNPs were submitted to
expensive docking computations, and the evaluated docking scores are listed in Table S2.
Interestingly, about 10% of the selected MNPs (i.e., 111 MNPs) displayed lower docking
scores than XF7 (calc. −9.5 kcal/mol). The predicted docking scores, binding features, and
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2D chemical structures for the thirteen most potent MNPs for 3CLpro are shown in Table 1.
The 2D docking poses for these selected MNPs are depicted in Figure S2. These MNPs
were selected based on binding affinities over 1 ns implicit water solvent MD simulations,
as described in Section 3.3. Generally, the 2D representations demonstrated the hydrogen
bonding of those MNPs with GLN189, GLY143, and GLU166 residues in the 3CLpro binding
pocket (Figure S2). π-based, hydrophobic, and vdW interactions were also monitored
between the identified MNPs and key residues in the 3CLpro binding pocket (Figure S2).
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Chetomin (UMHMNP1403367), an organic heteropentacyclic compound isolated from
chaetomium globosum and farrowia seminuda, demonstrated the lowest docking score against
3CLpro with a value of −13.4 kcal/mol. Investigating the docking pose of UMHMNP1403367
within the 3CLpro’s active site disclosed that the CO and OH of the (1S,4S)-1-(hydroxymethyl)-
2,3-dithia-5,7-diazabicyclo[2.2.2]octane-6,8-dione ring form two hydrogen bonds with the NH
and CO of GLU166 with distances of 1.99 and 2.79 Å, respectively (Figure 3).

Compared to chetomin (UMHMNP1403367), XF7 complexed with 3CLpro demon-
strated a competitive docking score with a value of −9.5 kcal/mol (Table 1). The robust
binding of XF7 with 3CLpro is ascribed to the ability to form hydrogen bonds with THR26
(2.28, 2.49 Å), GLY143 (2.07 Å), SER144 (3.29 Å), HIS163 (1.91 Å), and GLU166 (1.81 Å)
(Table 1).
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Table 1. Evaluated fast, moderate, and expensive docking scores, binding features, and 2D chemical structures for most potent MNPs against 3CLpro a.

No. Compound ID
Docking Score (kcal/mol)

2D Chemical Structure Binding Feature b
Fast Moderate Expensive

XF7 −8.1 −9.2 −9.5
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(2.01, 2.22 Å),

CYS145 (2.33 Å),
GLU166

(2.01, 2.84 Å),
GLN189 (1.89 Å)
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Table 1. Cont.

No. Compound ID
Docking Score (kcal/mol)

2D Chemical Structure Binding Feature b
Fast Moderate Expensive

3 UMHMNP791849666 −11.4 −11.9 −12.3
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No. Compound ID
Docking Score (kcal/mol)

2D Chemical Structure Binding Feature b
Fast Moderate Expensive
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Table 1. Cont.

No. Compound ID
Docking Score (kcal/mol)

2D Chemical Structure Binding Feature b
Fast Moderate Expensive
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a Data ranked on the basis of the expensive docking scores. b Conventional hydrogen bond only is 
displayed. 

Chetomin (UMHMNP1403367), an organic heteropentacyclic compound isolated 
from chaetomium globosum and farrowia seminuda, demonstrated the lowest docking score 
against 3CLpro with a value of −13.4 kcal/mol. Investigating the docking pose of UM-
HMNP1403367 within the 3CLpro’s active site disclosed that the CO and OH of the (1S,4S)-
1-(hydroxymethyl)-2,3-dithia-5,7-diazabicyclo[2.2.2]octane-6,8-dione ring form two hy-
drogen bonds with the NH and CO of GLU166 with distances of 1.99 and 2.79 Å, respec-
tively (Figure 3). 

LEU141 (2.08 Å),
GLY143 (2.75 Å), SER144
(2.09 Å), CYS145 (2.46 Å),

GLU166 (1.75 Å)
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Table 1. Cont.

No. Compound ID
Docking Score (kcal/mol)

2D Chemical Structure Binding Feature b
Fast Moderate Expensive

12 UMHMNP221163300 −11.1 −11.4 −11.4
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a Data ranked on the basis of the expensive docking scores. b Conventional hydrogen bond only is displayed.
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(UMHMNP1403367) with SARS-CoV-2 3CLpro.

3.3. MD Simulations

MD simulations are utilized to establish the stabilization of the ligand–target com-
plex, structural specifics, conformational elasticities, and trustworthiness of ligand–target
binding energy [62,63]. The most promising MNPs (111 molecules with docking scores
<−9.5 kcal/mol) complexed with 3CLpro were submitted to MD simulations and pursued
by binding energy computations. To diminish the time and computational costs, the
simulations were executed for 1 ns MD in an implicit water solvent. The corresponding
binding energies were evaluated, and thirteen MNPs manifested lower ∆Gbinding com-
pared to the native XF7 ligand (calc. −40.0 kcal/mol) (Table S3). These MNPs in complex
with 3CLpro were then submitted to 5 ns MD in an explicit water solvent to gain more
reliable binding energies (Table S4). Based on the estimated MM-GBSA binding energies
over 5 ns MD simulations, only five MNPs unveiled lower ∆Gbinding compared to the
native XF7 ligand (calc. −43.0 kcal/mol) (Figure 4 and Table S4). These potent MNPs
were then subjected to a 25 ns MD simulation, and the corresponding MM-GBSA binding
energies were estimated (Figure 4). Interestingly, out of the five identified MNPs as poten-
tial 3CLpro inhibitors, only chetomin (UMHMNP1403367) displayed stationary binding
energies with ∆Gbinding values of −55.2 and −57.5 kcal/mol throughout 5 ns and 25 ns
MD simulations. While UMHMNP143621754, UMHMNP14984668, UMHMNP791849666,
and UMHMNP101691127 manifested a tenuous rise in binding energy (∆Gbinding) over the
25 ns MD simulation. This elucidates the importance of long MD simulation to foretell
MNP-3CLpro binding energy. As well, the relative binding energy (∆∆Gbinding) values
for the five identified MNPs compounds with respect to the XF7 were computed (Ta-
ble S5). From Table S5, UMHMNP1403367 demonstrated a promising ∆∆Gbinding value
of −12.5 kcal/mol, while the other four MNPs showed insignificant ∆∆Gbinding values of
≤−1.8 kcal/mol. Therefore, MD simulation for chetomin (UMHMNP1403367) complexed
with 3CLpro was protracted to 200 ns. In addition, the corresponding binding affinity was
computed (Figure 4).
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Figure 4. Estimated binding affinities for the five most potent MNPs and the co-crystallized XF7
ligand in complex with 3CLpro over 1 ns in an implicit water solvent and 5, 25, and 200 ns in an
explicit water solvent MD.

The perceptible disproportion between the estimated binding energies for the chetomin-
3CLpro complex over the 25 ns and 200 ns MD simulations was not observed. Compared
with the native XF7 ligand (calc. −43.7 kcal/mol), chetomin was revealed to have a lower
binding energy against 3CLpro throughout a 200 ns MD, with an average ∆Gbinding of
−55.5 kcal/mol (Figure 4). The 3D and 2D molecular interactions of average the structures
of chetomin and XF7 inside the 3CLpro binding pocket over 200 ns are illustrated in Figure 5
and Figure S3, respectively. Inspecting the binding mode of chetomin inside the binding
pocket of the 3CLpro showed that chetomin preserved its hydrogen bond with GLU166 and
formed hydrogen bonds with HIS41, ASN142, and GLN192 residues (Figures 5 and S3). No-
tably, those hydrogen bonds were absent in the docked pose of chetomin (Figure 3), demon-
strating the importance of conducting MD simulation. More exactly, the two CO groups
and OH of (1S,4S)-1-(hydroxymethyl)-2,3-dithia-5,7-diazabicyclo[2.2.2]octane-6,8-dione
ring exhibit three hydrogen bonds with the CO and NH of GLU166 and NH of GLN192
with distances of 1.92, 2.67, and 2.59 Å, respectively (Figure 5). Moreover, the sulfur atom
and CO of (1R,4R)-2,3-dithia-5,7-diazabicyclo[2.2.2]octane-6,8-dione ring demonstrated
two hydrogen bonds with NH2 of ASN142 and NH of the imidazole ring of HIS41 with
distances of 2.81 and 1.91 Å, respectively (Figures 5 and S3).

For XF7 complexed with 3CLpro, the CO of pyridin-2(1H)-one and nitrogen of the
pyridine ring interact with NH of GLU166 and SH of CYS145 by hydrogen bonds with
lengths of 1.85 and 1.90 Å, respectively (Figures 5 and S3).

The computed binding affinities were decomposed into individual components to ex-
plore the main driving forces in the binding of chetomin and XF7 with SARS-CoV-2 3CLpro

(Figure 5). As shown in Figure 5, Eele was a favorable contributor in the binding affinities
of chetomin and XF7 with 3CLpro, with values of −34.5 and −21.7 kcal/mol, respectively
(Figure 5). The binding affinity of chetomin and XF7 with 3CLpro were dominated by Evdw
interactions with an average value of −55.5 and −54.5 kcal/mol, respectively (Figure 5).
Notably, Evdw is about one and a half fold stronger than Eele.

To inspect the participation of essential residues in the ligand–target complexes, the
total ∆Gbinding values were decomposed at the per-residue level. Only amino acids with
∆Gbinding < −0.50 kcal/mol were demonstrated (Figure 6). It is apparent that GLU166,
ASN142, HIS163, and GLN189 residues participated in the interactions of chetomin and
XF7 with 3CLpro. Significant participation of the GLU166 residue to the total ∆Gbinding was
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noticed with values of −4.1 and −2.3 kcal/mol for chetomin (UMHMNP1403367)- and
XF7-3CLpro complexes, respectively (Figure 6).
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3.4. Post-MD Analyses

To further investigate the structural and energetical stability of chetomin and XF7 in
the complex with 3CLpro, post-MD analyses were performed throughout the 200 ns MD
simulations.
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3.4.1. Binding Affinity Analysis

The structural stability of chetomin and XF7 in a complex with 3CLpro was inclusively
estimated throughout the MD course of 200 ns by gauging the correlation between binding
energy and time (Figure 7a). What stands out in Figure 7a is the general constancies of the
binding affinities of chetomin and XF7 with 3CLpro, with ∆Gbinding values of −55.5 ± 4.5
and −43.7 ± 3.9 kcal/mol, respectively. On the basis of the energetical analysis, all of the
inspected complexes maintained stability throughout the 200 ns MD.
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Figure 7. (a) Estimated binding energy per frame, (b) center-of-mass (CoM) distance, (c) the number
of H-bonds, and (d) root-mean-square deviation (RMSD) of the backbone atoms from the starting
structure of chetomin (pink) and XF7 (navy) towards the 3CLpro throughout 200 ns MD.

3.4.2. CoM Distance

To gain more in-depth insight into the stability of chetomin and XF7 complexed with
3CLpro over the 200 ns MD simulations, the center-of-mass (CoM) distance was evaluated
between the investigated ligand and GLU166 (Figure 7b). The most exciting aspect of
the CoM graph is the high steadiness of chetomin and XF7 in complex with 3CLpro with
average CoM distances of 10.5 and 6.1 Å, respectively (Figure 7b). These findings revealed
that the chetomin binds more tightly with the 3CLpro than XF7.

3.4.3. H-Bond Numbers

Furthermore, the steadiness of chetomin and XF7 in a complex with 3CLpro was
evaluated by estimating the number of hydrogen bond interactions (H-bonds). The cor-
relation between the number of H-bonds and simulation time was graphed in Figure 7c.
As depicted in Figure 7c, the average number of H-bonds was three and one for chetomin-
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and XF7-3CLpro complexes. Notably, XF7 demonstrated the fewest number of hydrogen
bonds with the fundamental residues inside the active site of 3CLpro. However, the good
binding affinity of XF7 with an average ∆Gbinding of −43.7 kcal/mol may be ascribed to
other interactions, such as vdW, π-based, and hydrophobic interactions. The superiority of
the vdW interactions of XF7 with 3CLpro conforms to the binding affinity decomposition
results (Figure 5). The hydrogen bond analysis confirmed the presentence of considerable
stability for the chetomin than XF7 complexed with 3CLpro.

3.4.4. Root-Mean-Square Deviation

Throughout the 200 ns MD course, the RMSD (root-mean-square deviation) of the C,
Cα, N, and O of the entire system was evaluated to observe the conformational change
of the chetomin- and XF7-3CLpro complexes (Figure 7d). As shown in Figure 7d, the
investigated systems stabilized after the first 5 ns and maintained their stabilization until
the end of the 200 ns simulation. The measured RMSD values with average values were
0.27 and 0.28 nm during the 200 ns MD for the chetomin- and XF7-3CLpro complexes. These
findings assured that chetomin is tightly bonded and does not influence the structural
steadiness of 3CLpro, in addition to preserving the structural integrity.

3.5. Physicochemical Features

The SwissADME server was employed to anticipate the potentiality of utilizing
chetomin and the co-crystallized XF7 ligand as drugs by estimating the physicochemi-
cal characteristics. The physicochemical features involved the topological polar surface
area (Å2), the MWt (g/mol), HBD, HBA, and Nrotb (number of rotatable bonds) (Table 2).
As listed in Table 2, the MWt was 710.9 and 533.4 g/mol for chetomin and XF7, respectively
(Table 2). Notably, the tenuous rise in MWt will not have tremendous leverage on drug
diffusion and transmission, wherever it has been demonstrated that sundry FDA-approved
drugs proceeded beyond the conventional low MWt of 500 g/mol [64]. The Log p values of
chetomin and XF7 were auspicious, with values lower than 5 [65]. In addition, the number
of HBD was less than 5, and the number of HBA was less than 10. These findings indicated
that chetomin is a potential anti-COVID-19 drug candidate.

Table 2. Anticipated physiochemical characteristics of chetomin and XF7 as 3CLpro inhibitors.

Compound ID/Name Log po/w MWt HBD HBA TPSA Nrotb

XF7 4.25 533.4 2 5 109.8 6
Chetomin 1.05 710.9 3 6 239.9 5

3.6. Pharmacokinetic Characteristics

The knowledge of pharmacokinetics and toxicity features offers worthy guidelines
for starting-stage drug discovery. Caco2 permeability and HIA are absorption character-
istics that must be considered in any medicine exploration process [66]. The investigated
compounds demonstrated perfect absorption, with HIA values of 73.4% and 93.5% for
chetomin and XF7, respectively (Table 3). The inspected compounds unveiled satisfactory
skin permeability, with a value of −2.7 for both compounds (Table 3). The investigated
compounds also demonstrated good Caco2 permeability (less than 0.9 cm/s). One of
the most fundamental ADMET characteristics is the P-glycoprotein substrate/inhibitor.
Chetomin and XF7 were characterized as inhibitors/substrates for P-glycoprotein (Table 3).
The BBB membrane permeability, VDss, and CNS were estimated to check drug distri-
bution. Significant distribution volumes were noticed for chetomin and XF7 with log BB
values of −2.0 and −1.1, respectively, indicating that these compounds can readily pass
the blood–brain barrier (BBB permeability) (Table 3). For VDss and CNS permeability,
log VDss and log PS values were −0.1 and 0.3 and −3.9 and −2.5 for chetomin and XF7,
respectively (Table 3). CYP450 has a fundamental function in the metabolism of the drug.
The metabolism predictions exposed that chetomin and XF7 cannot inhibit CYP2D6 en-
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zymes and cannot act as inhibitors for CYP1A2, CYP2C19, CYP2C9, and CYP3A4 enzymes
(Table 3).

Table 3. The ADMET anticipation for chetomin (UMHMNP1403367) and XF7 as anti-COVID-19 drug
candidates.

ADMET Characteristics Chetomin (UMHMNP1403367) XF7

Absorption (A)

Skin permeability (log Kp) −2.7 −2.7

Caco2 permeability (log Papp, cm/s) −0.05 0.5

Intestinal absorption (human) (%) 73.4% 93.5%

P-glycoprotein substrate (Yes/No) Yes Yes

P-glycoprotein I inhibitor (Yes/No) Yes Yes

P-glycoprotein II inhibitor (Yes/No) Yes Yes

Distribution (D)

VDss (human) (log L/kg) −0.1 0.3

BBB permeability (log BB) −2.0 −1.1

CNS permeability (log PS) −3.9 −2.5

Metabolism (M)

CYP1A2 inhibitor (Yes/No) No No

CYP2C19 inhibitor (Yes/No) No Yes

CYP2C9 inhibitor (Yes/No) No Yes

CYP2D6 inhibitor (Yes/No) No No

CYP3A4 inhibitor (Yes/No) No Yes

Excretion (E)

Total Clearance (log mL/min/kg) 0.3 0.8

Toxicity (T)

AMES toxicity (Yes/No) No No

Skin Sensitization (Yes/No) No No

The total drug clearance was 0.3 and 0.8 mL/min/kg for chetomin and XF7, respec-
tively (Table 3). Toxicity has an extraordinary role in opting for adequate drugs. Chetomin
and XF7 did not expose AMES toxicity and skin sensitization (Table 3). According to the
predicted ADMET features, these findings deduced that the investigated compounds might
be used as potential anti-COVID-19 drug candidates.

3.7. Chetomin Derivatives as Prospective Anti-COVID-19 Drug Candidates

Based on the promising potentiality of chetomin as SARS-CoV-2 3CLpro, the study
was extended to examine the perspectivity of the chetomin analogues, namely, chetomin
A-D. The chemical structures of chetomin A-D were retrieved from the PubChem database
and prepared for docking computations. The docking scores, binding features, and 2D
chemical structures of the chetomin derivatives are listed in Table 4. As enrolled in Table 4,
all of the chetomin derivatives demonstrated similar docking poses with 3CLpro, exhibiting
hydrogen bonds with GLU166, ASN142, and GYS145. The anticipated docking scores for
chetomin derivatives ranged from −11.1 to −12.2 kcal/mol. A comparison of the docking
results revealed that chetomin (UMHMNP1403367/PubChem10417379) demonstrated the
lowest docking score with a value of −13.4 kcal/mol (Table 4).
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Table 4. Predicted docking scores, binding features, and 2D chemical structures of chetomin analogs as SARS-CoV-2 3CLpro inhibitors.

No. Compound Name/PubChem ID Docking Score (kcal/mol) 2D Chemical Structures Binding Features a

1 PubChem10417379 (Chetomin) −13.4
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Table 4. Cont.

No. Compound Name/PubChem ID Docking Score (kcal/mol) 2D Chemical Structures Binding Features a

3 PubChem139591136 (Chetomin A) −11.5
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4. Conclusions

Currently, COVID-19 is spreading quickly worldwide, causing a high mortality rate
and morbidity rate. The demand for COVID-19 treatments still very much exists. By in silico
screening and characterization of MNPs as potential 3CLpro inhibitors, several candidate
metabolites were identified. Included in that initial screening, chetomin was shown to have
promising binding energy (∆Gbinding), with a value of −55.5 kcal/mol against 3CLpro over
200 ns MD simulation. Post-MD analyses throughout 200 ns MD simulations indicated
the high stability of chetomin complexed with 3CLpro. Chetomin also showed favorable
physicochemical and pharmacokinetic features. Comparing the docking scores of chetomin
with its analogues, namely, chetomin A-D, demonstrated the superior binding affinity of
chetomin against 3CLpro. These findings clearly clarify the suitability of chetomin as a
promising drug candidate for further studies toward new COVID-19 treatments.
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