Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = manzamine A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3856 KiB  
Article
RIP1 Mediates Manzamine-A-Induced Secretory Autophagy in Breast Cancer
by Xuan Wang, Yuanpeng Liu, Huan Qin, Guocui Qi, Xuehong Chen, Yi Lyu and Yantao Han
Mar. Drugs 2023, 21(3), 151; https://doi.org/10.3390/md21030151 - 25 Feb 2023
Cited by 8 | Viewed by 2851
Abstract
Cancer-derived small extracellular vesicles (sEVs) serve as critical mediators of cell-to-cell communication. Manzamine A (MA), a unique marine-derived alkaloid with various bioactivities, exerts anticancer effects against several kinds of tumors, but it remains unclear whether it has the same activity against breast cancer. [...] Read more.
Cancer-derived small extracellular vesicles (sEVs) serve as critical mediators of cell-to-cell communication. Manzamine A (MA), a unique marine-derived alkaloid with various bioactivities, exerts anticancer effects against several kinds of tumors, but it remains unclear whether it has the same activity against breast cancer. Here, we proved that MA inhibits MDA-MB-231 and MCF-7 cell proliferation, migration, and invasion in a time- and dose-dependent manner. In addition, MA promotes autophagosome formation but suppresses autophagosome degradation in breast cancer cells. Importantly, we also found that MA stimulates sEVs secretion and increases autophagy-related protein accumulation in secreted sEVs, further potentiated by autophagy inhibitor chloroquine (CQ). Mechanistically, MA decreases the expression level of RIP1, the key upstream regulator of the autophagic pathway, and reduces the acidity of lysosome. Overexpression of RIP1 activated AKT/mTOR signaling, thus attenuating MA-induced autophagy and the corresponding secretion of autophagy-associated sEVs. Collectively, these data suggested that MA is a potential inhibitor of autophagy by preventing autophagosome turnover, and RIP1 mediates MA-induced secretory autophagy, which may be efficacious for breast cancer treatment. Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Graphical abstract

21 pages, 9322 KiB  
Article
Exploring Core Genes by Comparative Transcriptomics Analysis for Early Diagnosis, Prognosis, and Therapies of Colorectal Cancer
by Md. Ariful Islam, Md. Bayazid Hossen, Md. Abu Horaira, Md. Alim Hossen, Md. Kaderi Kibria, Md. Selim Reza, Khanis Farhana Tuly, Md. Omar Faruqe, Firoz Kabir, Rashidul Alam Mahumud and Md. Nurul Haque Mollah
Cancers 2023, 15(5), 1369; https://doi.org/10.3390/cancers15051369 - 21 Feb 2023
Cited by 17 | Viewed by 4262
Abstract
Colorectal cancer (CRC) is one of the most common cancers with a high mortality rate. Early diagnosis and therapies for CRC may reduce the mortality rate. However, so far, no researchers have yet investigated core genes (CGs) rigorously for early diagnosis, prognosis, and [...] Read more.
Colorectal cancer (CRC) is one of the most common cancers with a high mortality rate. Early diagnosis and therapies for CRC may reduce the mortality rate. However, so far, no researchers have yet investigated core genes (CGs) rigorously for early diagnosis, prognosis, and therapies of CRC. Therefore, an attempt was made in this study to explore CRC-related CGs for early diagnosis, prognosis, and therapies. At first, we identified 252 common differentially expressed genes (cDEGs) between CRC and control samples based on three gene-expression datasets. Then, we identified ten cDEGs (AURKA, TOP2A, CDK1, PTTG1, CDKN3, CDC20, MAD2L1, CKS2, MELK, and TPX2) as the CGs, highlighting their mechanisms in CRC progression. The enrichment analysis of CGs with GO terms and KEGG pathways revealed some crucial biological processes, molecular functions, and signaling pathways that are associated with CRC progression. The survival probability curves and box-plot analyses with the expressions of CGs in different stages of CRC indicated their strong prognostic performance from the earlier stage of the disease. Then, we detected CGs-guided seven candidate drugs (Manzamine A, Cardidigin, Staurosporine, Sitosterol, Benzo[a]pyrene, Nocardiopsis sp., and Riccardin D) by molecular docking. Finally, the binding stability of four top-ranked complexes (TPX2 vs. Manzamine A, CDC20 vs. Cardidigin, MELK vs. Staurosporine, and CDK1 vs. Riccardin D) was investigated by using 100 ns molecular dynamics simulation studies, and their stable performance was observed. Therefore, the output of this study may play a vital role in developing a proper treatment plan at the earlier stages of CRC. Full article
Show Figures

Figure 1

7 pages, 1502 KiB  
Article
Marine-Based Candidates as Potential RSK1 Inhibitors: A Computational Study
by Mousa AlTarabeen, Qosay Al-Balas, Amgad Albohy, Werner Ernst Georg Müller and Peter Proksch
Molecules 2023, 28(1), 202; https://doi.org/10.3390/molecules28010202 - 26 Dec 2022
Cited by 2 | Viewed by 2250
Abstract
Manzamines are chemically related compounds extracted from the methanolic extract of Acanthostrongylophora ingens species. Seven compounds were identified by our research group and are being characterized. As their biological target is unknown, this work is based on previous screening work performed by Mayer [...] Read more.
Manzamines are chemically related compounds extracted from the methanolic extract of Acanthostrongylophora ingens species. Seven compounds were identified by our research group and are being characterized. As their biological target is unknown, this work is based on previous screening work performed by Mayer et al., who revealed that manzamine A could be an inhibitor of RSK1 kinase. Within this work, the RSK1 N-terminal kinase domain is exploited as a target for our work and the seven compounds are docked using Autodock Vina software. The results show that one of the most active compounds, Manzamine A N-oxide (5), with an IC50 = 3.1 μM, displayed the highest docking score. In addition, the compounds with docking scores lower than the co-crystalized ligand AMP-PCP (−7.5 and −8.0 kcal/mol) for ircinial E (1) and nakadomarin A (7) were found to be inferior in activity in the biological assay. The docking results successfully managed to predict the activities of four compounds, and their in silico results were in concordance with their biological data. The β-carboline ring showed noticeable receptor binding, which could explain its reported biological activities, while the lipophilic side of the compound was found to fit well inside the hydrophobic active site. Full article
Show Figures

Figure 1

14 pages, 2901 KiB  
Article
Manzamine-A Alters In Vitro Calvarial Osteoblast Function
by Samantha Hardy, Yeun-Mun Choo, Mark Hamann and James Cray
Mar. Drugs 2022, 20(10), 647; https://doi.org/10.3390/md20100647 - 19 Oct 2022
Cited by 3 | Viewed by 2981
Abstract
Manzamine-A is a marine-derived alkaloid which has anti-viral and anti-proliferative properties and is currently being investigated for its efficacy in the treatment of certain viruses (malaria, herpes, HIV-1) and cancers (breast, cervical, colorectal). Manzamine-A has been found to exert effects via modulation of [...] Read more.
Manzamine-A is a marine-derived alkaloid which has anti-viral and anti-proliferative properties and is currently being investigated for its efficacy in the treatment of certain viruses (malaria, herpes, HIV-1) and cancers (breast, cervical, colorectal). Manzamine-A has been found to exert effects via modulation of SIX1 gene expression, a gene critical to craniofacial development via the WNT, NOTCH, and PI3K/AKT pathways. To date little work has focused on Manzamine-A and how its use may affect bone. We hypothesize that Manzamine-A, through SIX1, alters bone cell activity. Here, we assessed the effects of Manzamine-A on cells that are responsible for the generation of bone, pre-osteoblasts and osteoblasts. PCR, qrtPCR, MTS cell viability, Caspase 3/7, and functional assays were used to test the effects of Manzamine-A on these cells. Our data suggests Six1 is highly expressed in osteoblasts and their progenitors. Further, osteoblast progenitors and osteoblasts exhibit great sensitivity to Manzamine-A treatment exhibited by a significant decrease in cell viability, increase in cellular apoptosis, and decrease in alkaline phosphatase activity. In silico binding experiment showed that manzamine A potential as an inhibitor of cell proliferation and survival proteins, i.e., Iκb, JAK2, AKT, PKC, FAK, and Bcl-2. Overall, our data suggests Manzamine-A may have great effects on bone health overall and may disrupt skeletal development, homeostasis, and repair. Full article
(This article belongs to the Special Issue Marine Bioactive Compounds on Osteoporosis and Related Bone Diseases)
Show Figures

Figure 1

19 pages, 3773 KiB  
Article
High-Content C. elegans Screen Identifies Natural Compounds Impacting Mitochondria-Lipid Homeostasis and Promoting Healthspan
by Silvia Maglioni, Nayna Arsalan, Anna Hamacher, Shiwa Afshar, Alfonso Schiavi, Mathias Beller and Natascia Ventura
Cells 2022, 11(1), 100; https://doi.org/10.3390/cells11010100 - 29 Dec 2021
Cited by 13 | Viewed by 4548
Abstract
The aging process is concurrently shaped by genetic and extrinsic factors. In this work, we screened a small library of natural compounds, many of marine origin, to identify novel possible anti-aging interventions in Caenorhabditis elegans, a powerful model organism for aging studies. [...] Read more.
The aging process is concurrently shaped by genetic and extrinsic factors. In this work, we screened a small library of natural compounds, many of marine origin, to identify novel possible anti-aging interventions in Caenorhabditis elegans, a powerful model organism for aging studies. To this aim, we exploited a high-content microscopy platform to search for interventions able to induce phenotypes associated with mild mitochondrial stress, which is known to promote animal’s health- and lifespan. Worms were initially exposed to three different concentrations of the drugs in liquid culture, in search of those affecting animal size and expression of mitochondrial stress response genes. This was followed by a validation step with nine compounds on solid media to refine compounds concentration, which led to the identification of four compounds (namely isobavachalcone, manzamine A, kahalalide F and lutein) consistently affecting development, fertility, size and lipid content of the nematodes. Treatment of Drosophila cells with the four hits confirmed their effects on mitochondria activity and lipid content. Out of these four, two were specifically chosen for analysis of age-related parameters, kahalalide F and lutein, which conferred increased resistance to heat and oxidative stress and extended animals’ healthspan. We also found that, out of different mitochondrial stress response genes, only the C. elegans ortholog of the synaptic regulatory proteins neuroligins, nlg-1, was consistently induced by the two compounds and mediated lutein healthspan effects. Full article
Show Figures

Graphical abstract

17 pages, 7636 KiB  
Article
RSK1 vs. RSK2 Inhibitory Activity of the Marine β-Carboline Alkaloid Manzamine A: A Biochemical, Cervical Cancer Protein Expression, and Computational Study
by Alejandro M. S. Mayer, Mary L. Hall, Joseph Lach, Jonathan Clifford, Kevin Chandrasena, Caitlin Canton, Maria Kontoyianni, Yeun-Mun Choo, Dev Karan and Mark T. Hamann
Mar. Drugs 2021, 19(9), 506; https://doi.org/10.3390/md19090506 - 7 Sep 2021
Cited by 12 | Viewed by 3861
Abstract
Manzamines are complex polycyclic marine-derived β-carboline alkaloids with reported anticancer, immunostimulatory, anti-inflammatory, antibacterial, antiviral, antimalarial, neuritogenic, hyperlipidemia, and atherosclerosis suppression bioactivities, putatively associated with inhibition of glycogen synthase kinase-3, cyclin-dependent kinase 5, SIX1, and vacuolar ATPases. We hypothesized that additional, yet undiscovered molecular [...] Read more.
Manzamines are complex polycyclic marine-derived β-carboline alkaloids with reported anticancer, immunostimulatory, anti-inflammatory, antibacterial, antiviral, antimalarial, neuritogenic, hyperlipidemia, and atherosclerosis suppression bioactivities, putatively associated with inhibition of glycogen synthase kinase-3, cyclin-dependent kinase 5, SIX1, and vacuolar ATPases. We hypothesized that additional, yet undiscovered molecular targets might be associated with Manzamine A’s (MZA) reported pharmacological properties. We report here, for the first time, that MZA selectively inhibited a 90 kDa ribosomal protein kinase S6 (RSK1) when screened against a panel of 30 protein kinases, while in vitro RSK kinase assays demonstrated a 10-fold selectivity in the potency of MZA against RSK1 versus RSK2. The effect of MZA on inhibiting cellular RSK1 and RSK2 protein expression was validated in SiHa and CaSki human cervical carcinoma cell lines. MZA’s differential binding and selectivity toward the two isoforms was also supported by computational docking experiments. Specifically, the RSK1-MZA (N- and C-termini) complexes appear to have stronger interactions and preferable energetics contrary to the RSK2–MZA ones. In addition, our computational strategy suggests that MZA binds to the N-terminal kinase domain of RSK1 rather than the C-terminal domain. RSK is a vertebrate family of cytosolic serine-threonine kinases that act downstream of the ras-ERK1/2 (extracellular-signal-regulated kinase 1/2) pathway, which phosphorylates substrates shown to regulate several cellular processes, including growth, survival, and proliferation. Consequently, our findings have led us to hypothesize that MZA and the currently known manzamine-type alkaloids isolated from several sponge genera may have novel pharmacological properties with unique molecular targets, and MZA provides a new tool for chemical-biology studies involving RSK1. Full article
Show Figures

Figure 1

15 pages, 3431 KiB  
Article
Model-Free Approach for the Configurational Analysis of Marine Natural Products
by Matthias Köck, Michael Reggelin and Stefan Immel
Mar. Drugs 2021, 19(6), 283; https://doi.org/10.3390/md19060283 - 21 May 2021
Cited by 12 | Viewed by 4247
Abstract
The NMR-based configurational analysis of complex marine natural products is still not a routine task. Different NMR parameters are used for the assignment of the relative configuration: NOE/ROE, homo- and heteronuclear J couplings as well as anisotropic parameters. The combined distance geometry (DG) [...] Read more.
The NMR-based configurational analysis of complex marine natural products is still not a routine task. Different NMR parameters are used for the assignment of the relative configuration: NOE/ROE, homo- and heteronuclear J couplings as well as anisotropic parameters. The combined distance geometry (DG) and distance bounds driven dynamics (DDD) method allows a model-free approach for the determination of the relative configuration that is invariant to the choice of an initial starting structure and does not rely on comparisons with (DFT) calculated structures. Here, we will discuss the configurational analysis of five complex marine natural products or synthetic derivatives thereof: the cis-palau’amine derivatives 1a and 1b, tetrabromostyloguanidine (1c), plakilactone H (2), and manzamine A (3). The certainty of configurational assignments is evaluated in view of the accuracy of the NOE/ROE data available. These case studies will show the prospective breadth of application of the DG/DDD method. Full article
Show Figures

Graphical abstract

34 pages, 3574 KiB  
Review
Marine-Derived Macrocyclic Alkaloids (MDMAs): Chemical and Biological Diversity
by Hanan I. Althagbi, Walied M. Alarif, Khalid O. Al-Footy and Ahmed Abdel-Lateff
Mar. Drugs 2020, 18(7), 368; https://doi.org/10.3390/md18070368 - 17 Jul 2020
Cited by 33 | Viewed by 5184
Abstract
The curiosity and attention that researchers have devoted to alkaloids are due to their bioactivities, structural diversity, and intriguing chemistry. Marine-derived macrocyclic alkaloids (MDMAs) are considered to be a potential source of drugs. Trabectedin, a tetrahydroisoquinoline derivative, has been approved for the treatment [...] Read more.
The curiosity and attention that researchers have devoted to alkaloids are due to their bioactivities, structural diversity, and intriguing chemistry. Marine-derived macrocyclic alkaloids (MDMAs) are considered to be a potential source of drugs. Trabectedin, a tetrahydroisoquinoline derivative, has been approved for the treatment of metastatic soft tissue sarcoma and ovarian cancers. MDMAs displayed potent activities that enabled them to be used as anticancer, anti-invasion, antimalarial, antiplasmodial, and antimicrobial. This review presents the reported chemical structures, biological activities, and structure–activity relationships of macrocyclic alkaloids from marine organisms that have been published since their discovery until May 2020. This includes 204 compounds that are categorized under eight subclasses: pyrroles, quinolines, bis-quinolizidines, bis-1-oxaquinolizidines, 3-alkylpiperidines, manzamines, 3-alkyl pyridinium salts, and motuporamines. Full article
Show Figures

Figure 1

15 pages, 4289 KiB  
Article
Manzamine A Exerts Anticancer Activity against Human Colorectal Cancer Cells
by Li-Chun Lin, Tzu-Ting Kuo, Hsin-Yi Chang, Wen-Shan Liu, Shih-Min Hsia and Tsui-Chin Huang
Mar. Drugs 2018, 16(8), 252; https://doi.org/10.3390/md16080252 - 29 Jul 2018
Cited by 46 | Viewed by 5420
Abstract
Marine sponges are known to produce numerous bioactive secondary metabolites as defense strategies to avoid predation. Manzamine A is a sponge-derived β-carboline-fused pentacyclic alkaloid with various bioactivities, including recently reported anticancer activity on pancreatic cancer. However, its cytotoxicity and mode of action against [...] Read more.
Marine sponges are known to produce numerous bioactive secondary metabolites as defense strategies to avoid predation. Manzamine A is a sponge-derived β-carboline-fused pentacyclic alkaloid with various bioactivities, including recently reported anticancer activity on pancreatic cancer. However, its cytotoxicity and mode of action against other tumors remain unclear. In this study, we exhibit that manzamine A reduced cell proliferation in several colorectal cancer (CRC) cell lines. To further investigate the manzamine A triggered molecular regulation, we analyzed the gene expression with microarray and revealed that pathways including cell cycle, DNA repair, mRNA metabolism, and apoptosis were dysregulated. We verified that manzamine A induced cell cycle arrest at G0/G1 phase via inhibition of cyclin-dependent kinases by p53/p21/p27 and triggered a caspase-dependent apoptotic cell death through mitochondrial membrane potential depletion. Additionally, we performed bioinformatics analysis and demonstrated that manzamine A abolished epithelial–mesenchymal transition process. Several mesenchymal transcriptional factors, such as Snail, Slug, and Twist were suppressed and epithelial marker E-cadherin was induced simultaneously in HCT116 cells by manzamine A, leading to the epithelial-like phenotype and suppression of migration. These findings suggest that manzamine A may serve as a starting point for the development of an anticancer drug for the treatment of metastatic CRC. Full article
(This article belongs to the Collection Marine Compounds and Cancer)
Show Figures

Figure 1

66 pages, 2278 KiB  
Review
Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds
by Anak Agung Gede Indraningrat, Hauke Smidt and Detmer Sipkema
Mar. Drugs 2016, 14(5), 87; https://doi.org/10.3390/md14050087 - 2 May 2016
Cited by 144 | Viewed by 20358
Abstract
Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. [...] Read more.
Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Invertebrates)
Show Figures

Figure 1

3 pages, 756 KiB  
Correction
Correction: Kallifatidis, G. et al. The Marine Natural Product Manzamine A Targets Vacuolar ATPases and Inhibits Autophagy in Pancreatic Cancer Cells. Mar. Drugs 2013, 11, 3500–3516
by Georgios Kallifatidis, Dominic Hoepfner, Tiphaine Jaeg, Esther A. Guzmán and Amy E. Wright
Mar. Drugs 2014, 12(4), 2305-2307; https://doi.org/10.3390/md12042305 - 21 Apr 2014
Cited by 2 | Viewed by 5163
Abstract
We found two errors in our previous published paper [1]. Figure 4A has a mistake in the units in the labels, where it shows mM instead of micromolar (µM). A correctly labeled Figure 4A ensues. In Figures 2 and 4, the size bar [...] Read more.
We found two errors in our previous published paper [1]. Figure 4A has a mistake in the units in the labels, where it shows mM instead of micromolar (µM). A correctly labeled Figure 4A ensues. In Figures 2 and 4, the size bar scale is micrometers (µm). We apologize for the inconvenience caused to our readers. [...] Full article
Show Figures

Figure 2

17 pages, 1489 KiB  
Article
The Marine Natural Product Manzamine A Targets Vacuolar ATPases and Inhibits Autophagy in Pancreatic Cancer Cells
by Georgios Kallifatidis, Dominic Hoepfner, Tiphaine Jaeg, Esther A. Guzmán and Amy E. Wright
Mar. Drugs 2013, 11(9), 3500-3516; https://doi.org/10.3390/md11093500 - 17 Sep 2013
Cited by 60 | Viewed by 10832 | Correction
Abstract
Manzamine A, a member of the manzamine alkaloids, was originally isolated from marine sponges of the genus Haliclona. It was recently shown to have activity against pancreatic cancer cells, but the precise mechanism of action remained unclear. To further our understanding of the [...] Read more.
Manzamine A, a member of the manzamine alkaloids, was originally isolated from marine sponges of the genus Haliclona. It was recently shown to have activity against pancreatic cancer cells, but the precise mechanism of action remained unclear. To further our understanding of the mechanism of action of manzamine A, chemogenomic profiling in the yeast S. cerevisiae was performed, suggesting that manzamine A is an uncoupler of vacuolar ATPases. Fluorescence microscopy confirmed this effect on yeast vacuoles, where manzamine A produced a phenotype very similar to that of the established v-ATPase inhibitor bafilomycin A1. In pancreatic cancer cells, 10 µM manzamine A affected vacuolar ATPase activity and significantly increased the level of autophagosome marker LC3-II and p62/SQSTM1 as observed by western blot analysis. Treatment with manzamine A in combination with bafilomycin A1 (inhibitor of autophagosome-lysosome fusion) did not change the levels of LC3-II when compared to cells treated with bafilomycin A1 alone, suggesting that manzamine A is a potential inhibitor of autophagy by preventing autophagosome turnover. As autophagy is essential for pancreatic tumor growth, blocking this pathway with manzamine A suggests a promising strategy for the treatment of pancreatic cancer. Full article
Show Figures

Figure 1

22 pages, 415 KiB  
Review
New One-Pot Methodologies for the Modification or Synthesis of Alkaloid Scaffolds
by Amir E. Wahba and Mark T. Hamann
Mar. Drugs 2010, 8(8), 2395-2416; https://doi.org/10.3390/md8082395 - 24 Aug 2010
Cited by 25 | Viewed by 12434
Abstract
There are several avenues by which promising bioactive natural products can be produced in sufficient quantities to enable lead optimization and medicinal chemistry studies. The total synthesis of natural products is an important, but sometimes difficult, approach and requires the development of innovative [...] Read more.
There are several avenues by which promising bioactive natural products can be produced in sufficient quantities to enable lead optimization and medicinal chemistry studies. The total synthesis of natural products is an important, but sometimes difficult, approach and requires the development of innovative synthetic methodologies to simplify the synthesis of complex molecules. Various classes of natural product alkaloids are both common and widely distributed in plants, bacteria, fungi, insects and marine organisms. This mini-review will discuss the scope, mechanistic insights and enantioselectivity aspects of selected examples of recently developed one-pot methods that have been published in 2009 for the synthesis of substituted piperidines, quinolizidines, pyrrolidines, hexahydropyrrolizines, octahydroindolizines and g-lactams. In addition, progress on the synthesis of b-carboline (manzamine) alkaloids will also be discussed. Full article
(This article belongs to the Special Issue Alkaloid Analogs)
Show Figures

Graphical abstract

Back to TopTop